
MapServer Documentation
Release 6.4.1

The MapServer Team

April 12, 2014

CONTENTS

1 Introduction 3
1.1 An Introduction to MapServer . 3

1.1.1 MapServer Overview . 3
1.1.2 Anatomy of a MapServer Application . 4
1.1.3 Installation and Requirements . 6

Windows Installation . 6
Hardware Requirements . 10
Software Requirements . 10
Skills . 10

1.1.4 Introduction to the Mapfile . 10
MAP Object . 12
LAYER Object . 12
CLASS and STYLE Objects . 13
SYMBOLs . 13
LABEL . 15
CLASS Expressions . 15
INCLUDE . 16
Get MapServer Running . 17
Get Demo Running . 17

1.1.5 Making the Site Your Own . 18
Adding Data to Your Site . 18
Vector Data . 18
Raster Data . 18
Projections . 18

1.1.6 Enhancing your site . 18
Adding Query Capability . 18
Attribute queries . 19
Spatial queries . 19
Interfaces . 19
Data Optimization . 19

1.1.7 How do I get Help? . 20
Documentation . 20
Users Mailing List . 20
IRC . 20
Reporting bugs . 20
Tutorial . 20
Test Suite . 20
Books . 20

2 Tutorial 21
2.1 MapServer Tutorial . 21

2.1.1 Tutorial background . 21
Tutorial Timeframe . 21

i

Tutorial Data . 21
Before Using the Tutorial . 22
Windows, UNIX/Linux Issues . 22
Other Resources . 23

2.1.2 Section 1: Static Maps and the MapFile . 23
2.1.3 Section 2: CGI variables and the User Interface . 23

HTML Templates . 24
Examples . 24

2.1.4 Section 3: Query and more about HTML Templates . 24
2.1.5 Section 4: Advanced User Interfaces . 24

3 Installation 25
3.1 Installation . 25

3.1.1 Compiling on Unix . 25
Introduction . 25
Obtaining the necessary software . 25
libgd . 27
Anti-Grain Geometry Support . 28
OGC Support . 29
Spatial Warehousing . 30
Compiling . 31
Installation . 32

3.1.2 Compiling on Win32 . 34
Introduction . 34
Compiling . 34
Set up a Project Directory . 35
Download MapServer Source Code and Supporting Libraries 35
The MapServer source code . 35
Set Compilation Options . 36
Compile the Libraries . 37
Compile MapServer . 38
Compiling MapServer with PostGIS support . 38
Common Compiling Errors . 38
Installation . 39
Other Helpful Information . 39
Acknowledgements . 40

3.1.3 PHP MapScript Installation . 40
Introduction . 40
Obtaining, Compiling, and Installing PHP and the PHP/MapScript Module 41
FAQ / Common Problems . 44

3.1.4 .NET MapScript Compilation . 46
Compilation . 46
Installation . 48
Known issues . 48
Most frequent errors . 50
Bug reports . 50

3.1.5 IIS Setup for MapServer . 50
Base configuration . 51
Php.ini file . 51
Internet Services Manager . 51
Under the tree for your new website - add virtual directories for 52
Test PHP . 52
Mapfiles for IIS . 52
Configuration files: . 53

3.1.6 Oracle Installation . 53
Preface . 53
System Assumptions . 53
Compile MapServer . 54

ii

Set Environment Variables . 54

4 Mapfile 57
4.1 Mapfile . 57

4.1.1 Cartographical Symbol Construction with MapServer 57
Abstract . 58
Introduction . 59
Using Cartographical Symbols in MapServer . 61
Construction of Point Symbols . 62
Construction of Line Symbols . 68
Area Symbols . 78
Examples (MapServer 4) . 93
Tricks . 98
Mapfile changes related to symbols . 102
Current Problems / Open Issues . 102
The End . 103

4.1.2 Geometry Transformations . 103
Transformations for simple styling (CLASS STYLE only) 103
Labels (LABEL STYLE only) . 107
Expressions and advanced transformations (LAYER and CLASS STYLE) 109

4.1.3 CLASS . 116
4.1.4 CLUSTER . 120

Description . 120
Supported Layer Types . 120
Mapfile Parameters . 120
Supported Processing Options . 120
Mapfile Snippet . 120
Feature attributes . 121
PHP MapScript Usage . 121
Example: Clustering Railway Stations . 121

4.1.5 Display of International Characters in MapServer . 123
Credit . 124
Related Links . 124
Requirements . 124
How to Enable in Your Mapfile . 124
Example Using PHP MapScript . 126
Notes . 126

4.1.6 Expressions . 127
Introduction . 127
Expression Types . 129
“MapServer expressions” . 131

4.1.7 FEATURE . 136
4.1.8 FONTSET . 136

Format of the fontset file . 137
4.1.9 GRID . 138

Description . 138
Mapfile Parameters: . 138
Example1: Grid Displaying Degrees . 138
Example2: Grid Displaying Degrees with Symbol . 139
Example2: Grid Displayed in Other Projection (Google Mercator) 140

4.1.10 INCLUDE . 141
Notes . 141
Example . 142

4.1.11 JOIN . 142
Description . 142
Supported Formats . 142
Mapfile Parameters: . 143
Example 1: Join from Shape dataset to DBF file . 143

iii

Example 2: Join from Shape dataset to PostgreSQL table 144
Example 3: Join from Shape dataset to CSV file . 145
Example 4: Join from Shape dataset to MySQL . 147
Example 5: One-to-many join . 147

4.1.12 LABEL . 148
4.1.13 LAYER . 153
4.1.14 LEADER . 161

Description . 162
Supported Layer Types . 162
Mapfile Parameters . 162
Mapfile Snippet . 162
Example: World Countries Labels . 162

4.1.15 LEGEND . 165
4.1.16 MAP . 166
4.1.17 OUTPUTFORMAT . 169
4.1.18 PROJECTION . 172

Background . 172
Projections with MapServer . 172
“Web Mercator” or “Google Mercator” . 173
PROJECTION AUTO . 173
Important Notes . 174
For More Information . 174

4.1.19 QUERYMAP . 174
4.1.20 REFERENCE . 175
4.1.21 SCALEBAR . 175
4.1.22 STYLE . 176
4.1.23 SYMBOL . 183
4.1.24 Symbology Examples . 184

Example 1. Dashed Line . 185
Example 2. TrueType font marker symbol . 185
Example 3. Vector triangle marker symbol . 185
Example 4. Non-contiguous vector marker symbol (Cross) 186
Example 5. Circle vector symbol . 186
Example 6. Downward diagonal fill . 186
Example 7. Using the Symbol Type HATCH (new in 4.6) 186
Example 8. Styled lines using GAP . 187

4.1.25 Templating . 188
Introduction . 188
Format . 189
Example Template . 196

4.1.26 Union Layer . 197
Description . 197
Requirements . 198
Mapfile Configuration . 198
Feature attributes . 198
Classes and Styles . 199
Projections . 199
Supported Processing Options . 199
Examples . 199

4.1.27 WEB . 202
4.1.28 XML Mapfile support . 204

Enabling the support . 204
Usage: . 204

4.1.29 Notes . 204

5 MapScript 207
5.1 MapScript . 207

5.1.1 Introduction . 207

iv

Appendices . 207
Documentation Elements . 207
fooObj . 207
Additional Documentation . 208

5.1.2 SWIG MapScript API Reference . 208
Introduction . 210
MapScript Constants . 210
MapScript Functions . 215
MapScript Classes . 216

5.1.3 PHP MapScript . 248
Introduction . 248
PHP MapScript API . 250
PHP MapScript Migration Guide . 281
By Example . 283

5.1.4 Python MapScript Appendix . 292
Introduction . 292
Classes . 292
Exception Handling . 294

5.1.5 Python MapScript Image Generation . 294
Introduction . 294
Imagery Overview . 295
The imageObj Class . 295
Image Output . 295
Images and Symbols . 296

5.1.6 Mapfile Manipulation . 296
Introduction . 296
Mapfile Overview . 297
The mapObj Class . 297
Children of mapObj . 297
Metadata . 299

5.1.7 Querying . 299
Introduction . 299
Querying Overview . 300
Attribute Queries . 301
Spatial Queries . 301

6 MapCache 303
6.1 MapCache . 303

6.1.1 Compilation & Installation . 303
Getting the Source . 304
Linux Instructions . 304
Windows Instructions . 310

6.1.2 Configuration File . 312
Source . 313
Cache . 314
Format . 315
Grid . 316
Tileset . 318
Services . 320
Miscellaneous . 321

6.1.3 Supported Tile Services . 322
TMS service . 322
KML Service . 323
OGC WMTS Service . 324
OGC WMS Service . 324
GoogleMaps XYZ Service . 325
Virtual Earth Tile service . 326

6.1.4 Seeder . 327

v

Usage . 327
6.1.5 Cache Types . 329

Disk Caches . 329
BerkeleyDB Caches . 330
Sqlite Caches . 330
Memcache Caches . 332
(Geo)TIFF Caches . 332

6.1.6 Image Formats . 335
JPEG Format . 335
PNG Format . 335
Mixed Format . 335

6.1.7 Tileset Dimensions . 336
6.1.8 FeatureInfo Requests . 336
6.1.9 Proxying Unsupported Requests . 336

Parameter Filtering . 336
Proxy Destination . 337

6.1.10 Data Sources . 337
HTTP Service Definition . 338
WMS Sources . 338
MapFile Sources . 338

6.1.11 Tile Assembling . 338
6.1.12 Features . 338

7 Input 339
7.1 Data Input . 339

7.1.1 Vector Data . 339
Data Format Types . 339
ArcInfo . 341
ArcSDE . 342
Contour . 344
DGN . 346
ESRI File Geodatabase . 348
ESRI Personal Geodatabase (MDB) . 349
ESRI Shapefiles (SHP) . 351
GML . 353
GPS Exchange Format (GPX) . 354
Inline . 356
KML - Keyhole Markup Language . 357
MapInfo . 360
MSSQL . 362
MySQL . 365
NTF . 369
OGR . 370
Oracle Spatial . 382
PostGIS/PostgreSQL . 386
SDTS . 393
S57 . 395
SpatiaLite . 397
USGS TIGER . 400
Vector field rendering - UVraster . 402
Virtual Spatial Data . 404
WFS . 408

7.1.2 Raster Data . 409
Introduction . 410
How are rasters added to a Map file? . 410
Supported Formats . 412
Rasters and Tile Indexing . 412
Raster Warping . 413

vi

24bit RGB Rendering . 414
Special Processing Directives . 414
Raster Query . 416
Raster Display Performance Tips . 417
Preprocessing Rasters . 418
Georeference with World Files . 419

8 Output 421
8.1 Output Generation . 421

8.1.1 AGG Rendering Specifics . 421
Introduction . 421
Setting the OutputFormat . 421
New Features . 422
Modified Behavior . 423

8.1.2 AntiAliasing with MapServer . 423
What needs to be done . 424

8.1.3 Dynamic Charting . 426
Setup . 427
Adding a Chart Layer to a Mapfile . 427
Pie Charts . 429
Bar Graphs . 430

8.1.4 Flash Output . 430
Introduction . 431
Installing MapServer with Flash Support . 431
How to Output SWF Files from MapServer . 432
What is Currently Supported and Not Supported . 435

8.1.5 HTML Legends with MapServer . 436
Introduction . 436
Sample Site Using the HTML Legend . 443

8.1.6 HTML Imagemaps . 444
Introduction . 444
Mapfile Layer Definition . 444
Templates . 445
Request URL . 446
Additional Notes . 446
More Information . 446

8.1.7 OGR Output . 446
Introduction . 447
OUTPUTFORMAT Declarations . 447
LAYER Metadata . 448
MAP / WEB Metadata . 448
Geometry Types Supported . 449
Attribute Field Definitions . 449
Return Packaging . 449
Test Suite Example . 450

8.1.8 PDF Output . 450
Introduction . 450
What is currently supported and not supported . 450
Implementing PDF Output . 451
PHP/MapScript and PDF Output . 453

8.1.9 SVG . 454
Introduction . 455
Feature Types and SVG Support Status . 455
Testing your SVG Output . 457
goSVG . 458

8.1.10 Tile Mode . 461
Introduction . 461
Configuration . 461

vii

Utilization . 462
8.1.11 Template-Driven Output . 464

Introduction . 465
OUTPUTFORMAT Declarations . 465
Template Substitution Tags . 466
Examples . 466

8.1.12 Kml Output . 470
Introduction . 470
General Functionnality . 470
Output format . 470
Build . 471
Limiting the number of features . 471
Map . 471
Layers . 471
Styling . 474
Attributes . 475
Coordinate system . 475
Warning and Error Messages . 475

9 OGC 477
9.1 OGC Support and Configuration . 477

9.1.1 MapServer OGC Specification support . 477
9.1.2 WMS Server . 477

Introduction . 478
Setting Up a WMS Server Using MapServer . 479
Changing the Online Resource URL . 484
WMS 1.3.0 Support . 486
Reference Section . 488
FAQ / Common Problems . 500

9.1.3 INSPIRE View Service . 500
Introduction . 501
Activation of INSPIRE support . 501
Multi-language support for certain capabilities fields . 502
Provision of INSPIRE specific metadata . 503
Named group layers . 504
Style section for root layer and possibly existing group layers 504

9.1.4 WMS Client . 506
Introduction . 506
Compilation / Installation . 506
MapFile Configuration . 507
Limitations/TODO . 512

9.1.5 WMS Time . 512
Introduction . 513
Enabling Time Support in MapServer . 513
Future Additions . 516
Limitations and Known Bugs . 516

9.1.6 WMS Dimension . 517
Introduction . 517
Enabling Dimension Support in MapServer . 517
GetCapabilities Output . 518
Supported Dimension Requests . 518
Processing Dimension Requests . 519

9.1.7 Map Context . 519
Introduction . 519
Implementing a Web Map Context . 520

9.1.8 WFS Server . 525
Introduction . 525
Configuring your MapFile to Serve WFS layers . 526

viii

Reference Section . 530
To-do Items and Known Limitations . 533

9.1.9 WFS Client . 534
Introduction . 534
Setting up a WFS-client Mapfile . 535
TODO / Known Limitations . 536

9.1.10 WFS-T Server . 537
WFS-T . 537

9.1.11 WFS Filter Encoding . 537
Introduction . 537
Currently Supported Features . 538
Get and Post Requests . 539
Use of Filter Encoding in MapServer . 539
Limitations . 541
Tests . 541

9.1.12 SLD . 544
Introduction . 544
Server Side Support . 545
Client Side Support . 551
Named Styles support . 552
Other Items Implemented . 553
Issues Found During Implementation . 553

9.1.13 WCS Server . 553
Introduction . 554
Configuring Your Mapfile to Serve WCS Layers . 555
Test Your WCS 1.0 Server . 557
WCS 1.1.0+ Issues . 558
WCS 2.0 . 560
HTTP-POST support . 564
Reference Section . 565
Rules for handling SRS in a MapServer WCS . 569
Spatio/Temporal Indexes . 569
WCS 2.0 Application Profile - Earth Observation (EO-WCS) 570
To-do Items and Known Limitations . 570

9.1.14 WCS Use Cases . 570
Landsat . 570
SPOT . 571
DEM . 572
NetCDF . 572

9.1.15 SOS Server . 575
Introduction . 575
Setting Up an SOS Server Using MapServer . 576
Limitations / TODO . 580
Reference Section . 580
Use of sos_procedure and sos_procedure_item . 584

9.1.16 How to set up MapServer as a client to access a service over https 585
Introduction . 586
Requirements . 586
Default Installation (with apt-get install, rpm, manual, etc) 586
Non-Standard Installation (common with ms4w and fgs) 586
Remote Server with a Self-Signed SSL Certificate . 587

9.1.17 MapScript Wrappers for WxS Services . 587
Introduction . 588
Python Examples . 588
Perl Example . 589
Java Example . 591
PHP Example . 593
Use in Non-CGI Environments (mod_php, etc) . 594

ix

Post Processing Capabilities . 594

10 TinyOWS 597
10.1 TinyOWS . 597

10.1.1 TinyOWS Installation . 597
Requires . 597

10.1.2 Configuring TinyOWS with an XML File . 598
Configuration file simple Example . 598
Testing your config.xml file . 599
Structure of the config.xml file . 599

10.1.3 Configuring TinyOWS with a standard Mapfile . 603
Mapfile Config File support for TinyOWS . 603
Mapfile path of each TinyOWS config element . 604

10.1.4 Sample: WFS-T with TinyOWS and OpenLayers . 605
10.1.5 Server Tuning: How to speed up your TinyOWS server 609

Tips and Tricks for PostgreSQL / PostGIS databases . 609
Tips and Tricks for Apache . 610
Using Fast-CGI . 610
HTTP GZip compression . 610

10.1.6 Working Around the LibXML2 XSD Schema GML Bug 610
Issue . 610
Workaround and options . 611

11 Optimization 613
11.1 Optimization . 613

11.1.1 Debugging MapServer . 613
Introduction . 613
Steps to Enable MapServer Debugging . 614
Debugging MapServer using Compiler Debugging Tools 620
Debugging Older Versions of MapServer (before 5.0) . 622

11.1.2 FastCGI . 623
Introduction . 623
Obtaining the necessary software . 623
mod_fcgid Configuration . 624
Deprecated mod_fcgi Configuration . 624
Common mod_fcgid/mod_fcgi Configuration . 624
Common Problems . 625
FastCGI on Win32 . 625

11.1.3 Mapfile . 626
Introduction . 626

11.1.4 Raster . 628
Overviews . 628
Tileindexes and Internal Tiling . 629
Image formats . 629
Remote WMS . 629

11.1.5 Tile Indexes . 629
Introduction . 630
What is a tileindex and how do I make one? . 630
Using the tileindex in your mapfile . 630
Tileindexes may make your map faster . 631
Tileindexes with tiles in different projections . 631

11.1.6 Vector . 632
Splitting your data . 632
Shapefiles . 632
PostGIS . 632
Databases in General (PostGIS, Oracle, MySQL) . 633

12 Utilities 635
12.1 Utilities . 635

x

12.1.1 legend . 635
Purpose . 635
Syntax . 635

12.1.2 msencrypt . 635
Purpose . 635
Syntax . 635
Use in Mapfile . 635

12.1.3 scalebar . 637
Purpose . 637
Syntax . 637

12.1.4 shp2img . 637
Purpose . 637
Syntax . 637

12.1.5 shptree . 638
Purpose . 638
Description . 638
Syntax . 639
Mapfile Notes . 639

12.1.6 shptreetst . 639
Purpose . 639
Syntax . 639

12.1.7 shptreevis . 640
Purpose . 640
Syntax . 640

12.1.8 sortshp . 641
12.1.9 sym2img . 643

Purpose . 643
Syntax . 643

12.1.10 tile4ms . 643
Purpose . 643
Description . 644
Syntax . 644
Short Example . 644
Long Example . 644

12.1.11 Batch Scripting . 646
Windows . 647
Linux . 647

12.1.12 File Management . 647
File Placement . 647
Temporary Files . 647

13 CGI 649
13.1 CGI . 649

13.1.1 MapServer CGI Introduction . 649
Notes . 649
Changes . 649

13.1.2 mapserv . 650
13.1.3 Map Context Files . 650

Support for Local Map Context Files . 650
Support for Context Files Accessed Through a URL . 650
Default Map File . 650

13.1.4 MapServer CGI Controls . 651
Variables . 651
Changing map file parameters via a form or a URL . 654
Specifying the location of mapfiles using an Apache variable 655
ROSA-Applet Controls . 655

13.1.5 Run-time Substitution . 655
Introduction . 656

xi

Basic Example . 656
Parameters Supported . 657
Default values if not provided in the URL . 657
VALIDATION . 658
Magic values . 658

13.1.6 A Simple CGI Wrapper Script . 658
Introduction . 658
Script Information . 659

13.1.7 MapServer OpenLayers Viewer . 660
Using the OpenLayers viewer . 660

14 Environment Variables 663
14.1 Environment Variables . 663

15 Glossary 667
15.1 Glossary . 667

16 Errors 671
16.1 Errors . 671

16.1.1 drawEPP(): EPPL7 support is not available . 671
Explanation . 671

16.1.2 loadLayer(): Unknown identifier. Maximum number of classes reached 671
16.1.3 loadMapInternal(): Given map extent is invalid . 672

How to get a file’s EXTENT values? . 672
16.1.4 msGetLabelSize(): Requested font not found . 672
16.1.5 msLoadFontset(): Error opening fontset . 673
16.1.6 msLoadMap(): Failed to open map file . 673
16.1.7 msProcessProjection(): no options found in ‘init’ file 673
16.1.8 msProcessProjection(): No such file or directory . 673

Setting the location of the epsg file . 674
16.1.9 msProcessProjection(): Projection library error.major axis or radius = 0 not given 674

Valid Examples . 674
16.1.10 msQueryByPoint: search returned no results . 674
16.1.11 msReturnPage(): Web application error. Malformed template name 675
16.1.12 msSaveImageGD(): Unable to access file . 675
16.1.13 msWMSLoadGetMapParams(): WMS server error. Image Size out of range, WIDTH

and HEIGHT must be between 1 and 2048 pixels . 675
16.1.14 Unable to load dll (MapScript) . 676

C#-specific information . 676

17 FAQ 677
17.1 FAQ . 677

17.1.1 Where is the MapServer log file? . 677
17.1.2 What books are available about MapServer? . 677
17.1.3 How do I compile MapServer for Windows? . 677
17.1.4 What do MapServer version numbers mean? . 677
17.1.5 Is MapServer Thread-safe? . 677
17.1.6 What does STATUS mean in a LAYER? . 678
17.1.7 How can I make my maps run faster? . 679
17.1.8 What does Polyline mean in MapServer? . 679
17.1.9 What is MapScript? . 679
17.1.10 Does MapServer support reverse geocoding? . 679
17.1.11 Does MapServer support geocoding? . 680
17.1.12 How do I set line width in my maps? . 680
17.1.13 Why do my JPEG input images look crappy via MapServer? 680
17.1.14 Which image format should I use? . 680
17.1.15 Why doesn’t PIL (Python Imaging Library) open my PNGs? 681
17.1.16 Why do my symbols look poor in JPEG output? . 681
17.1.17 How do I add a copyright notice on the corner of my map? 681

xii

Example Layer . 682
Result . 683

17.1.18 How do I have a polygon that has both a fill and an outline with a width? 683
17.1.19 How can I create simple antialiased line features? . 683
17.1.20 Which OGC Specifications does MapServer support? 684
17.1.21 Why does my requested WMS layer not align correctly? 684
17.1.22 When I do a GetCapabilities, why does my browser want to download

mapserv.exe/mapserv? . 685
17.1.23 Why do my WMS GetMap requests return exception using MapServer 5.0? 686
17.1.24 Using MapServer 6.0, why don’t my layers show up in GetCapabilities responses or are

not found anymore? . 686
17.1.25 Where do I find my EPSG code? . 687
17.1.26 How can I reproject my data using ogr2ogr? . 687
17.1.27 How can I help improve the documentation on this site? 687
17.1.28 What’s with MapServer’s logo? . 688

18 Copyright 689
18.1 License . 689
18.2 Credits . 689

Index 691

xiii

xiv

MapServer Documentation, Release 6.4.1

Note: The entire documentation is also available as a single PDF document and ePub document

If you are upgrading from an earlier version of MapServer, be sure to review the MapServer Migration Guide.

previousversions

CONTENTS 1

MapServer Documentation, Release 6.4.1

2 CONTENTS

CHAPTER

ONE

INTRODUCTION

1.1 An Introduction to MapServer

Author Jeff McKenna

Contact jmckenna at gatewaygeomatics.com

Author David Fawcett

Contact david.fawcett at moea.state.mn.us

Author Howard Butler

Contact hobu.inc at gmail.com

Last Updated 2014-03-27

Contents

• An Introduction to MapServer
– MapServer Overview
– Anatomy of a MapServer Application
– Installation and Requirements
– Introduction to the Mapfile
– Making the Site Your Own
– Enhancing your site
– How do I get Help?

1.1.1 MapServer Overview

MapServer is a popular Open Source project whose purpose is to display dynamic spatial maps over the Internet.
Some of its major features include:

• support for display and querying of hundreds of raster, vector, and database formats

• ability to run on various operating systems (Windows, Linux, Mac OS X, etc.)

• support for popular scripting languages and development environments (PHP, Python, Perl, Ruby, Java,
.NET)

• on-the-fly projections

• high quality rendering

• fully customizable application output

• many ready-to-use Open Source application environments

3

MapServer Documentation, Release 6.4.1

In its most basic form, MapServer is a CGI program that sits inactive on your Web server. When a request is sent
to MapServer, it uses information passed in the request URL and the Mapfile to create an image of the requested
map. The request may also return images for legends, scale bars, reference maps, and values passed as CGI
variables.

See Also:

The Glossary contains an overview of many of the jargon terms in this document.

MapServer can be extended and customized through MapScript or templating. It can be built to support many
different vector and raster input data formats, and it can generate a multitude of output formats. Most pre-
compiled MapServer distributions contain most all of its features.

See Also:

Compiling on Unix and Compiling on Win32

Note: MapScript provides a scripting interface for MapServer for the construction of Web and stand-alone
applications. MapScript can be used independently of CGI MapServer, and it is a loadable module that adds
MapServer capability to your favorite scripting language. MapScript currently exists in PHP, Perl, Python, Ruby,
Tcl, Java, and .NET flavors.

This guide will not explicitly discuss MapScript, check out the MapScript Reference for more information.

1.1.2 Anatomy of a MapServer Application

A simple MapServer application consists of:

• Map File - a structured text configuration file for your MapServer application. It defines the area of your
map, tells the MapServer program where your data is and where to output images. It also defines your map
layers, including their data source, projections, and symbology. It must have a .map extension or MapServer
will not recognize it.

See Also:

MapServer Mapfile Reference

• Geographic Data - MapServer can utilize many geographic data source types. The default format is the
ESRI Shape format. Many other data formats can be supported, this is discussed further below in Adding
data to your site.

See Also:

Vector Input Reference and Raster Input Reference

• HTML Pages - the interface between the user and MapServer . They normally sit in Web root. In it’s
simplest form, MapServer can be called to place a static map image on a HTML page. To make the map
interactive, the image is placed in an HTML form on a page.

CGI programs are ‘stateless’, every request they get is new and they don’t remember anything about the last
time that they were hit by your application. For this reason, every time your application sends a request to
MapServer, it needs to pass context information (what layers are on, where you are on the map, application
mode, etc.) in hidden form variables or URL variables.

A simple MapServer CGI application may include two HTML pages:

– Initialization File - uses a form with hidden variables to send an initial query to the web server and
MapServer. This form could be placed on another page or be replaced by passing the initialization
information as variables in a URL.

– Template File - controls how the maps and legends output by MapServer will appear in the browser.
By referencing MapServer CGI variables in the template HTML, you allow MapServer to populate
them with values related to the current state of your application (e.g. map image name, reference
image name, map extent, etc.) as it creates the HTML page for the browser to read. The template also
determines how the user can interact with the MapServer application (browse, zoom, pan, query).

4 Chapter 1. Introduction

MapServer Documentation, Release 6.4.1

Figure 1.1: The basic architecture of MapServer applications.

1.1. An Introduction to MapServer 5

MapServer Documentation, Release 6.4.1

See Also:

Templating

• MapServer CGI - The binary or executable file that receives requests and returns images, data, etc. It sits
in the cgi-bin or scripts directory of the web server. The Web server user must have execute rights for the
directory that it sits in, and for security reasons, it should not be in the web root. By default, this program is
called mapserv

• Web/HTTP Server - serves up the HTML pages when hit by the user’s browser. You need a working Web
(HTTP) server, such as Apache or Microsoft Internet Information Server, on the machine on which you are
installing MapServer.

1.1.3 Installation and Requirements

Windows Installation

Note: Pre-compiled binaries for MapServer are available from a variety of sources, refer to the windows section
of the Downloads page.

OSGeo4W is a new Windows installer that downloads and/or updates MapServer, add-on applications, and also
other Open Source geospatial software. The following steps illustrate how to use OSGeo4W:

1. Download OSGeo4W http://download.osgeo.org/osgeo4w/osgeo4w-setup.exe

2. Execute (double-click) the .exe

3. Choose “Advanced” install type

6 Chapter 1. Introduction

http://httpd.apache.org
http://download.osgeo.org/osgeo4w/osgeo4w-setup.exe

MapServer Documentation, Release 6.4.1

Note: Express contains options for higher-level packages such as MapServer, GRASS, and uDig. Ad-
vanced gives you full access to choosing commandline tools and applications for MapServer that are not
included in the Express install

4. Select packages to install

Note: Click on the “Default” text beside the higher-level packages (such as Web) to install all of Web’s
sub-packages, or click on the “Skip” text beside the sub-package (such as MapServer) to install that package
and all of its dependencies.

5. Let the installer fetch the packages.

1.1. An Introduction to MapServer 7

MapServer Documentation, Release 6.4.1

6. Run the apache-install.bat script to install the Apache Service.

Note: You must run this script under the “OSGeo4W Shell”. This is usually available as a shortcut on your
desktop

Note: An apache-uninstall.bat script is also available to remove the Apache service installation.

7. Start Apache from the OSGeo4W shell and navigate to http://127.0.0.1

apache-restart.bat

8 Chapter 1. Introduction

http://127.0.0.1

MapServer Documentation, Release 6.4.1

8. Verify that MapServer is working

1.1. An Introduction to MapServer 9

MapServer Documentation, Release 6.4.1

Hardware Requirements

MapServer runs on Linux, Windows, Mac OS X, Solaris, and more. To compile or install some of the required
programs, you may need administrative rights to the machine. People commonly ask questions about minimum
hardware specifications for MapServer applications, but the answers are really specific to the individual applica-
tion. For development and learning purposes, a very minimal machine will work fine. For deployment, you will
want to investigate Optimization of everything from your data to server configuration.

Software Requirements

You need a working and properly configured Web (HTTP) server, such as Apache or Microsoft Internet Infor-
mation Server, on the machine on which you are installing MapServer. OSGeo4W contains Apache already, but
you can reconfigure things to use IIS if you need to. Alternatively, MS4W can be used to install MapServer on
Windows.

If you are on a Windows machine, and you don’t have a web server installed, you may want to check out MS4W,
which will install a pre-configured web server, MapServer, and more. The FGS Linux Installer provides similar
functionality for several Linux distributions.

This introduction will assume you are using pre-compiled OSGeo4W Windows binaries to follow along. Ob-
taining MapServer or Linux or Mac OS X should be straightforward. Visit download for installing pre-compiled
MapServer builds on Mac OS X and Linux.

You will also need a Web browser, and a text editor (vi, emacs, notepad, homesite) to modify your HTML and
mapfiles.

Skills

In addition to learning how the different components of a MapServer application work together and learning Map
File syntax, building a basic application requires some conceptual understanding and proficiency in several skill
areas.

You need to be able to create or at least modify HTML pages and understand how HTML forms work. Since
the primary purpose of a MapServer application is to create maps, you will also need to understand the ba-
sics of geographic data and likely, map projections. As your applications get more complex, skills in SQL,
DHTML/Javascript, Java, databases, expressions, compiling, and scripting may be very useful.

1.1.4 Introduction to the Mapfile

The .map file is the basic configuration file for data access and styling for MapServer. The file is an ASCII text
file, and is made up of different objects. Each object has a variety of parameters available for it. All .map file (or
mapfile) parameters are documented in the mapfile reference. A simple mapfile example displaying only one layer
follows, as well as the map image output:

MAP
NAME "sample"
STATUS ON
SIZE 600 400
SYMBOLSET "../etc/symbols.txt"
EXTENT -180 -90 180 90
UNITS DD
SHAPEPATH "../data"
IMAGECOLOR 255 255 255
FONTSET "../etc/fonts.txt"

#
Start of web interface definition
#
WEB

10 Chapter 1. Introduction

http://httpd.apache.org/
http://www.maptools.org/ms4w/index.phtml
http://www.maptools.org/ms4w/index.phtml
http://www.maptools.org/fgs/
http://www.w3.org/MarkUp/Guide/

MapServer Documentation, Release 6.4.1

IMAGEPATH "/ms4w/tmp/ms_tmp/"
IMAGEURL "/ms_tmp/"

END # WEB

#
Start of layer definitions
#
LAYER

NAME ’global-raster
TYPE RASTER
STATUS DEFAULT
DATA b l u e m a r b le.gif

END # LAYER
END # MAP

Figure 1.2: Rendered Bluemarble Image

Note:

• Comments in a mapfile are specified with a ‘#’ character

• MapServer parses mapfiles from top to bottom, therefore layers at the end of the mapfile will be drawn last
(meaning they will be displayed on top of other layers)

• Using relative paths is always recommended

• Paths should be quoted (single or double quotes are accepted)

• The above example is built on the following directory structure:

– The mapfile could be placed anywhere, as long as it is accessible to the web server. Normally, one
would try to avoid placing it at a location that makes it accessible on the web. Let us say it is placed
in /home/msuser/mapfiles/

– The location of the font file is given relative to the map file, in this case: /home/msuser/etc/fonts.txt

– The location of the datasets (bluemarble.gif) is given relative to the map file, in this case:
/home/msuser/data/

– The location of the symbol file is given relative to the map file, in this case:
/home/msuser/etc/symbols.txt

1.1. An Introduction to MapServer 11

MapServer Documentation, Release 6.4.1

– The files generated by MapServer will be placed in the directory /ms4w/tmp/ms_tmp/. The web
server must be able to place files in this directory. The web server must make this directory avail-
able as /ms_tmp (if the web server is on www.ms.org, the web address to the directory must be:
httpd://www.ms.org/ms_tmp/.

MAP Object

MAP
NAME "sample"
EXTENT -180 -90 180 90 # Geographic
SIZE 800 400
IMAGECOLOR 128 128 255

END # MAP

• EXTENT is the output extent in the units of the output map

• SIZE is the width and height of the map image in pixels

• IMAGECOLOR is the default image background color

Note: MapServer currently uses a pixel-center based extent model which is a bit different from what GDAL or
WMS use.

LAYER Object

• starting with MapServer 5.0, there is no limit to the number of layers in a mapfile

• the DATA parameter is relative to the SHAPEPATH parameter of the MAP object

• if no DATA extension is provided in the filename, MapServer will assume it is ESRI Shape format (.shp)

Raster Layers

LAYER
NAME "bathymetry"
TYPE RASTER
STATUS DEFAULT
DATA "bath_mapserver.tif"

END # LAYER

See Also:

Raster Data

Vector Layers

Vector layers of TYPE point, line, or polygon can be displayed. The following example shows how to display only
lines from a TYPE polygon layer, using the OUTLINECOLOR parameter:

LAYER
NAME "world_poly"
DATA ’shapefile/countries_area.shp’
STATUS ON
TYPE POLYGON
CLASS
NAME ’The World’
STYLE

OUTLINECOLOR 0 0 0

12 Chapter 1. Introduction

MapServer Documentation, Release 6.4.1

END # STYLE
END # CLASS

END # LAYER

See Also:

Vector Data

Figure 1.3: Rendered Bluemarble image with vector boundaries

CLASS and STYLE Objects

• typical styling information is stored within the CLASS and STYLE objects of a LAYER

• starting with MapServer 5.0, there is no limit to the number of classes or styles in a mapfile

• the following example shows how to display a road line with two colors by using overlayed STYLE objects

CLASS
NAME "Primary Roads"
STYLE
SYMBOL "circle"
COLOR 178 114 1
SIZE 15

END # STYLE
STYLE
SYMBOL "circle"
COLOR 254 161 0
SIZE 7

END # STYLE
END # CLASS

SYMBOLs

• can be defined directly in the mapfile, or in a separate file

• the separate file method must use the SYMBOLSET parameter in the MAP object:

1.1. An Introduction to MapServer 13

MapServer Documentation, Release 6.4.1

Figure 1.4: Rendered Bluemarble image with styled roads

MAP
NAME "sample"
EXTENT -180 -90 180 90 # Geographic
SIZE 800 400
IMAGECOLOR 128 128 255
SYMBOLSET "../etc/symbols.txt"

END # MAP

where symbols.txt might contain:

SYMBOL
NAME "ski"
TYPE PIXMAP
IMAGE "ski.png"

END # SYMBOL

and the mapfile would contain:

LAYER
...
CLASS
NAME "Ski Area"
STYLE

SYMBOL "ski"
END # STYLE

END # CLASS
END # LAYER

See Also:

Cartographical Symbol Construction with MapServer, Symbology Examples, and SYMBOL

14 Chapter 1. Introduction

MapServer Documentation, Release 6.4.1

Figure 1.5: Rendered Bluemarble image with skier symbol

LABEL

• defined within a CLASS object

• the LABELITEM parameters in the LAYER object can be used to specify an attribute in the data to be used
for labeling. The label is displayed by the FONT, declared in the FONTSET file (set in the MAP object).
The FONTSET file contains references to the available font names. ENCODING describes which encoding
is used in the file (see Display of International Characters in MapServer).

An example LABEL object that references one of the above fonts might look like:

LABEL
FONT "sans-bold"
TYPE truetype
ENCODING "UTF-8"
SIZE 10
POSITION LC
PARTIALS FALSE
COLOR 100 100 100
OUTLINECOLOR 242 236 230

END # LABEL

See Also:

LABEL, FONTSET

CLASS Expressions

MapServer supports three types of CLASS Expressions in a LAYER (CLASSITEM in LAYER determines the at-
tribute to be used for the two first types of expressions):

1. String comparisons

1.1. An Introduction to MapServer 15

MapServer Documentation, Release 6.4.1

Figure 1.6: Rendered Bluemarble image with skier symbol and a label

EXPRESSION "africa"

2. Regular expressions

EXPRESSION /^9|^10/

3. Logical expressions

EXPRESSION ([POPULATION] > 50000 AND ’[LANGUAGE]’ eq ’FRENCH’)

Note: Logical expressions should be avoided wherever possible as they are very costly in terms of drawing time.

See Also:

Expressions

INCLUDE

Added to MapServer 4.10, any part of the mapfile can now be stored in a separate file and added to the main
mapfile using the INCLUDE parameter. The filename to be included can have any extension, and it is always
relative to the main .map file. Here are some potential uses:

• LAYERs can be stored in files and included to any number of applications

• STYLEs can also be stored and included in multiple applications

The following is an example of using mapfile includes to include a layer definition in a separate file:

If ‘shadedrelief.lay’ contains:

16 Chapter 1. Introduction

MapServer Documentation, Release 6.4.1

LAYER
NAME ’shadedrelief’
STATUS ON
TYPE RASTER
DATA ’GLOBALeb3colshade.jpg’

END # LAYER

therefore the main mapfile would contain:

MAP
...
INCLUDE "shadedrelief.lay"
...

END # MAP

The following is an example of a mapfile where all LAYER s are in separate .lay files, and all other objects (WEB,
REFERENCE, SCALEBAR, etc.) are stored in a ”.ref” file:

MAP
NAME "base"
#
include reference objects
#
INCLUDE "../templates/template.ref"
#
Start of layer definitions
#
INCLUDE "../layers/usa/usa_outline.lay"
INCLUDE "../layers/canada/base/1m/provinces.lay"
INCLUDE "../layers/canada/base/1m/roads_atlas_of_canada_1m.lay"
INCLUDE "../layers/canada/base/1m/roads_atlas_of_canada_1m_shields.lay"
INCLUDE "../layers/canada/base/1m/populated_places.lay"

END # MAP

Warning: Mapfiles must have the .map extension or MapServer will not recognize them. Include files can
have any extension you want, however.

See Also:

INCLUDE

Get MapServer Running

You can test if MapServer is working by running the MapServer executable (mapserv) with the -v parameter on
the command line (./mapserv -v). Depending on your configuration, the output could be something like this:

MapServer version 6.0.1 OUTPUT=GIF OUTPUT=PNG OUTPUT=JPEG
SUPPORTS=PROJ SUPPORTS=AGG SUPPORTS=FREETYPE SUPPORTS=ICONV
SUPPORTS=WMS_SERVER INPUT=SHAPEFILE

You can also send a HTTP request directly to the MapServer CGI program without passing any configuration vari-
ables (e.g. http://your.domain.name/cgi-bin/ms4/mapserv.exe). If you receive the message, ‘No query information
to decode. QUERY_STRING not set.’, your installation is working.

Get Demo Running

Download the MapServer Demo. UnZip it and follow the directions in ReadMe.txt. You will need to move the
demo files to their appropriate locations on your web server, and modify the Map File and HTML pages to reflect
the paths and URLs of your server. Next, point your browser to init.html and hit the ‘initialize button’. If you get
errors, verify that you have correctly modified the demo files.

1.1. An Introduction to MapServer 17

http://your.domain.name/cgi-bin/ms4/mapserv.exe
http://maps.dnr.state.mn.us/mapserver_demos/workshop-5.4.zip

MapServer Documentation, Release 6.4.1

1.1.5 Making the Site Your Own

Now that you have a working MapServer demo, you can use the demo to display your own data. Add new LAYERs
to your Map file that refer to your own geographic data layers (you will probably want to delete the existing layers
or set their status to OFF).

Unless you are adding layers that fall within the same geographic area as the demo, modify MAP EXTENT to
match the extent of your data. To determine the extent of your data, you can use ogrinfo. If you have access to a
GIS, you could use that as well. The MAP EXTENT needs to be in the units of your output projection.

If you add geographic data layers with different geographical reference systems, you will need to modify your Map
File to add a PROJECTION block to the MAP (defines the output projection / geographical reference system) and
each of the LAYERs (defines the geographical reference system of the layer dataset).

Adding Data to Your Site

MapServer supports several data input formats ‘natively’, and many more if it is compiled with the open source
libraries GDAL and OGR.

Vector Data

Vector data includes features made up of points, lines, and polygons. MapServer support the ESRI Shape format
by default, but it can be compiled to support spatially enabled databases such as PostgreSQL-PostGIS, and file
formats such as Geography Markup Language (GML), MapInfo, delimited text files, and more formats with OGR.

See the Vector Data reference for examples on how to add different geographic data sources to your MapServer
project.

Raster Data

Raster data is image or grid data. Through GDAL, Mapserver supports most raster formats - see the GDAL format
list. More specific information can be found in the Raster Data reference.

Note: Since version 6.2 Mapserver relies on GDAL for all raster access.

Projections

Because the earth is round and your monitor (or paper map) is flat, distortions will occur when you display
geographic data in a two-dimensional image. Projections allow you to represent geographic data on a flat surface.
In doing so, some of the original properties (e.g. area, direction, distance, scale or conformity) of the data will
be distorted. Different projections excel at accurately portraying different properties. A good primer on map
projections can be found at the University of Colorado.

With MapServer, if you keep all of your spatial data sets in the same projection (or unprojected Latitude and
Longitude), you do not need to include any projection info in your Map File. In building your first MapServer
application, this simplification is recommended.

On-the-fly projection can be accomplished when MapServer is compiled with Proj.4 support. Instructions on how
to enable Proj.4 support on Windows can be found on the Wiki.

1.1.6 Enhancing your site

Adding Query Capability

There are two primary ways to query spatial data. Both methods return data through the use of templates and CGI
variable replacement. A QUERYMAP can be used to map the results of the query.

18 Chapter 1. Introduction

http://www.gdal.org/ogrinfo.html
http://postgis.refractions.net/
http://en.wikipedia.org/wiki/Geography_Markup_Language
http://www.mapinfo.com/
http://www.gdal.org/
http://www.gdal.org/formats_list.html
http://www.gdal.org/formats_list.html
http://www.colorado.edu/geography/gcraft/notes/mapproj/mapproj_f.html
https://github.com/mapserver/mapserver/wiki/WindowsProjHowto

MapServer Documentation, Release 6.4.1

To be queryable, each mapfile LAYER must have a TEMPLATE defined, or each CLASS within the LAYER must
have a TEMPLATE defined. More information about the CGI variables used to define queries can be found in the
MapServer CGI Reference.

Attribute queries

The user selects features based on data associated with that feature. ‘Show me all of the lakes where depth is
greater than 100 feet’, with ‘depth’ being a field in the Shape dataset or the spatial database. Attribute queries are
accomplished by passing query definition information to MapServer in the URL (or form post). Mode=itemquery
returns a single result, and mode=itemnquery returns multiple result sets.

The request must also include a QLAYER, which identifies the layer to be queried, and a QSTRING which
contains the query string. Optionally, QITEM, can be used in conjunction with QSTRING to define the field to be
queried. Attribute queries only apply within the EXTENT set in the map file.

Spatial queries

The user selects features based on a click on the map or a user-defined selection box. Again the request is passed
through a URL or form post. By setting mode=QUERY, a user click will return the one closest feature. In
mode=NQUERY, all features found by a map click or user-defined selection box are returned. Additional query
options can be found in the CGI documentation.

Interfaces

See: OpenLayers http://openlayers.org

Data Optimization

Data organization is at least as important as hardware configuration in optimizing a MapServer application for
performance. MapServer is quite efficient at what it does, but by reducing the amount of processing that it needs
to do at the time of a user request, you can greatly increase performance. Here are a few rules:

• Index Your data - By creating spatial indexes for your Shape datasets using shptree. Spatial indexes should
also be created for spatially aware databases such as PostGIS and Oracle Spatial.

• Tile Your Data - Ideally, your data will be ‘sliced up’ into pieces about the size in which it will be displayed.
There is unnecessary overhead when searching through a large Shape dataset or image of which you are only
going to display a small area. By breaking the data up into tiles and creating a tile index, MapServer only
needs to open up and search the data files of interest. Shape datasets can be broken into smaller tiles and
then a tileindex Shape dataset can be created using the tile4ms utility. A tileindex Shape dataset for raster
files can also be created.

• Pre-Classify Your Data - MapServer allows for the use of quite complex EXPRESSIONs to classify data.
However, using logical and regular expressions is more resource intensive than string comparisons. To in-
crease efficiency, you can divide your data into classes ahead of time, create a field to use as the CLASSITEM
and populate it with a simple value that identifies the class, such as 1,2,3, or 4 for a four class data set. You
can then do a simple string comparison for the class EXPRESSION.

• Pre-Process Your Images - Do resource intensive processing up front. See the Raster Data reference for
more info.

• Generalize for Overview - create a more simple, generalized data layer to display at small scales, and then
use scale-dependent layers utilizing LAYER MINSCALE and LAYER MAXSCALE to show more detailed
data layers as the user zooms in. This same concept applies to images.

See Also:

Optimization

1.1. An Introduction to MapServer 19

http://openlayers.org

MapServer Documentation, Release 6.4.1

1.1.7 How do I get Help?

Documentation

• Official MapServer documentation lives here on this site.

• User contributed documentation exists on the MapServer Wiki.

Users Mailing List

Register and post questions to the MapServer Users mailing list. Questions to the list are usually answered quickly
and often by the developers themselves. A few things to remember:

1. Search the archives for your answer first, people get tired of answering the same questions over and over.

2. Provide version and configuration information for your MapServer installation, and relevant snippets of
your map and template files.

3. Always post your responses back to the whole list, as opposed to just the person who replied to your
question.

IRC

MapServer users and developers can be found on Internet Relay Chat. The channel is #mapserver on
irc.freenode.net.

Reporting bugs

Bugs (software and documentation) are reported on the MapServer issue tracker.

Tutorial

Here is a quick tutorial for new users.

Test Suite

Download the MapServer Test Suite for a demonstration of some MapServer functionality.

Books

Web Mapping Illustrated, a book by Tyler Mitchell that describes well and provides real-world examples for the
use of Web mapping concepts, Open Source GIS software, MapServer, Web services, and PostGIS.

Mapping Hacks, by Schuyler Erle, Rich Gibson, and Jo Walsh, creatively demonstrates digital mapping tools and
concepts. MapServer only appears in a handful of the 100 hacks, but many more are useful for concepts and
inspiration.

Beginning MapServer: Opensource GIS Development, by Bill Kropla. According to the publisher, it covers
installation and configuration, basic MapServer topics and features, incorporation of dynamic data, advanced
topics, MapScript, and the creation of an actual application.

20 Chapter 1. Introduction

https://github.com/mapserver/mapserver/wiki/
http://lists.osgeo.org/mailman/listinfo/mapserver-users/
http://n2.nabble.com/MapServer-f1969210.html
http://trac.osgeo.org/mapserver
http://www.mapserver.org/tutorial/
https://github.com/mapserver/mapserver/wiki/Test-Suite/
http://www.oreilly.com/catalog/webmapping/
http://www.oreilly.com/catalog/mappinghks/
http://www.apress.com/book/bookDisplay.html?bID=443

CHAPTER

TWO

TUTORIAL

2.1 MapServer Tutorial

Author Pericles S. Nacionales

Contact pnaciona at gmail.com

Author Jeff McKenna

Contact jmckenna at gatewaygeomatics.com

Updated 2010-04-07

This tutorial was designed to give new users a quick (relatively speaking) introduction to the concepts behind
MapServer. It is arranged into four sections with each section having one or more examples and increasing in
complexity. Users can jump to any section at any time although it is recommended that absolute beginners work
on the first three sections sequentially.

Section one focuses on basic MapServer configuration concepts such as layer and class ordering, using vector and
raster data, projections and labeling. Section two provides examples on how to use HTML templates to create a
simple interface for an interactive web mapping application. Section three introduces the use of HTML templates
to provide a “query” interface. Finally, section four introduces some advanced user interface concepts.

2.1.1 Tutorial background

Tutorial Timeframe

While some users can go through this tutorial in one day, those who work on each example in detail can probably
expect to finish in one week.

Tutorial Data

The dataset used in this tutorial was taken from the U.S. Department of the Interior’s National Atlas of the United
States. You can visit their web site at http://www.nationalatlas.gov. The dataset was clipped to the upper great
lakes region (Minnesota, Michigan, and Wisconsin) to reduce storage size. Additional raster images were added
courtesy of the TerraSIP project at the University of Minnesota. When using this tutorial, you are encouraged to
use your own dataset.

Like MapServer itself, this tutorial is open and customizable to anyone. This was done in the hope that someone
(or some folks) will help design and develop it further.

Download the data (and all html files) for this tutorial at http://download.osgeo.org/mapserver/docs/mapserver-
tutorial.zip.

21

http://www.nationalatlas.gov
http://download.osgeo.org/mapserver/docs/mapserver-tutorial.zip
http://download.osgeo.org/mapserver/docs/mapserver-tutorial.zip

MapServer Documentation, Release 6.4.1

Before Using the Tutorial

There are some prerequisites to using this tutorial:

1. Users will need to have a web server installed and running on their computer. This web server has to have
support for common gateway interface (CGI) programs.

2. Users should have a basic understanding of web servers and internet security. A poorly configured web
server can easily be attacked by malicious people. At the very least your software installation will be
corrupted and you’ll lose hours of productivity, at worst your computer can be used to attack other computers
on the internet.

3. It is recommended that users of this tutorial read the Introduction to MapServer before proceeding with this
tutorial.

4. To use this tutorial, users will need to have a MapServer CGI program (mapserv or mapserv.exe) installed
in their systems. MapServer source code is available for download here. Documentation exists on how to
compile and install MapServer:

• for UNIX users, please read the MapServer UNIX Compilation and Installation HOWTO.

• Windows users should read the MapServer Win32 Compilation and Installation HOWTO

In addition, precompiled binaries exist for a number of platform (see the download page).

Windows, UNIX/Linux Issues

Paths

This tutorial was created on Linux/UNIX but should work with minimal changes on Windows platform. The main
differences are the paths in the map files. Windows users need to specify the drive letter of the hard disk where
their tutorial files reside. Here’s an example:

A UNIX map file might include a parameter like this:

SHAPEPATH "/data/projects/tutorial/data"

In Windows, the same parameters might look like this:

SHAPEPATH "C:/data/projects/tutorial/data"

or:

SHAPEPATH "C:\data\projects\tutorial\data".

Notice that either slash or backslash works in Windows. The usual backslash may work well for you if you want
to make a distinction between virtual (as in URLs or web addresses) and local paths in your map file. However, if
you plan to move your application to UNIX at some point, you’ll have the tedious task of switching all backslashes
to slashes.

While we’re on the subject of paths, keep in mind that paths in mapfiles are typically relative to the system’s
root directory: the slash (“/”) in UNIX or some drive letter (“C:”) in Windows. This is true except when specif-
ically asked to enter a URL or when referencing a URL. When working with HTML template files, paths are
relative to the web server’s root directory. i.e., “/tutorial/” is relative to “http://demo.mapserver.org/”. Please read
http://www.alistapart.com/articles/slashforward/ for a few insights on URLs.

Executable

Another issue is that UNIX executable files don’t require a .EXE or .COM extensions, but they do in Windows.
If you are using Windows, append .exe to all instances of “/cgi-bin/mapserv” or “/cgi-bin/mapserv50” to make it
“/cgi-bin/mapserv.exe” or “/cgi-bin/mapserv50.exe”.

22 Chapter 2. Tutorial

http://demo.mapserver.org/
http://www.alistapart.com/articles/slashforward/

MapServer Documentation, Release 6.4.1

Other Resources

Other documentation exist to give you better understanding of the many customizations MapServer offer. Please
visit the MapServer documentation page at http://www.mapserver.org. There you will find several HOWTO doc-
uments, from getting started to using MapScript, a scripting interface for MapServer.

Back to Tutorial home | Proceed to Section 1

2.1.2 Section 1: Static Maps and the MapFile

• Take a Shapefile dataset. Any Shapefile dataset. We can use MapServer to display that Shapefile dataset in
a web browser. Look...

– Example 1.1 - A map with a single layer

• We can display the same Shapefile dataset repeatedly. We can display the polygon attributes in one LAYER
and the line attributes in another...

– Example 1.2 - A map with two layers

• And we can select which parts of the Shapefile dataset to display. We do this using the CLASS object...

– Example 1.3 - Using classes to make a “useful” map

• We can also label our maps...

– Example 1.4 - Labeling layers and label layers

• Or add raster data such as satellite images, aerial photographs, or shaded reliefs...

– Example 1.5 - Adding a raster layer

• We can reproject our data from just about any projection to just about any... Yeah, check it out!

– Example 1.6 - Projection/Reprojection

• And we can use layers from other map servers on the Internet (for example WMS servers)...

– Example 1.7 - Adding a WMS layer

• MapServer can output to various formats such as PDF and GeoTIFF.

– Example 1.8 - A different output format

• MapServer not only generates static maps, it can also create interactive maps...

– Example 1.9 - The difference between map mode and browse mode

Back to Tutorial home | Proceed to Section 2

2.1.3 Section 2: CGI variables and the User Interface

So far we have only looked at the mapfile when creating maps. In creating web mapping applications, it is usually
our intention to make maps that can be changed by the user (of the application) interactively. That is, a user
should be able to change the content of (or the information in) the map. To accomplish this interactivity, we use
the MapServer HTML templates.

2.1. MapServer Tutorial 23

http://www.mapserver.org
http://demo.mapserver.org/cgi-bin/mapserv?map=/osgeo/mapserver/tutorial/htdocs/example1-9.map&layer=states&layer=modis

MapServer Documentation, Release 6.4.1

HTML Templates

A MapServer HTML template is essentially an HTML file with a few MapServer specific tags. These tags are the
MapServer CGI variables and are enclosed in square brackets “[]”. When the MapServer CGI program processes
an application, it first parses the query string and the mapfile, and produces the necessary output. Some of this
output will need to be written to the HTML template file which you would have to also specify in the mapfile
using the web template keyword (or in a separate HTML initialization file). The CGI program will replace all the
variables in the HTML template with the proper value before sending it back to the web browser. If you are to
directly view an HTML template in a web browser, there won’t be any maps rendered and you will instead get
blank images and other junk.

Variables

MapServer provides several variables for web mapping: the “img” variable which you’ve seen in Example 1.9
is but one example. There area few core CGI variables originally designed as part of the mapping interface but
practically all the mapfile parameters can be defined as variables. The definitive reference to the MapServer CGI
variables can be found here.

We can also define our own variables, which MapServer will pass along to our application. For example, we
can create a variable called “root” to represent the root directory of this tutorial, the value for “root” will then be
“/tutorial”. When the MapServer CGI program processes our HTML template, it will replace every instance of he
“[root]” tag with “/tutorial”. You will see this in action for each of the following examples.

Examples

So, let’s build an interactive interface for our application...

• Users of a web mapping application should be able to pan and zoom on the map: Example 2.1 - Pan and
Zoom Controls

• They also should be able to turn on and off layers on a map: Example 2.2 - Layer Control

• A map should always include a scalebar. Example 2.3 - Adding a Scalebar

• If users are to navigate through the map, a reference map should be provided: Example 2.4 - Adding a
Reference Map

• The map should include a legend. Example 2.5- Adding a Legend

Back to Section 1 index | Proceed to Section 3

2.1.4 Section 3: Query and more about HTML Templates

To learn more about query and HTML templates with MapServer, see examples 3.1 to 3.4 in the Tutorial Viewer.

Back to Section 2 index | Proceed to Section 4

2.1.5 Section 4: Advanced User Interfaces

To learn more about advanced navigation such as pan and rubber-band zoom with Javascript and MapServer CGI,
see examples 4.1 to 4.4 in the Tutorial Viewer.

Back to Section 3 index | Tutorial home

Begin tutorial

24 Chapter 2. Tutorial

http://demo.mapserver.org/cgi-bin/mapserv?map=/osgeo/mapserver/tutorial/htdocs/example2.map&layer=states&zoom=0&mode=browse&root=/tutorial&program=/cgi-bin/mapserv&map_web=template+example2-1.html
http://demo.mapserver.org/cgi-bin/mapserv?map=/osgeo/mapserver/tutorial/htdocs/example2.map&layer=states&zoom=0&mode=browse&root=/tutorial&program=/cgi-bin/mapserv&map_web=template+example2-1.html
http://demo.mapserver.org/cgi-bin/mapserv?map=/osgeo/mapserver/tutorial/htdocs/example2.map&layer=states&zoom=0&mode=browse&root=/tutorial&program=/cgi-bin/mapserv&map_web=template+example2-2.html
http://demo.mapserver.org/cgi-bin/mapserv?map=/osgeo/mapserver/tutorial/htdocs/example2.map&layer=states&zoom=0&mode=browse&root=/tutorial&program=/cgi-bin/mapserv&map_web=template+example2-3.html
http://demo.mapserver.org/cgi-bin/mapserv?map=/osgeo/mapserver/tutorial/htdocs/example2.map&layer=states&zoom=0&mode=browse&root=/tutorial&program=/cgi-bin/mapserv&map_web=template+example2-4.html
http://demo.mapserver.org/cgi-bin/mapserv?map=/osgeo/mapserver/tutorial/htdocs/example2.map&layer=states&zoom=0&mode=browse&root=/tutorial&program=/cgi-bin/mapserv&map_web=template+example2-4.html
http://demo.mapserver.org/cgi-bin/mapserv?map=/osgeo/mapserver/tutorial/htdocs/example2.map&layer=states&zoom=0&mode=browse&root=/tutorial&program=/cgi-bin/mapserv&map_web=template+example2-5.html
http://demo.mapserver.org/tutorial/section3.html
http://demo.mapserver.org/tutorial/section4.html

CHAPTER

THREE

INSTALLATION

3.1 Installation

3.1.1 Compiling on Unix

Author J.F. Doyon

Contact jdoyon at nrcan.gc.ca

Author Howard Butler

Contact hobu.inc at gmail.com

Author Thomas Bonfort

Contact thomas.bonfort at gmail.com

Date 2014/03

Table of Contents

• Compiling on Unix
– Introduction
– Obtaining the necessary software
– libgd
– Anti-Grain Geometry Support
– OGC Support
– Spatial Warehousing
– Compiling
– Installation

Introduction

The University of Minnesota’s MapServer is an open-source and freely available map rendering engine for the
web. Due to its open-source nature, it can be compiled on a wide variety of platforms and operating systems. We
will focus on how to obtain, compile and install MapServer on UNIX-like platforms.

Detailed configuration options are maintained in the INSTALL.CMAKE file packaged at the root of the source
directory:

You might also check the MapServerCompilation wiki page for additional information.

Obtaining the necessary software

You can obtain the MapServer source code as well as the demo package from the download section.

25

https://github.com/mapserver/mapserver/blob/master/INSTALL.CMAKE
http://trac.osgeo.org/mapserver/wiki/MapServerCompilation

MapServer Documentation, Release 6.4.1

You can also get the latest MapServer source code from git.

Required External Libraries

• libpng: libpng should be on your system by default. 1.2.12 is the current release with security patches,
although versions all the way back to 1.2.7 should work.

• freetype: Version 2.x or above is required.

• libjpeg: libjpeg allows MapServer to render images in JPEG format. A sufficient version should be installed
by default on your system. Version 6b is the current version and dates back to 1998.

Warning: Direct JPEG support is deprecated in MapServer 5.8+, and you should now depend on
GDAL for raster read support in MapServer. JPEG support is however still required for producing (i.e.
writing) images.

• zlib: Zlib should be on your system by default. 1.2.1 is the current release with security patches. Though
not used directly by mapserver, it’s a mandatory dependency of libpng.

Highly Recommended Libraries

• libproj: libproj provides projection support for MapServer. Version 4.4.6 or greater is required.

• libcurl: libcurl is the foundation of OGC (WFS/WMS/WCS) client and server support. Version 7.10 or
greater is required. Installing libcurl:

apt-get install -y libcurl4-gnutls-dev

• OGR: OGR provides access to at least 18 different vector formats.

• GDAL: GDAL provides access to at least 42 different raster formats.

Optional External Libraries

• libtiff: libtiff provides TIFF (Tagged Image File Format) reading support to MapServer.

Warning: Direct libtiff support is deprecated in MapServer 5.8+, and you should now depend on GDAL
for raster read support in MapServer.

• libgeotiff: libgeotiff provides support to read GeoTIFF files (TIFF files with geographic referencing).

Warning: Direct GeoTIFF support is deprecated in MapServer 5.8+, and you should now depend on
GDAL for raster read support in MapServer.

• GEOS: GEOS allows MapServer to do spatial predicate and algebra operations (within, touches, etc &
union, difference, intersection). New in version 4.10.

• libxml: libxml is required to use OGC SOS support in MapServer New in version 4.10.

• SDE Client Library: The client libraries for your platform should be part of the ArcSDE media kit. They
are not publicly available for download.

• Oracle Spatial OCI: The client libraries for your platform are available for download from Oracle’s website.
Ideally, your client library matches the database you are querying from, but this is not a hard requirement.

• libpq: libpq is required to support the use of PostGIS geometries within the PostgreSQL database. Ideally,
your client library matches the database you are querying from.

• ‘libgif-dev‘_: giflib is is used for reading GIF files used as PIXMAP symbols.

26 Chapter 3. Installation

http://www.libpng.org/pub/png/libpng.html
http://www.freetype.org/
http://www.ijg.org/
http://www.gzip.org/zlib
http://trac.osgeo.org/proj/
http://curl.haxx.se/libcurl/
http://www.gdal.org/ogr/
http://www.gdal.org/
http://www.libtiff.org/
http://trac.osgeo.org/geotiff/
http://trac.osgeo.org/geos/
http://xmlsoft.org
http://www.esri.com/software/arcgis/arcsde/index.html
http://www.oracle.com/technology/products/spatial/index.html
http://www.postgresql.org/

MapServer Documentation, Release 6.4.1

• FastCGI: FastCGI is a popular protocol for interfacing MapServer with various web servers. You will need
to install the development package. More details on how to use this feature in MapServer is here FastCGI.
On Ubuntu, that would be:

$ apt-get -y install libfcgi-dev

• cairo (svg, pdf) support: This library is required to produce PDF and SVG outputs. If you’re on an ubuntu
system, it can be installed with “apt-get install -y libcairo2-dev”

• kml support: This renderer is has no external dependency.

• ‘GD‘_: libgd is used by MapServer for rendering images. Version 2.0.28 or greater required. Version 2.0.29
or later is required to use curved (following) labels, and version 2.0.34 is required for antialiasing (1 pixel
wide lines/outlines).

Optional Features

• cairo svg parser support: The WITH_SVGCAIRO option is part of a proposal to improve SVG support. Us-
ing this feature requires installing the libsvg-cairo library available here: http://cairographics.org/snapshots/
. You will need to compile and install cairo, libsvg, and libsvg-cairo.

• SVG support can be enabled either through the unmaintained libsvg / libsvg-cairo combo, or through librsvg
at the cost of more dependencies. Use librsvg if your distro provides a package for it, or fall back to
libsvgcairo if the cost of compiling the librsvg dependencies is too important.

libgd

Warning: It is not recommended to enable the GD renderer unless you know what you are doing. It suffers
from major rendering limitations, and will be completely removed in version 7.0

There are a number of issues that you should be aware of when using GD in combination with MapServer.

Minimum libgd versions

MapServer aggressively takes advantage of new features and bug fixes in the latest versions of libgd. The minimum
required version to run MapServer is 2.0.29. Upgrading to at least 2.0.34 is advised as it includes an important bug
fix for antialiased lines. Configure should detect which version of libgd you have installed, but you can quickly
check yourself by issuing the following command:

$ gdlib-config --version

libiconv

If you intend to use international character sets, your version of libgd must be compiled against the GNU iconv
libraries. If you are using a pre-packaged version, it is very likely that this is the case. To check for yourself, issue
the following command and look for ‘-liconv’ in the output:

$ gdlib-config --libs

Pre-packaged/system libraries

If you intend to use your system’s libgd, ensure that you have the development package also installed so MapServer
can find and use the appropriate headers.

3.1. Installation 27

http://www.fastcgi.com
http://cairographics.org/
http://mapserver.org/output/kml_output.html
http://mapserver.org/development/rfc/ms-rfc-73.html
http://cairographics.org/snapshots/

MapServer Documentation, Release 6.4.1

MacOSX

A useful FAQ on for libgd on OSX is available at GD on OSX.

FreeType support

The GD you compile MapServer against MUST be compiled against the FreeType library in order to use TrueType
fonts. MapServer no longer uses it’s own interface to FreeType, using it through GD instead.

When you run your “configure” script, look for the following output:

using GD (-DUSE_GD_GIF -DUSE_GD_PNG -DUSE_GD_JPEG
-DUSE_GD_WBMP -DUSE_GD_TTF -DGD_HAS_GDIMAGEGIFPTR)
from system libs.

If your GD is built against FreeType, you will see either “-DUSE_GD_TTF” (Or “-DUSE_GD_FT” for Freetype
2.x) part. If it’s missing, you will need to recompile your GD to make sure you include FreeType support. See the
GD documentation for more information.

Also note that the configure script looks for the FreeType library separately as well, generating output looking
somewhat like this:

checking where FreeType is installed...
checking for FT_Init_FreeType in -lfreetype... yes
using libfreetype -lfreetype from system libs.

Even though you have FreeType installed on your system and the configure script finds it, does NOT mean you
will have TrueType font support. GD MUST be compiled against FreeType either way.

1px Anti-Aliasing and segfaults

Versions of libgd earlier than 2.0.34 contain a one very significant bug and will always cause a segfault if you
attempt to do one pixel wide antialiasing. You can manually patch older gd’s, or better yet upgrade to at least GD
2.0.34.

In gd.c, function gdImageSetAAPixelColor() change:

int dr,dg,db,p,r,g,b;
p = gdImageGetPixel(im,x,y);

to

int dr,dg,db,p,r,g,b;
if (!gdImageBoundsSafeMacro (im, x, y)) return;
p = gdImageGetPixel(im,x,y);

More detail about this patch (if you need any) was described by Steve Lime in a post to mapserver-users.

Curved label support

ANGLE FOLLOW, a new feature that allows MapServer to draw curved labels about a linear feature like a road,
requires libgd 2.0.29 and TrueType font support. Configure should autodetect if you have a sufficient libgd and
TrueType support to be able to use this feature.

Anti-Grain Geometry Support

Since version 5.0 MapServer supports the AGG rendering backend. MapServer 5.6+ embeds it directly in the
source tree and you do not have to do anything special to have support for it.

28 Chapter 3. Installation

http://www.libgd.org/DOC_INSTALL_OSX
http://article.gmane.org/gmane.comp.gis.mapserver.user/17766

MapServer Documentation, Release 6.4.1

OGC Support

MapServer provides support for many OGC specifications. For an overview, see MapServer OGC Specification
support.

WMS support

WMS Server Support for WMS server is automatically enabled.

You can check it by looking for the following in your configure output:

-- * WMS SERVER: ENABLED

If, for some reason you don’t want WMS support, you can force it off using “-DWITH_WMS=OFF”.

More information on using this feature is available in WMS Server.

WMS Client Cascading is also supported. This allows mapserver to transparently fetch remote layers over
WMS, basically acting like a client, and combine them with other layers to generate the final map.

In order to enable this feature, you will need to pass the WITH_CLIENT_WMS option to the configure script.
MapServer will automatically look for libcurl, which is also required.

To verify that this feature is enabled, check the configure output for:

-- * WMS CLIENT: ENABLED

Note: This feature is disabled by default, you have to specifically request it.

More information on using this feature is available in WMS Client.

WFS support

WFS Server Support for WFS server is enabled by default. OGR and PROJ.4 support is required.

To verify that this feature is enabled, check the configure output for:

-- * WFS SERVER: ENABLED

If, for some reason you don’t want WFS support, you can force it off using “-DWITH_WFS=OFF”.

More information on using this feature is available in WFS Server.

WFS Client MapServer can also act as a WFS client. This effectively means that MapServer reads it’s data from
a remote server’s WFS output and renders it into a map, just like it would when reading data from a shapefile.

In order to enable this feature, you will need to make sure you have OGR (built with Xerces support) and PROJ.4
support, and pass the WITH_CLIENT_WFS option to your configure script. MapServer will automatically look
for libcurl, which is also required.

To verify that this feature is enabled, check the configure output for:

-- * WFS CLIENT: ENABLED

Note: This feature is disabled by default, you have to specifically request it.

More information on using this feature is available in WFS Client.

3.1. Installation 29

http://www.opengeospatial.org

MapServer Documentation, Release 6.4.1

WCS Server Support for WCS server is enabled by default. WCS must be compiled against certain libraries.
More information on this service is available in WCS Server.

To verify that this feature is enabled, check the configure output for:

-- * WCS SERVER: ENABLED

If, for some reason you don’t want WCS support, you can force it off using “-DWITH_WCS=OFF”.

SOS Server Support for SOS is enabled by using the WITH_SOS option. More information on this service is
available in SOS Server.

To verify that this feature is enabled, check the configure output for:

-- * SOS SERVER: ENABLED

Note: This feature is disabled by default, you have to specifically request it.

Spatial Warehousing

MapServer can use a wide variety of sources of data input. One of the solutions growing in popularity is to use
spatially enabled databases to store data, and to use them directly to draw maps for the web.

Here you will find out how to enable mapserver to talk to one of these products. Please refer to the MapFile
reference for more details on how to use these. This section only details how to compile MapServer for their use.

PostGIS

PostGIS adds support for geographic objects to the PostgreSQL object-relational database. In effect, PostGIS
“spatially enables” the PostgreSQL server, allowing it to be used as a backend spatial database for geographic
information systems (GIS), much like ESRI’s SDE or Oracle’s Spatial extension. PostGIS is included in many
distributions’ packaging system, but you can also roll your own if needed.

MapServer can use PostGIS as a data source. PostGIS support is enabled by default.

To verify that this feature is enabled, check the configure output for:

-- * POSTGIS: /usr/local/pgsql/lib/libpq.so

If, for some reason you don’t want PostGIS support, you can force it off using “-DWITH_POSTGIS=OFF”.
To help cmake find your PostGIS installation, you can use the CMAKE_PREFIX_PATH option (for instance
“-DCMAKE_PREFIX_PATH=/usr/local/pgsql”).

ArcSDE

MapServer allows you to use SDE as a data source both for geometry and attributes. In order to achieve this, you
must have the SDE client libraries at your disposition, and have them installed on the machine running MapServer.

In order to enable SDE support in MapServer, you have to use the following options: WITH_SDE (“-
dWITH_SDE=ON”) and SDE_VERSION (for example “-DSDE_VERSION=91”).

To verify that this feature is enabled, check the configure output for:

-- * SDE: /opt/arcsde/lib/libsde90.so

30 Chapter 3. Installation

http://postgis.refractions.net
http://www.postresql.org

MapServer Documentation, Release 6.4.1

Oracle Spatial

Oracle’s Spatial is also supported by MapServer. In order to connect to it, you will need to compile MapServer
against the Oracle libraries by using the WITH_ORACLESPATIAL option. You will very likely need an ORA-
CLE_HOME environment variable set to have it configure things correctly.

To verify that this feature is enabled, check the configure output for:

-- * Oracle Spatial: <path to oracle spatial shared library>

Compiling

First prepare the ground by making sure all of your required and/or recommended libraries are installed before
attempting to compile MapServer. This will make your life much less complicated ;). Here is the order that I
usually use:

1. Compile GD. This often means acquiring libjpeg, libpng, zlib, and freetype before actually compiling the
library. You shouldn’t have too much trouble finding binaries of the libraries that GD requires, and often,
they will already be installed with your system. On unix, I’ve had very little luck finding pre-compiled
binaries of the required GD library. See libgd section for notes about patching libgd if you plan to use
antialiasing.

2. Compile GDAL/OGR. Describing how to compile GDAL/OGR is beyond the scope of this document. If
you have requirements for lots of different formats, make sure to install those libraries first. I often find that
building up a GDAL/OGR library often takes as long as compiling MapServer itself!

3. Compile Proj.4. Proj.4 is a straight-forward configure/make/make install library.

4. Compile libcurl. libcurl is a straight-forward configure/make/make install library. This library is only
used along with other features, so “–with-curl-config” won’t do anything unless something like “–with-
wmsclient” or “–with-wfsclient” is also selected.

Note: If you want to configure MapServer to use SSL when accessing a WMS/WFS server libcurl must be
configured / compiled with the “–with-ssl” option. Details about how to set this up is available in How to
set up MapServer as a client to access a service over https.

5. Compile/install optional libraries. These might include SDE, PostGIS, Oracle Spatial, AGG, Ming, PDFlib,
or MyGIS. Mix and match as you need them.

6. Unpack the MapServer tarball and cd into the mapserver directory:

$ tar -zxvf mapserver-X.Y.Z.tar.gz

7. Create the build directory and configure your environment.

Create the build directory:

$ cd mapserver-X.Y.Z
$ mkdir build
$ cd build

Configure your environment using “cmake” (this is an example):

$ cmake -DCMAKE_INSTALL_PREFIX=/opt \
-DCMAKE_PREFIX_PATH=/usr/local/pgsql/91:/usr/local:/opt \
-DWITH_CLIENT_WFS=ON \
-DWITH_CLIENT_WMS=ON \
-DWITH_CURL=ON \
-DWITH_SOS=ON \
-DWITH_PHP=ON \
-DWITH_PYTHON=ON \
-DWITH_SVGCAIRO=ON \

3.1. Installation 31

MapServer Documentation, Release 6.4.1

-DWITH_ORACLESPATIAL=ON \
-DWITH_MSSQL2008=ON \
-DWITH_SDE=ON \
-DSDE_VERSION=91 .. >../configure.out.txt

The following options are enabled by default (version 6.4): WITH_CAIRO, WITH_FCGI,
WITH_FRIBIDI, WITH_GDAL, WITH_GEOS, WITH_GIF, WITH_ICONV, WITH_LIBXML2,
WITH_OGR, WITH_POSTGIS, WITH_PROJ, WITH_WCS, WITH_WFS, WITH_WMS.

If you want to also build a static version of the library, the BUILD_STATIC and
LINK_STATIC_LIBMAPSERVER options can be used,

There are a number of other options available. For an up-to-date list of available cmake options, refer to the
CMakeLists.txt.

It can be a good idea to place the configuration commands in a file and change its mode to executable (+x)
to save typing and have a record of how MapServer was configured.

8. Now that you have configured your build options and selected all the libraries you wish mapserver to use,
you’re ready to compile the source code.

This is actually quite simple, just execute “make”:

$ make

9. Install the Mapserver libraries:

make install

To make sure all went well, look for the file called mapserv:

$ ls -al mapserv
-rwxr-xr-x 1 user user 13745 mars 11 17:45 mapserv

A simple test is to try and run it:

$./mapserv
This script can only be used to decode form results and
should be initiated as a CGI process via a httpd server.

The message above is perfectly normal, and means exactly what it says. If you get anything else, something
went terribly wrong.

Installation

MapServer binary

The MapServer program itself consists of only one file, the “mapserv” binary executable. This is a CGI executable,
meant to be called and run by your web server.

In this section, we will assume you are running Apache under its default directory structure in /usr/local/apache2.
You may need to have privileges to edit your httpd.conf (the main apache configuration file), or have someone
(such as your webmaster) help you with the configuration details.

If you don’t have apache installed, and you want apache, php, fastcgi, etc, that might look something like this:

$ apt-get install -y apache2 apache2-mpm-worker libapache2-mod-fastcgi
$ a2enmod actions fastcgi alias
$ apt-get install libapache2-mod-php5 php5-common php5-cli php5-fpm php5

The main goal is to get the “mapserv” binary installed in a publicly accessible directory that is configured to run
CGI programs and scripts.

32 Chapter 3. Installation

MapServer Documentation, Release 6.4.1

1. Locate your cgi-bin directory. Under a default configuration, the CGI directory is “/usr/local/apache2/cgi-
bin” (RedHat: “/home/httpd/cgi-bin”, Debian: “/usr/lib/cgi-bin”). If you’re using apache, there should be a
ScriptAlias directive in your http.conf, or default site, something like:

$ cat /etc/apache2/sites-available/default | grep ’cgi-bin’
ScriptAlias /cgi-bin/ /usr/lib/cgi-bin/

2. Locate the installation path of your freshly compiled mapserv executable. This is shown when you run
“make install”, something like this:

-- Installing: /usr/local/bin/mapserv
-- Set runtime path of "/usr/local/bin/mapserv" to

"/usr/local/lib:/usr/local/pgsql/91/lib"

3. You’ll want to setup a symlink to that executable from your cgi-bin directory:

ln -s /usr/local/bin/mapserv /usr/lib/cgi-bin/mapserv

Warning: Make sure you are linking against the installed mapserv file (after running ‘make install’)
and NOT against where it was compiled in your source tree.

Testing your new Install Placing the mapserv file in this directory makes it accessible by the following URL:
“http://yourhostname.com/cgi-bin/mapserv”. When accessing this URL through your web client, you should ex-
pect the following output if all has worked well: “No query information to decode. QUERY_STRING is set, but
empty.” If you get this message, you’re done installing MapServer.

Common problems

File permissions The most common problem one is likely to encounter when attempting to install the binary
are permissions issues:

• You do not have write permissions into your web server’s CGI Directory. Ask your webmaster to install the
file for you.

• The web server gives you a “403 Permission denied” error. Make sure the user the web server runs as
(usually “nobody”) has execute permission on the binary executable. Making the file world executable is
perfectly fine and safe:

$ chmod o+x mapserv

Apache errors You may receive a few different type of errors as well if your web server configuration isn’t
right:

• 500 Internal server error: This is a fairly generic error message. All it basically tells you is that the web
server was unsuccessful in running the program. You will have to consult the web server’s error log to find
out more, and may need to enlist the help of your webmaster/system administrator. The apache docs also
have pointers on setting up cgi-bin.

:: Check your server logs $ tail /var/log/apache2/error.log

Where to go once you’ve got it compiled

The An Introduction to MapServer document provides excellent coverage of getting started with MapServer.

3.1. Installation 33

http://yourhostname.com/cgi-bin/mapserv
http://httpd.apache.org/docs/2.2/howto/cgi.html

MapServer Documentation, Release 6.4.1

3.1.2 Compiling on Win32

Author Pericles Nacionales

Contact pnaciona at gmail.com

Revision $Revision$

Date $Date$

Table of Contents

• Compiling on Win32
– Introduction
– Compiling
– Set up a Project Directory
– Download MapServer Source Code and Supporting Libraries
– The MapServer source code
– Set Compilation Options
– Compile the Libraries
– Compile MapServer
– Compiling MapServer with PostGIS support
– Common Compiling Errors
– Installation
– Other Helpful Information
– Acknowledgements

Introduction

This document provides a simple set of compilation procedures for MapServer on Win32 platforms.

If you’ve made it this far, chances are you already know about MapServer and are at least tempted to try compiling
it for yourself. Pre-compiled binaries for MapServer are available from a variety of sources. Refer to windows.
Building MapServer for win32 platforms can be a daunting task, so if existing binaries are sufficient for your
needs, it is strongly advised that they be used in preference to trying to build everything from source.

However, there can be a variety of reasons to want to build MapServer from source on win32. Reasons include the
need to enable specific options, to build with alternate versions of support libraries (such as GDAL), the desire for
MapScript support not part of the core builds, the need to debug and fix bugs or even to implement new features in
MapServer. To make it easy for users and developers, I’ve made a list of steps to compile MapServer. Background
information is provided in each step, along with examples. Each example is a continuation of the previous one
and in the end will produce the MapServer DLL (libmap.dll), the CGI program (the mapserv.exe), and utility
programs.

Warning: This document may refer to older library versions. You may want to try to use more recent library
versions for your build.

Compiling

If you are new to Windows programming, please follow this document carefully. The compilation steps are fairly
simple but I’ve added a few blurbs in each step to help you understand how MapServer compiles. For the more
experienced programmers, perhaps reading the README.Win32 that accompanies the MapServer source code
would be more useful. For those who are antsy, compiling MapServer involves download and unpacking the
source codes, editing the make files, and invoking Microsoft’s Visual C++ compiler from the command prompt.
The resulting mapserv.exe is the CGI program that installs in the cgi-bin directory of your web server.

For those who are willing to take the time, the compilation steps follow.

34 Chapter 3. Installation

MapServer Documentation, Release 6.4.1

Set up a Project Directory

Before you start to compile MapServer, I recommend creating a directory called “projects” where you can put the
source code for MapServer and its supporting libraries. Since you will be working with DOS-style commands,
you might as well get used to the Windows command prompt. For Windows 95/98 users the command processor
would be called command.com. For Windows NT/2000/XP, it would be cmd.exe. So fire up the old command
prompt and go to the drive where you want to create the project directory.

Here is an example of how to create a directory called projects on the C: drive:

C:\Users> mkdir C:\Projects

To go to that directory:

C:\Users> cd \Projects
C:\Projects>

From the projects directory, you can extract the source codes for MapServer and its libraries. Now you’re ready
to download the source codes.

Download MapServer Source Code and Supporting Libraries

After creating a project directory, download the MapServer source code and the codes for the supporting libraries
and save the source code packages in the newly created “projects” directory. These source codes are usually
packaged as ZIP, or as UNIX TAR and GZIP files. You’ll need a software that can unzip these packages. 7-Zip is
an example of software that can handle these files.

Cygwin is a free, open-source software package which is a port of these tools on Windows. You can use the gzip
and tar utilities from this tool collection. Cygwin is available from http://www.cygwin.com.

In order to compile the MapServer CGI program, you must download a few required and optional libraries. At its
simplest configuration, MapServer only requires the GD (to provide the image output) and REGEX (to provide
regular expression support) libraries. This configuration allows the developer/data provider to use shapefiles as
input and, depending on the version of GD library used, GIF or PNG images as output. Additional libraries are
needed for input data in alternative formats. The libraries that work with MapServer are listed below.

The MapServer source code

The MapServer source code can be downloaded from the download page. If you’d like to get the current devel-
opment version of the software, following the nightly snapshot link under the Interim Builds title. The absolute
latest copy of the source code can be obtained from git; however, the GitHub respository does not contain several
important source files (maplexer.c, mapparser.c and mapparser.h) normally generated on unix, so if possible, using
a nightly snaphot is substantially easier than working directly from git.

Required Libraries

GD Library: MapServer uses the GD graphics library for rendering map images in GIF, PNG and JPEG for-
mat. These map images are displayed in web browser clients using the MapServer CGI. The current
official version of GD is 2.0.33. The distributed makefiles are setup to use the prebuilt GD Win32
DLL binaries which include GD, libjpeg, libpng, libz, libgif and FreeType 2 all within one DLL.
This package is generally listed as “Windows DLL .zip” and the latest version is normally available at
http://www.boutell.com/gd/http/gdwin32.zip.

Regex: Regex is the regular expression library used by MapServer. It can be downloaded at http://ftp.gnu.org/old-
gnu/regex/regex-0.12.tar.gz

3.1. Installation 35

http://www.7-zip.org/
http://www.cygwin.com
http://www.libgd.org/
http://www.boutell.com/gd/http/gdwin32.zip
http://ftp.gnu.org/old-gnu/regex/regex-0.12.tar.gz
http://ftp.gnu.org/old-gnu/regex/regex-0.12.tar.gz

MapServer Documentation, Release 6.4.1

Optional Libraries

JPEG library: This library is required by GD to render JPEG images, if building GD from source. You may
download this library at http://www.ijg.org/files/jpegsrc.v6b.tar.gz

PNG library: This library is required by GD to render PNG images, if building GD from source. You may
download this library at http://sourceforge.net/projects/libpng/

Zlib: This library is required by libpng to provide graphics compression support. It can be downloaded along
with the PNG library, or at http://www.gzip.org/zlib.zip .

FreeType 2: FreeType provides TrueType support in MapServer via GD. We only need to
build FreeType seperately if building GD from source. It can be downloaded at
http://gnuwin32.sourceforge.net/packages/freetype.htm .

PROJ.4: Proj.4 provides on-the-fly projection support to MapServer. Users whose data are in different projection
systems can use this library to reproject into a common projection. It is also required for WMS, WFS or
WCS services.

GDAL/OGR: The GDAL/OGR library allows MapServer to read a variety of geospatial raster formats (GDAL)
and vector formats (OGR). It can be downloaded at http://www.gdal.org/.

ArcSDE: ArcSDE is an ESRI proprietary spatial database engine. Most users will not have access to it but if you
have ArcSDE license, you can use its libraries to give MapServer access to SDE databases.

EPPL7: This library allows MapServer to read EPPL7 datasets, as well as the older Erdas LAN/GIS files. This
library is set as a default library in MapServer so there’s no special source code to download.

Now that you have reviewed the libraries that provide support to MapServer, it is time to decide which ones to
compile and use. We will work with the pre-built GD distributed on Boutell.com with PNG, GIF, JPEG, and
FreeType “built in”. If you want to provide OGC Web Services (ie. WMS, WFS) or want to perform on the fly
reprojection then the PROJ.4 library will be needed. If you need additional raster and vector data sources consider
including GDAL/OGR support. GDAL is also required for WCS service.

Our example calls for the required libraries and on-the-fly projection support so we need to download GD, regex,
and Proj.4 libraries. Go ahead and get those libraries.

Set Compilation Options

MapServer, like many of it’s support libraries, comes with a Visual C++ makefile called Makefile.vc. It includes
the file nmake.opt which contains many of the site specific definitions. We will only need to edit the nmake.opt file
to configure the build for our local site options, and support libraries. The Makefile.vc, and nmake.opt template
file have been provided by Assefa Yewondwossen, and the DM Solutions folks.

As of MapServer 4.4, the default MapServer build options only include GD, and regex. MapServer is built using
the /MD option (which means MSVCRT.DLL should be used), so if any support libraries are being built statically
(rather than as DLLs) we need to use /MD when building them as well. By default modern PROJ.4 builds use
/MD so we should be able to use the default PROJ.4 build without tweaking.

The example will compile with the GDWin32 pre-built DLL as well as regex-0.12, and PROJ.4. The PROJ.4
support will ensure we can enable MapServer OGC-WMS compatibility. Use notepad or another text editor to
open the nmake.opt file and make the following changes.

Comments

Use the pound sign (#) to comment out the lines that you want to disable, or remove the pound sign to enable an
option for NMAKE.

A. Enable PROJ.4 support, and update the path to the PROJ.4 directory. Uncomment the PROJ= line, and the
PROJ_DIR= line as follows, and update the PROJ_DIR path to point to your PROJ build.

36 Chapter 3. Installation

http://www.ijg.org/
http://www.ijg.org/files/jpegsrc.v6b.tar.gz
http://www.libpng.org/pub/png/
http://sourceforge.net/projects/libpng/
http://www.gzip.org/zlib/
http://www.gzip.org/zlib.zip
http://www.freetype.org/
http://gnuwin32.sourceforge.net/packages/freetype.htm
http://trac.osgeo.org/proj/
http://www.gdal.org/
http://www.gdal.org/
http://www.esri.com/software/arcgis/arcsde/
http://www.lmic.state.mn.us/resource.html?Id=3603

MapServer Documentation, Release 6.4.1

Reprojecting.
If you would like mapserver to be able to reproject data from one
geographic projection to another, uncomment the following flag
Proj.4 distribution (cartographic projection routines). PROJ.4 is
also required for all OGC services (WMS, WFS, and WCS).
#
For PROJ_DIR use full path to Proj.4 distribution
PROJ=-DUSE_PROJ -DUSE_PROJ_API_H
PROJ_DIR=c:\projects\proj-4.4.9

If you look down later in the file, you can see that once PROJ is enabled, MapServer will be linked with proj_i.lib,
the PROJ.4 stub library, meaning that MapServer will be using the PROJ.DLL as opposed to statically linking in
PROJ.4.

2. Uncomment the WMS option.

Use this flag to compile with WMS Server support.
To find out more about the OpenGIS Web Map Server Specification go to
http://www.opengis.org/
WMS=-DUSE_WMS_SVR

3. Update to use GD. Here’s what it should look like in our example.

GD_DIR=c:/projects/gdwin32
GD_LIB=$(GD_DIR)/bgd.lib

Note: As distributed the GDWin32 binary build does not include the bgd.lib stub library. It is necessary to run the
makemsvcimport.bat script in the gdwin32 directory first.

D. Make sure the regex path is set correctly. In order for the “delete” command in the “nmake /f makefile.vc
clean” target to work properly it is necessary to use backslashes in the REGEX_DIR definition.

REGEX Libary
#
VC++ does not include the REGEX library... so we must provide our one.
The following definitions will try to build GNU regex-0.12 located in the
regex-0.12 sub-directory.
If it was not included in the source distribution, then you can get it from:

ftp://ftp.gnu.org/pub/gnu/regex/regex-0.12.tar.gz
Provide the full path to the REGEX project directory
You do not need this library if you are compiling for PHP mapscript.
In that case the PHP regex library will be used instead
!IFNDEF PHP
REGEX_DIR=c:\projects\regex-0.12
!ENDIF

Your Makefile is now set.

Compile the Libraries

Before compiling MapServer, you must first compile its supporting libraries. How this is done varies for each
library. For the PROJ.4 library a nmake /f makefile.vc command in the proj-4.4.9src directory should be sufficient.
The regex-0.12 code is actually built by the MapServer build process, so you don’t need to do anything there.

Compiling libcurl

Previously, curl libraries can be compiled using the following command:

nmake /f makefile.vc6 CFG=release

3.1. Installation 37

MapServer Documentation, Release 6.4.1

This creates a static library, libcurl.lib, to which you compile against. Versions newer than version 7.10.x should
be compiled as dynamic library. This is accomplished using the command:

nmake /f makefile.vc6 CFG=release-dll

You will then need to edit MapServer’s nmake.opt to replace the CURL_LIB variable with this line:

CURL_LIB = $(CURL_DIR)/lib/libcurl_imp.lib

Compile MapServer

Once you have compiled the supporting libraries successfully, you are ready to take the final compilation step. If
you have not already done so, open a command prompt and set the VC++ environment variables by running the
vcvars32.bat usually located in C:Program FilesMicrosoft Visual StudioVC98binvcvars32.bat.

C:\Users> cd \projects\mapserver
C:\Projects\mapserver&> C:\Program Files\Microsoft Visual Studio\VC98\Bin\vcvars32.bat"
C:\Projects\mapserver>

Setting environment for using Microsoft Visual C++ tool.
C:\Projects\mapserver>

Now issue the command: nmake /f Makefile.vc and wait for it to finish compiling. If it compiles successfully,
you should get mapserver.lib, libmap.dll, mapserv.exe, and other .EXE files. That’s it for the compilation process.
If you run into problems, read section 4 about compiling errors. You can also ask for help from the helpful folks
in the MapServer-dev e-mail list.

Compiling MapServer with PostGIS support

To compile PostGIS support into MapServer, here’s what you need to do:

1. download the PostgreSQL 8.0.1 (or later) source from: ftp://ftp.heanet.ie/pub/postgresql/source/

2. I extracted them to C:projectspostgresql-8.0.1

3. download the Microsoft Platform SDK otherwise you get link errors on shfolder.lib.

4. compile libpq under C:projectspostgresql-8.0.1srcinterfaceslibpq using the win32.mak makefile

5. copy everything from C:projectspostgresql-8.0.1srcinterfaceslibpqrelease to C:projectspostgresql-
8.0.1srcinterfaceslibpq as the MapServer makefile will try to find it there

6. Define the following in the nmake.opt for MapServer: POSTGIS =-DUSE_POSTGIS POSTGIS_DIR
=c:/projects/postgresql-8.0.1/src

7. nmake /f makefile.vc

8. don’t forget to copy libpq.dll (from C:projectspostgresql-8.0.1srcinterfaceslibpqrelease) into a location
where MapServer can find it.

Common Compiling Errors

Following are a few common errors you may encounter while trying to build MapServer.

• Visual C++ Tools Not Properly Initialized.

C:\projects\mapserver> nmake -f /makefile.vc
’nmake’ is not recognized as an internal or external command,
operable program or batch file.

This occurs if you have not properly defined the path and other environment variables required to use
MS VisualC++ from the command shell. Invoke the VCVARS32.BAT script, usually with the command
C:Program FilesMicrosoft Visual StudioVC98binvcvars32.bat or something similar if visual studio was

38 Chapter 3. Installation

ftp://ftp.heanet.ie/pub/postgresql/source/
http://www.microsoft.com/downloads/details.aspx?familyid=E6E1C3DF-A74F-4207-8586-711EBE331CDC&displaylang=en

MapServer Documentation, Release 6.4.1

installed in an alternate location. To test if VC++ is available, just type “nmake” or “cl” in the command
shell and ensure it is found.

• Regex Build Problems.

regex.obj : error LNK2001: unresolved external symbol _printchar
libmap.dll : fatal error LNK1120: 1 unresolved externals
NMAKE : fatal error U1077: ’link’ : return code ’0x460’
Stop.

This occurs if you use the stock regex-0.12 we referenced. I work around this by commenting out the
“extern” statement for the printchar() function, and replacing it with a stub implementation in regex-
0.12regex.c.

//extern void printchar ();
void printchar(int i) {}

• GD Import Library Missing.

LINK : fatal error LNK1104: cannot open file ’c:/projects/gdwin32/bgd.lib’
NMAKE : fatal error U1077: ’link’ : return code ’0x450’
Stop.

If you are using the pre-built GD binaries, you still need to run the makemsvcimport.bat script in the
gdwin32 directory to create a VC++ compatible stub library (bgd.lib).

Installation

The file we are most interested in is mapserv.exe. The other executable files are the MapServer utility programs.

See Also:

MapServer Utilities

to learn more about these utilities.

To test that the CGI program is working, type mapserv.exe at the command prompt. You should see the following
message:

This script can only be used to decode form results and
should be initiated as a CGI process via a httpd server.

You may instead get a popup indicating that a DLL (such as bgd.dll) is missing. You will need to copy all the
required DLLs (ie. bgd.dll, and proj.dll) to the same directory as the mapserv.exe program.

Now type mapserv -v at the command prompt to get this message:

MapServer version 4.4.0-beta3 OUTPUT=GIF OUTPUT=PNG OUTPUT=JPEG OUTPUT=WBMP
SUPPORTS=PROJ SUPPORTS=FREETYPE SUPPORTS=WMS_SERVER INPUT=SHAPEFILE
DEBUG=MSDEBUG

This tells us what data formats and other options are supported by mapserv.exe. Assuming you have your web
server set up, copy mapserv.exe, libmap.dll, bgd.dll, proj.dll and any other required DLLs to the cgi-bin directory.

You are now ready to download the demo application and try out your own MapServer CGI program. If you wish,
you can also create a directory to store the utility programs. I’d suggest making a subdirectory called “bin” under
the directory “projects” and copy the executables to that subdirectory. You might find these programs useful as
you develop MapServer applications.

Other Helpful Information

The MapServer Unix Compilation and Installation HOWTO has good descriptions of some MapServer compi-
lation options and library issues. I will write more about those options and issues on the next revision of this
HOWTO.

3.1. Installation 39

MapServer Documentation, Release 6.4.1

The README documents of each of the supporting libraries provide compilation instructions for Windows.

The MapServer User community has a collective knowledge of the nuances of MapServer compilation. Seek their
advice wisely.

Acknowledgements

Thanks to Assefa Yewondwossen for providing the Makefile.vc. I would not have been able to write this HOWTO
without that file.

Thanks to Bart van den Eijnden for the libcurl and PostGIS compilation info.

Thanks to the Steve Lime for developing MapServer and to the many developers who contribute time and effort
in order to keep the MapServer project successful.

3.1.3 PHP MapScript Installation

Author Jeff McKenna

Contact jmckenna at gatewaygeomatics.com

Revision $Revision$

Date $Date$

Table of Contents

• PHP MapScript Installation
– Introduction
– Obtaining, Compiling, and Installing PHP and the PHP/MapScript Module
– FAQ / Common Problems

Introduction

The PHP/MapScript module is a PHP dynamically loadable module that makes MapServer’s MapScript functions
and classes available in a PHP environment.

The original version of MapScript (in Perl) uses SWIG, but since SWIG does not support the PHP language, the
module has to be maintained separately and may not always be in sync with the Perl version.

The PHP module was developed by DM Solutions Group and is currently maintained by Mapgears.

This document assumes that you are already familiar with certain aspects of your operating system:

• For Unix/Linux users, a familiarity with the build environment, notably make.

• For Windows users, some compilation skills if you don’t have ready access to a pre-compiled installation
and need to compile your own copy of MapServer with the PHP/MapScript module.

Which version of PHP is supported?

PHP MapScript was originally developed for PHP-3.0.14 but after MapServer 3.5 support for PHP3 has been
dropped and as of the last update of this document, PHP 4.3.11 or more recent was required (PHP5 is well
supported).

The best combinations of MapScript and PHP versions are:

• MapScript 4.10 with PHP 5.2.1 and up

• MapScript 4.10 with PHP 4.4.6 and up

40 Chapter 3. Installation

http://www.swig.org/
http://www.dmsolutions.ca/
http://www.mapgears.com

MapServer Documentation, Release 6.4.1

How to Get More Information on the PHP/MapScript Module for MapServer

• For a list of all classes, properties, and methods available in the module see the PHP MapScript API refer-
ence document.

• More information on the PHP/MapScript module can be found on the PHP/MapScript page on Map-
Tools.org.

• The MapServer Wiki also has PHP/MapScript build and installation notes and some php code snippets.

• Questions regarding the module should be forwarded to the MapServer mailing list.

Obtaining, Compiling, and Installing PHP and the PHP/MapScript Module

Download PHP and PHP/MapScript

• The PHP source or the Win32 binaries can be obtained from the PHP web site.

• Once you have verified that PHP is installed and is running, you need to get the latest MapServer source
and compile MapServer and the PHP module.

Setting Up PHP on Your Server

Unix

• Check if you have PHP already installed (several Linux distributions have it built in).

• If not, see the PHP manual’s “Installation on Unix systems” section.

Windows

• MS4W (MapServer For Windows) is a package that contains Apache, PHP, and PHP/MapScript ready to
use in a simple zipfile. Several Open Source applications are also available for use in MS4W.

• Windows users can follow steps in the Installing Apache, PHP and MySQL on Windows tutorial to install
Apache and PHP manually on their system.

• Window users running PWS/IIS can follow php.net’s howto for installing PHP for PWS/IIS 3, PWS 4 or
newer, and IIS 4 or newer.

Note: When setting up PHP on Windows, make sure that PHP is configured as a CGI and not as an Apache
module because php_mapscript.dll is not thread-safe and does not work as an Apache module (See the Example
Steps of a Full Windows Installation section of this document).

Build/Install the PHP/MapScript Module

Building on a Linux Box

NOTE: For UNIX users, see the README.CONFIGURE file in the MapServer source, or see the Compiling on
Unix HowTo.

• The main MapServer configure script will automatically setup the main makefile to compile
php_mapscript.so if you pass the –with-php=DIR argument to the configure script.

• Copy the php_mapscript.so library to your PHP extensions directory, and then use the dl() function to load
the module at the beginning of your PHP scripts. See also the PHP function extension_loaded() to check
whether an extension is already loaded.

• The file mapscript/php3/examples/phpinfo_mapscript.phtml will test that the php_mapscript module is prop-
erly installed and can be loaded.

3.1. Installation 41

http://www.maptools.org/php_mapscript/
http://trac.osgeo.org/mapserver/wiki/PHPMapScript
http://www.php.net/
http://php.net/manual/en/install.unix.php
http://www.maptools.org/ms4w/
http://www.php-mysql-tutorial.com/install-apache-php-mysql.php
http://www.php.net/manual/en/install.iis.php
http://www.php.net/manual/en/function.extension-loaded.php

MapServer Documentation, Release 6.4.1

• If you get an error from PHP complaining that it cannot load the library, then make sure that you recompiled
and reinstalled PHP with support for dynamic libraries. On RedHat 5.x and 6.x, this means adding “-
rdynamic” to the CLDFLAGS in the main PHP3 Makefile after running ./configure Also make sure all
directories in the path to the location of php_mapscript.so are at least r-x for the HTTPd user (usually
‘nobody’), otherwise dl() may complain that it cannot find the file even if it’s there.

Building on Windows

• For Windows users, it is recommended to look for a precompiled binary for your PHP version on the
MapServer download page or on MapTools.org.

• If for some reason you really need to compile your own Windows binary then see the README.WIN32
file in the MapServer source (good luck!).

Installing PHP/MapScript

Simply copy the file php4_mapscript.dll to your PHP4 extensions directory (pathto/php/extensions)

Using phpinfo()

To verify that PHP and PHP/MapScript were installed properly, create a ‘.php’ file containing the following code
and try to access it through your web server:

<HTML>
<BODY>

<?php
if (PHP_OS == "WINNT" || PHP_OS == "WIN32")
{
dl("php_mapscript.dll");

}
else
{
dl("php_mapscript.so");

}
phpinfo();

?>

</BODY>
</HTML>

If PHP and PHP/MapScript were installed properly, several tables should be displayed on your page, and ‘Map-
Script’ should be listed in the ‘Extensions’ table.

Example Steps of a Full Windows Installation

Using MS4W (MapServer for Windows)

1. Download the latest MS4W base package.

2. Extract the files in the archive to the root of one of your drives (e.g. C:/ or D:/).

3. Double-click the file /ms4w/apache-install.bat to install and start the Apache Web server.

4. In a web browser goto http://127.0.0.1. You should see an MS4W opening page. You are now running PHP,
PHP/MapScript, and Apache.

5. You can now optionally install other applications that are pre-configured for MS4W, which are located on
the MS4W download page.

Manual Installation Using Apache Server

1. Download the Apache Web Server and extract it to the root of a directory (eg. D:/Apache).

2. Download PHP4 and extract it to your Apache folder (eg. D:/Apache/PHP4).

42 Chapter 3. Installation

http://www.maptools.org/php_mapscript/index.phtml?page=downloads.html
http://www.maptools.org/ms4w/index.phtml?page=downloads.html
http://127.0.0.1
http://www.maptools.org/ms4w/index.phtml?page=downloads.html
http://httpd.apache.org/
http://www.php.net/

MapServer Documentation, Release 6.4.1

3. Create a temp directory to store MapServer created GIFs. NOTE: This directory is specified in the IM-
AGEPATH parameter of the WEB Object in the Mapfile reference. For this example we will call the temp
directory “ms_tmp” (eg. E:/tmp/ms_tmp).

4. Locate the file httpd.conf in the conf directory of Apache, and open it in a text viewer (eg. TextPad, Emacs,
Notepad).

In the Alias section of this file, add aliases to the ms_tmp folder and any other folder you require (for this
example we will use the msapps folder):

Alias /ms_tmp/ "path/to/ms_tmp/"
Alias /msapps/ "path/to/msapps/"

In the ScriptAlias section of this file, add an alias for the PHP4 folder.

ScriptAlias /cgi-php4/ "pathto/apache/php4/"

In the AddType section of this file, add a type for php4 files.

AddType application/x-httpd-php4 .php

In the Action section of this file, add an action for the php.exe file.

Action application/x-httpd-php4 "/cgi-php4/php.exe"

5. Copy the file php4.ini-dist located in your Apache/php4 directory and paste it into your WindowsNT folder
(eg. c:/winnt), and then rename this file to php.ini in your WindowsNT folder.

6. If you want specific extensions loaded by default, open the php.ini file in a text viewer and uncomment the
appropriate extension.

7. Place the file php_mapscript.dll into your Apache/php4/extensions folder.

Installation Using Microsoft’s IIS

(please see the IIS Setup for MapServer document for uptodate steps)

1. Install IIS if required (see the IIS 4.0 installation procedure).

2. Install PHP and PHP/MapScript (see above).

3. Open the Internet Service Manager (eg. C/WINNT/system32/inetsrv/inetmgr.exe).

4. Select the Default web site and create a virtual directory (right click, select New/Virtual directory). For this
example we will call the directory msapps.

5. In the Alias field enter msapps and click Next.

6. Enter the path to the root of your application (eg. “c:/msapps”) and click Next.

7. Set the directory permissions and click Finish.

8. Select the msapps virtual directory previously created and open the directory property sheets (by right
clicking and selecting properties) and then click on the Virtual directory tab.

9. Click on the Configuration button and then click the App Mapping tab.

10. Click Add and in the Executable box type: path/to/php4/php.exe %s %s. You MUST have the %s %s on the
end, PHP will not function properly if you fail to do this. In the Extension box, type the file name extension
to be associated with your PHP scripts. Usual extensions needed to be associated are phtml and php. You
must repeat this step for each extension.

11. Create a temp directory in Explorer to store MapServer created GIFs.

Note: This directory is specified in the IMAGEPATH parameter of the WEB Object in the Mapfile. For
this example we will call the temp directory ms_tmp (eg. C:/tmp/ms_tmp).

12. Open the Internet Service Manager again.

3.1. Installation 43

http://support.microsoft.com/support/iis/install/install_iis4.asp

MapServer Documentation, Release 6.4.1

13. Select the Default web site and create a virtual directory called ms_tmp (right click, select New/Virtual
directory). Set the path to the ms_tmp directory (eg. C:/tmp/ms_tmp) . The directory permissions should at
least be set to Read/Write Access.

FAQ / Common Problems

Questions Regarding Documentation

Q Is there any documentation available?

A The main reference document is the PHP MapScript reference, which describes all of the current
classes, properties and methods associated with the PHP/MapScript module.

To get a more complete description of each class and the meaning of their member variables,
see the MapScript reference and the MapFile reference.

The MapServer Wiki also has PHP/MapScript build and installation notes and some php code
snippets.

Q Where can I find sample scripts?

A Some examples are included in directory mapserver/mapscript/php3/examples/ in the MapServer
source distribution. A good one to get started is test_draw_map.phtml: it’s a very simple script
that just draws a map, legend and scalebar in an HTML page.

A good intermediate example is the PHP MapScript By Example guide (note that this document
was created for an earlier MapServer version but the code might be still useful).

The next example is the GMap demo. You can download the whole source and data files from
the MapTools.org download page.

Questions About Installation

Q How can I tell that the module is properly installed on my server?

A Create a file called phpinfo.phtml with the following contents:

<?php dl("php_mapscript.so");
phpinfo();

?>

Make sure you replace the php_mapscript.so with the name under which you installed it, it could
be php_mapscript_46.so on Unix, or php_mapscript_46.dll on Windows

You can then try the second test page mapserver/mapscript/php3/examples/test_draw_map.phtml.
This page simply opens a MapServer .map file and inserts its map, legend, and scalebar in an
HTML page. Modify the page to access one of your own MapServer .map files, and if you get
the expected result, then everything is probably working fine.

Q I try to display my .phtml or .php page in my browser but the page is shown as it would it
Notepad.

A The problem is that your PHP installation does not recognize ”.phtml” as a PHP file extension.
Assuming you’re using PHP4 under Apache then you need to add the following line with the
other PHP-related AddType lines in the httpd.conf:

AddType application/x-httpd-php .phtml

For a more detailed explanation, see the Example Steps of a Full Windows Installation section
of this document.

44 Chapter 3. Installation

http://trac.osgeo.org/mapserver/wiki/PHPMapScript
http://www.mapsherpa.com/gmap/
http://www.maptools.org/dl/

MapServer Documentation, Release 6.4.1

Q I installed the PROJ.4, GDAL, or one of the support libraries on my system, it is recognized
by MapServer’s “configure” as a system lib but at runtime I get an error: “libproj.so.0:
No such file or directory”.

A You are probably running a RedHat Linux system if this happened to you. This happens because
the libraries install themselves under /usr/local/lib but this directory is not part of the runtime
library path by default on your system.

(I’m still surprised that “configure” picked proj.4 as a system lib since it’s not in the system’s
lib path...probably something magic in autoconf that we’ll have to look into)

There are a couple of possible solutions:

1. Add a “setenv LD_LIBRARY_PATH” to your httpd.conf to contain that directory

2. Edit /etc/ld.so.conf to add /usr/local/lib, and then run “/sbin/ldconfig”. This will perma-
nently add /usr/local/lib to your system’s runtime lib path.

3. Configure MapServer with the following options:

--with-proj=/usr/local --enable-runpath

and the /usr/local/lib directory will be hardcoded in the exe and .so files

I (Daniel Morissette) personally prefer option #2 because it is permanent and applies to every-
thing running on your system.

Q Does PHP/MapScript have to be setup as a CGI? If so, why?

A Yes, please see the PHP/MapScript CGI page in the MapServer Wiki for details.

Q I have compiled PHP as a CGI and when PHP tries to load the php_mapscript.so, I get an
“undefined symbol: _register_list_destructors” error. What’s wrong?

A Your PHP CGI executable is probably not linked to support loading shared libraries. The
MapServer configure script must have given you a message about a flag to add to the PHP
Makefile to enable shared libs.

Edit the main PHP Makefile and add “-rdynamic” to the LDFLAGS at the top of the Makefile,
then relink your PHP executable.

Note: The actual parameter to add to LDFLAGS may vary depending on the system you’re
running on. On Linux it is “-rdynamic”, and on *BSD it is “-export-dynamic”.

Q What are the best combinations of MapScript and PHP versions?

A The best combinations are:

• MapScript 4.10 with PHP 5.2.1 and up

• MapScript 4.10 with PHP 4.4.6 and up

Q I am dynamically loading gd.so and php_mapscript.so and running into problems, why?

A The source of the problems could be a mismatch of GD versions. The PHP GD module compiles its
own version of libgd, and if the GD library is loaded before the mapscript library, mapscript will
use the php-specific version. Wherever possible you should use a gd.so built with the same GD
as PHPMapScript. A workaround is to load the php_mapscript module before the GD module.

3.1. Installation 45

http://old-mapserver.gis.umn.edu/cgi-bin/wiki.pl?PHPMapScriptCGI

MapServer Documentation, Release 6.4.1

3.1.4 .NET MapScript Compilation

Author Tamas Szekeres

Contact szekerest at gmail.com

Revision $Revision$

Date $Date$

Compilation

Before compiling C# MapScript you should compile MapServer with the options for your requirements. For more
information about the compilation of MapServer please see Win32 Compilation and Installation Guide. It is highly
recommended to minimize the library dependency of your application, so when compiling MapServer enable only
the features really needed. To compile the C# binding SWIG 1.3.31 or later is required.

Warning: This document may refer to older library versions. You may want to try to use more recent library
versions for your build.

Win32 compilation targeting the MS.NET framework 1.1

You should compile MapServer, MapScript and all of the subsequent libraries using Visual Studio 2003. Download
and uncompress the latest SWIGWIN package that contains the precompiled swig.exe Open the Visual Studio
.NET 2003 Command Prompt and step into the /mapscript/csharp directory. Edit makefile.vc and set the SWIG
variable to the location of your swig.exe

Use:

nmake -f makefile.vc

to compile mapscript.dll and mapscript_csharp.dll.

Win32 compilation targeting the MS.NET framework 2.0

You should compile MapServer, MapScript and all of the subsequent libraries using Visual Studio 2005. Download
and uncompress the latest SWIGWIN package that contains the precompiled swig.exe Open the Visual Studio
2005 Command Prompt and step into the /mapscript/csharp directory Edit makefile.vc and set the SWIG variable
to the location of your swig.exe.

Use:

nmake -f makefile.vc

to compile mapscript.dll and mapscript_csharp.dll.

Win32 compilation targeting the MONO framework

Before the compilation you should download and install the recent mono Win32 setup package (eg. mono-
1.1.13.2-gtksharp-2.8.1-win32-1.exe) Edit makefile.vc and set the CSC variable to the location of your mcs.exe.
Alternatively you can define:

MONO = YES

in your nmake.opt file.

You should use the same compiler for compiling MapScript as the compiler has been used for the MapServer
compilation. To compile MapScript open the Command Prompt supplied with your compiler and use:

46 Chapter 3. Installation

MapServer Documentation, Release 6.4.1

nmake -f makefile.vc

to compile mapscript.dll and mapscript_csharp.dll.

Alternative compilation methods on Windows

Beginning from MapServer 4.8.3 you can invoke the C# compilation from the MapServer directory by uncom-
menting DOT_NET in nmake.opt:

#~~~
.NET/C# MapScript
--
.NET will of course only work with MSVC 7.0 and 7.1. Also note that
you will definitely want USE_THREAD defined.
#~~~
#DOT_NET = YES

and invoking the compilation by:

nmake -f makefile.vc csharp

You can also use:

nmake -f makefile.vc install

for making the compilation an copying the targets into a common output directory.

Testing the compilation

For testing the compilation and the runtime environment you can use:

nmake -f makefile.vc test

within the csharp directory for starting the sample applications compiled previously. Before making the test the
location of the corresponding libraries should be included in the system PATH.

Linux compilation targeting the MONO framework

Before the compilation you should download and install the recent mono Linux package. Some distributions have
pre-compiled binaries to install, but for using the latest version you might want to compile and install it from the
source. Download and uncompress the latest SWIG release. You should probably compile it from the source if
pre-compiled binaries are not available for your platform.

Before compiling MapScript, MapServer should be configured and compiled. Beginning from MapServer 4.8.2
during configuration the mapscript/csharp/Makefile will be created according to the configuration options. Edit
this file and set the SWIG and CSC for the corresponding executable pathes if the files could not be accessed by
default. To compile at a console step into the /mapscript/csharp directory use:

make

to compile libmapscript.so and mapscript_csharp.dll.

For testing the compilation and the runtime environment you can use:

make test

for starting the sample applications compiled previously.

3.1. Installation 47

MapServer Documentation, Release 6.4.1

OSX compilation targeting the MONO framework

Beginning from 4.10.0 the csharp/Makefile supports the OSX builds. Before making the build the recent MONO
package should be installed on the system.

Before compiling MapScript, MapServer should be configured and compiled. Beginning from MapServer 4.8.2
during configuration the mapscript/csharp/Makefile will be created according to the configuration options. Edit
this file and set the SWIG and CSC for the corresponding executable pathes if the files could not be accessed by
default. To compile at a console step into the /mapscript/csharp directory use:

make

to compile libmapscript.dylib and mapscript_csharp.dll.

For testing the compilation and the runtime environment you can use:

make test

for starting the sample applications compiled previously.

To run the applications mapscript_csharp.dll.config is needed along with the mapscript_csharp.dll file. This file is
created during the make process

Installation

The files required for your application should be manually installed. It is highly recommended to copy the files
into the same folder as the executable resides.

Known issues

Visual Studio 2005 requires a manifest file to load the CRT native assembly wrapper

If you have compiled MapServer for using the CRT libraries and you are using the MS.NET framework 2.0 as the
execution runtime you should supply a proper manifest file along with your executable, like:

<?xml version="1.0" encoding="utf-8"?>
<assembly xsi:schemaLocation="urn:schemas-microsoft-com:asm.v1
assembly.adaptive.xsd" manifestVersion="1.0"
xmlns:asmv1="urn:schemas-microsoft-com:asm.v1"
xmlns:asmv2="urn:schemas-microsoft-com:asm.v2"
xmlns:dsig="http://www.w3.org/2000/09/xmldsig#"
xmlns="urn:schemas-microsoft-com:asm.v1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<assemblyIdentity name="drawmap.exe" version="1.0.0.0" type="win32" />
<dependency>
<dependentAssembly asmv2:dependencyType="install"
asmv2:codebase="Microsoft.VC80.CRT.manifest" asmv2:size="522">

<assemblyIdentity name="Microsoft.VC80.CRT" version="8.0.50608.0"
publicKeyToken="1fc8b3b9a1e18e3b" processorArchitecture="x86"
type="win32" />

<hash xmlns="urn:schemas-microsoft-com:asm.v2">
<dsig:Transforms>
<dsig:Transform Algorithm="urn:schemas-microsoft-com:HashTransforms.Identity" />
</dsig:Transforms>
<dsig:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />
<dsig:DigestValue>UMOlhUBGeKRrrg9DaaPNgyhRjyM=</dsig:DigestValue>
</hash>
</dependentAssembly>
</dependency>
</assembly>

48 Chapter 3. Installation

MapServer Documentation, Release 6.4.1

This will inform the CLR that your exe depends on the CRT and the proper assembly wrapper is to be used. If you
are using the IDE the manifest file could be pregenerated by adding a reference to Microsoft.VC80.CRT.manifest
within the /Microsoft Visual Studio 8/VC/redist/x86/Microsoft.VC80.CRT directory.

Manifests for the dll-s must be embedded as a resource

According to the windows makefile the MapScript compilation target (mapscript.dll) is linked with the /MD op-
tion. In this case the VS2005 linker will generate a manifest file containing the unmanaged assembly dependency.
The sample contents of the manifest file are:

<?xml version=’1.0’ encoding=’UTF-8’ standalone=’yes’?>
<assembly xmlns=’urn:schemas-microsoft-com:asm.v1’ manifestVersion=’1.0’>
<dependency>
<dependentAssembly>
<assemblyIdentity type=’win32’ name=’Microsoft.VC80.CRT’
version=’8.0.50608.0’ processorArchitecture=’x86’
publicKeyToken=’1fc8b3b9a1e18e3b’ />

</dependentAssembly>
</dependency>
</assembly>

Like previously mentioned if you are creating a windows application the common language runtime will search
for a manifest file for the application. The name of the manifest file should be the same as the executable append
and end with the .manifest extension. However if the host process is not controlled by you (like web mapping
applications using aspnet_wp.exe as the host process) you will not be certain if the host process (.exe) will have a
manifest containing a reference to the CRT wrapper. In this case you may have to embed the manifest into the dll
as a resource using the mt tool like:

mt /manifest mapscript.dll.manifest /outputresource:mapscript.dll;#2

the common language runtime will search for the embedded resource and load the CRT assembly properly.

Normally it is enough to load the CRT with the root dll (mapscript.dll), but it is not harmful embedding the
manifest into the dependent libraries as well.

Issue with regex and Visual Studio 2005

When compiling with Microsoft Visual Studio 2005 variable name collision may occur between regex.c and
crtdefs.h. For more details see:

http://trac.osgeo.org/mapserver/ticket/1651

C# MapScript library name mapping with MONO

Using the MapScript interface created by the SWIG interface generator the communication between the C# wrap-
per classes (mapscript_csharp.dll) and the C code (mapscript.dll) takes place using platform invoke like:

[DllImport("mapscript", EntryPoint="CSharp_new_mapObj")]
public static extern IntPtr new_mapObj(string jarg1);

The DllImport declaration contains the library name, however to transform the library name into a file name is
platform dependent. On Windows the library name is simply appended with the .dll extension (mapscript.dll).
On the Unix systems the library file name normally starts with the lib prefix and appended with the .so extension
(libmapscript.so).

Mapping of the library name may be manually controlled using a dll.config file. This simply maps the library
file the DllImport is looking for to its unix equivalent. The file normally contains the following information
(mapscript_csharp.dll.config):

3.1. Installation 49

http://trac.osgeo.org/mapserver/ticket/1651

MapServer Documentation, Release 6.4.1

<configuration>
<dllmap dll="mapscript" target="libmapscript.so" />

</configuration>

and with the OSX builds:

<configuration>
<dllmap dll="mapscript" target="libmapscript.dylib" />

</configuration>

The file should be placed along with the corresponding mapscript_csharp.dll file, and created by default during
the make process. For more information see:

http://trac.osgeo.org/mapserver/ticket/1596 http://www.mono-project.com/Interop_with_Native_Libraries

Localization issues with MONO/Linux

According to http://trac.osgeo.org/mapserver/ticket/1762 MapServer may not operate equally well on different
locale settings. Especially when the decimal separator is other than ”.” inside the locale of the process may cause
parse errors when the mapfile contains float numbers. Since the MONO process takes over the locale settings of
the environment it is worth considering to set the default locale to “C” of the host process, like:

LC_ALL=C mono ./drawmap.exe ../../tests/test.map test_csharp.png

Most frequent errors

This chapter will summarize the most frequent problems the user can run into. The issues were collected mainly
from the -users list and the IRC.

Unable to load dll (MapScript)

You can get this problem on Windows and in most cases it can be dedicated to a missing or an unloadable shared
library. The error message talks about mapscript.dll but surely one or more of the dll-s are missing that libmap.dll
depends on. So firstly you might want to check for the dependencies of your libmap.dll in your application
directory. You can use the Visual Studio Dependency Walker to accomplish this task. You can also use a file
monitoring tool (like SysInternal’s filemon) to detect the dll-s that could not be loaded. I propose to store all of
the dll-s required by your application in the application folder. If you can run the drawmap C# sample application
with your mapfile your compilation might be correct and all of the dlls are available.

You may find that the MapScript C# interface behaves differently for the desktop and the ASP.NET applications.
Although you can run the drawmap sample correctly you may encounter the dll loading problem with the ASP.NET
applications. When creating an ASP.NET project your application folder will be ‘Inetpubwwwroot[YourApp]bin’
by default. The host process of the application will aspnet_wp.exe or w3wp.exe depending on your system. The
application will run under a different security context than the interactive user (under the context of the ASPNET
user by default). When placing the dll-s outside of your application directory you should consider that the PATH
environment variable may differ between the interactive and the ASPNET user and/or you may not have enough
permission to access a dll outside of your application folder.

Bug reports

If you find a problem dedicated to the MapScript C# interface feel free to file a bug report to the Issue Tracker.

3.1.5 IIS Setup for MapServer

Author Debbie Paqurek

50 Chapter 3. Installation

http://trac.osgeo.org/mapserver/ticket/1596
http://www.mono-project.com/Interop_with_Native_Libraries
http://trac.osgeo.org/mapserver/ticket/1762
https://github.com/mapserver/mapserver/issues

MapServer Documentation, Release 6.4.1

Last Updated 2005/12/12

Table of Contents

• IIS Setup for MapServer
– Base configuration
– Php.ini file
– Internet Services Manager
– Under the tree for your new website - add virtual directories for
– Test PHP
– Mapfiles for IIS
– Configuration files:

Some help on how to set up MapServer/Chameleon/PhpPgAdmin on Microsoft IIS (v5.0). Contains note on
changes to the php.ini file and necessary changes to the MapServer mapfiles. Please contribute or make changes
as required.

Base configuration

• Windows 2000

• IIS 5.0

• MS4W 1.2.1

• Chameleon 2.2

• PHP 4.3.11

• MapServer 4.7

• PhpPgAdmin 3.5.4 (if using postgresql/postgis)

• Postgres 8.0.3 (if using postgresql/postgis)

• Postgis 1.0.3 (if using postgresql/postgis)

This setup assumes that MS4W was unzipped to form c:\ms4w\ directory.

Php.ini file

• session.save_path (absolute path to your tmp directory)

• extension_dir (relative path to your php/extensions directory)

• cgi.force_redirect = 0

• enable the pg_sql extension (php_pgsql.dll) (for Postgresql)

Internet Services Manager

Under your website tree, create a new website (e.g. msprojects). View the properties for the new website.

Web Site Tab

• set the IP address and under the Advanced tab put the complete Host Header name
(e.g.msprojects.gc.ca).

Home Directory Tab

• content should come from: A directory located on this computer.

• Local Path: c:\ms4w\Apache\htdocs

3.1. Installation 51

MapServer Documentation, Release 6.4.1

• Read access + whatever else you need

• Execute Permissions: Scripts only

• Configuration button - App Mappings (Add extensions .php and .phtml, Executable is
c:\ms4w\Apache\cgi-bin\php.exe,select All verbs, Script Engine, and check that file exists

Documents Tab

• Add index.phtml and index.html

• Directory Security Tab

– Anonymous access amd authentication control

– Select Anonymous access and the edit button should indicate the IUSR_account

Server Extensions Tab

• Enable authoring is selected and client scripting says Javascript

Under the tree for your new website - add virtual directories for

cgi-bin Under Properties, virtual directory tab Local Path should point to c:\ms4w\apache\cgi-bin. Select Read.
Execute Permissions should say “scripts and executables”

ms_tmp Under Properties, virtual directory tab Local Path should point to c:\ms4w\tmp\ms_tmp. Select Read,
Write. Execute Permissions should say “scripts only”. This is where temporary images are written to so
in the File system Security tab (use windows explorer), the c:\ms4w\tmp\ms_tmp directory should have
permissions set for the Internet Guest Account (Read and execute, Read, Write, List Folder Contents).

tmp Under Properties, virtual directory tab Local Path should point to c:\ms4w\tmp. Select Read, Write. Execute
Permissions should say “scripts only”. This is where chameleon writes sessions to so in the File system
Security tab (use windows explorer), the c:\ms4w\tmp directory should have permissions set for the Internet
Guest Accounnt (Read and execute, Read, Write, List Folder Contents).

chameleon Under Properties, virtual directory tab Local Path should point to C:\ms4w\apps\chameleon\htdocs.
Select Read. Execute Permissions should say “scripts only”. Under the Chameleon tree,
you can add virtual directories for admin (c:\ms4w\apps\chameleon\admin\htdocs), samples
(c:\ms4w\apps\chameleon\samples\htdocs), cwc2 (c:\ms4w\apps\chameleon\cwc2\htdocs)

phppgadmin If using postgresql/postgis, under Properties, virtual directory tab Local Path should point to
C:\ms4w\Apache\htdocs\phpPgAdmin. Select Read, Write. Execute Permissions should say “scripts and
executables”. Under Documents - add index.php.

Note: We had to unzip the phppgadmin package into this directory in order to get phppgadmin to show us the
login page at http://yourserver/phppgadmin/index.php. You might want additional security on this directory.

gmap Good for testing purposes. Remember to change your mapfiles as discussed in Mapfiles for IIS below.
Under Properties, virtual directory tab Local Path should point to C:\ms4w\apps\gmap\htdocs. Select Read.
Execute Permissions should say “scripts only”.

Test PHP

In a command line window, navigate to c:\ms4w\apache\cgi-bin and run php -i. This should return the out-
put that the phpinfo() function returns. I got an error about how it couldn’t find ntwdblib.dll. I found this in
c:\ms4w\apache\php\dlls and I copied it to the cgi-bin directory.

Mapfiles for IIS

• Add a config line to the MAP level of the mapfile

52 Chapter 3. Installation

http://yourserver/phppgadmin/index.php

MapServer Documentation, Release 6.4.1

CONFIG PROJ_LIB "c:\ms4w\proj\nad\"

• change the IMAGEPATH to be an absolute path to your tmp/ms_tmp folder

IMAGEPATH "c:\ms4w\tmp\ms_tmp"

Configuration files:

For Chameleon

C:\ms4w\apps\chameleon\config\chameleon.xml
C:\ms4w\apps\chameleon\config\cwc2.xml

For phppgadmin: (if using postgresql/postgis)

C:\ms4w\apps\phpPgAdmin\conf\config.inc.php

3.1.6 Oracle Installation

Author Till Adams

Last Updated 2007/02/16

Table of Contents

• Oracle Installation
– Preface
– System Assumptions
– Compile MapServer
– Set Environment Variables

Preface

This document explains the whole configuration needed to get the connect between MapServer CGI and an Oracle
database server on a linux (Ubuntu) box. The aim of this document is just to put a lot of googled knowledge in
ONE place. Hopefully it will preserve many of people spending analog amount of time than I did!

This manual was written, because I spent several days googling around to get my UMN having access to an oracle
database. I’m NOT an oracle expert, so the aim of this document is just to put a lot of googled knowledge in ONE
place. Hopefully it will preserve many of people spending analog amount of time than I did! (Or: If you have the
choice: Try PostGIS ;-))

Before we start, some basic knowledge, I didn’t know before:

• MapServer can access oracle spatial as well as geodata from any oracle locator installation! Oracle locator
comes with every oracle instance, there is no need for an extra license.

• There is no need for further installation of any packages beside oracle/oracle OCI

System Assumptions

We assume that Oracle is already installed, there is a database and there is some geodata in the database. The
following paths should be known by the reader:

• ORACLE_HOME

• ORACLE_SID

• ORACLE_BASE

3.1. Installation 53

MapServer Documentation, Release 6.4.1

• LD_LIBRARY_PATH

We also assume that you have installed apache2 (our version was 2.0.49) and you are used to work with
Linux/UNIX systems. We also think you are able to handle the editor vi/vim.

We ensure that the Oracle user who later accesses the database has write-access to the oracle_home directory.

We also assume, that you already have setup the tnsnames.ora file. It should look like that:

MY_ORACLE =
(DESCRIPTION =

(ADDRESS = (PROTOCOL = TCP)(HOST = host)(PORT = 1521))
(CONNECT_DATA =

(SERVICE_NAME = your_name)
)

)

It is important that you know the NAME of the datasource, in this example this is “MY_ORACLE” and will be
used further on. Done that, you’re fine using User/Password@MY_ORACLE in your mapfile to connect to the
oracle database. But first we have to do some more stuff.

Compile MapServer

Compile as normal compilation and set this flag:

--with-oraclespatial=/path/to/oracle/home/</p>

If MapServer configure and make runs well, try

./mapserv -v

This should at least give this output:

INPUT=ORACLESPATIAL

If you got that, you’re fine from the MapServer point of view.

Set Environment Variables

It is important to set all environment variables correctly. There are one the one hand system-wide environment
variables to be set, on the other hand there should be set some for the cgi-directory in your Apache configuration.

System Variables

On Ubuntu (and on many other systems) there is the file “/etc/profile” which sets environment variables for all
users on the system (you may also dedicate user-specific environment variables by editing the users ”.profile” file
in their home directory, but usually the oracle database users are not users of the system with their own home)

Set the following variables:

$ cd /etc

$ echo export ORACLE_HOME=/path/to/oracle/home >> /etc/profile

**(e.g. ORACLE_HOME=/app/oracle/ora10g)

$ echo export ORACLE_BASE=path/to/oracle >> /etc/profile

**(e.g. ORACLE_HOME=/app/oracle)

$ echo export ORACLE_SID=MY_ORACLE >> /etc/profile

54 Chapter 3. Installation

MapServer Documentation, Release 6.4.1

$ echo export LD_LIBRARY_PATH=path/to/oracle/home/lib >> /etc/profile

**(e.g. ORACLE_HOME=/app/oracle/ora10g/lib)

The command comes silent, so there is no system output if you didn’t mistype anything!

Setting the Apache Environment

Sometimes it is confusing WHERE to set WHAT in the splitted apache2.conf-files. In the folder
“/etc/apache2/sites_available” you find your sites-file. If you did not do sth. Special e.g. installing virtual hosts,
the file is named “default”. In this file, the apache cgi-directory is defined. Our file looks like this:

ScriptAlias /cgi-bin/ /var/www/cgi-bin/
<Directory "/var/www/cgi-bin">

AllowOverride None
Options ExecCGI -MultiViews +SymLinksIfOwnerMatch
Order allow,deny
Allow from all

</Directory></p>

In this file, the local apache environment variables must be set. We did it within a location-block like this:

<Location "/cgi-bin/">
SetEnv ORACLE_HOME "/path/to/oracle/home"

</Location></p>

Where /cgi-bin/ in the opening location block refers to the script alias /cgi-bin/ and the TNS_ADMIN directory
point to the location of the tnsnames.ora file.

Then restart apache:

$ /etc/init.d/apache2 force-reload

Create mapfile

Before we start creating our mapfile ensure that you have a your access data (User/Password) and that you know
the Oracle SRID, which could be different from the proj-EPSG!

The data access parameters:

• CONNECTIONTYPE oraclespatial

• CONNECTION ‘user/password@MY_ORACLE‘

• DATA ‘GEOM FROM MY_LAYER USING SRID 82032’

[...]

Where:

• GEOM is the name of the geometry column

• MY_LAYER the name of the table

• 82032 is equivalent to the EPSG code 31468 (German projection system)

Testing & Error handling

So you are fine now. Load the mapfile in your application and try it. If everything goes well: Great, if not,
possibly this ugly error-emssage occurs (this one cmae by querying MapServer through the WMS interface as a
GetMap-request):

3.1. Installation 55

mailto:'user/password@MY_ORACLE

MapServer Documentation, Release 6.4.1

<ServiceExceptionReport version="1.0.1">
<ServiceException>

msDrawMap(): Image handling error. Failed to draw layer named ’test1’.
msOracleSpatialLayerOpen(): OracleSpatial error. Cannot create OCI Handlers.
Connection failure. Check the connection string. Error: .

</ServiceException>
</ServiceExceptionReport>

This points us towards, that there might be a problem with the connection to the database. First of all, let’s check,
if the mapfile is all right. Therefore we use the MapServer utility program shp2img.

Let’s assume you are in the directory, where you compiled MapServer and run shp2img:

$ cd /var/src/mapserver_version/

$ shp2img -m /path/to/mapfile/mapfile.map -i png -o /path/to/output/output.png

The output of the command should look like this:

[Fri Feb 2 14:32:17 2007].522395 msDrawMap(): Layer 0 (test1), 0.074s
[Fri Feb 2 14:32:17 2007].522578 msDrawMap(): Drawing Label Cache, 0.000s
[Fri Feb 2 14:32:17 2007].522635 msDrawMap() total time: 0.075s

If not, this possibly points you towards any error in your mapfile or in the way to access the data directly. In this
case, take a look at Oracle Spatial. If there is a problem with your oracle connect, the same message as above
(MsDrawMap() ...) occurs. Check your mapfile syntax and/or the environment settings for Oracle.

For Debian/Ubuntu it’s worth also checking the file “/etc/environment” and test-wise to add the system variables
comparable to System Variables

If the output is OK, you may have a look at the generated image (output.png). Then your problem reduces to
the access of apache to oracle home directory. Carefully check your apache configuration. Please note, that the
apache.config file differs in several linux-distributions. For this paper we talk about Ubuntu, which should be the
same as Debian.

56 Chapter 3. Installation

CHAPTER

FOUR

MAPFILE

4.1 Mapfile

Author Steve Lime

Contact steve.lime at dnr.state.mn.us

Author Jeff McKenna

Contact jmckenna at gatewaygeomatics.com

Author Jean-François Doyon

Contact jdoyon at ccrs.nrcan.gc.ca

The Mapfile is the heart of MapServer. It defines the relationships between objects, points MapServer to where
data are located and defines how things are to be drawn.

The Mapfile consists of a MAP object, which has to start with the word MAP.

There are some important concepts that you must understand before you can reliably use mapfiles to configure
MapServer. First is the concept of a LAYER. A layer is the combination of data plus styling. Data, in the form of
attributes plus geometry, are given styling using CLASS and STYLE directives.

See Also:

An Introduction to MapServer for “An Introduction to the Mapfile”

4.1.1 Cartographical Symbol Construction with MapServer

Author Peter Freimuth

Contact pf at mapmedia.de

Author Arnulf Christl

Contact arnulf.christl at wheregroup.com

Author Håvard Tveite

Contact havard.tveite at nmbu.no

57

MapServer Documentation, Release 6.4.1

Table of Contents

• Abstract
• Introduction

– Multiple Rendering and Overlay
– Symbol Scaling
– MapServer and symbol specification

• Using Cartographical Symbols in MapServer
– Output formats
– Symbol units
– Scaling of Symbols

• Construction of Point Symbols
– Symbols of TYPE vector and ellipse
– Symbols of TYPE truetype
– Symbols of TYPE pixmap
– Symbol definitions for the figure that demonstrates point symbols
– Combining symbols

• Construction of Line Symbols
– Overlaying lines
– Use of the PATTERN and GAP parameters

* LINECAP
* LINEJOIN
* LINEJOINMAXSIZE (only relevant for LINEJOIN miter)

– Use of the OFFSET parameter
– Asymmetrical line styling with point symbols

• Area Symbols
– Hatch fill
– Polygon fills with symbols of TYPE pixmap
– Polygon fills with symbols of TYPE vector

* Excerpts from the map file for the polygon fill vector examples above
– Polygon outlines

• Examples (MapServer 4)
– Basic Symbols
– Complex Symbols

• Tricks
– Changing the center of a point symbol

• Mapfile changes related to symbols
– Version 6.2
– Version 6.0

• Current Problems / Open Issues
– GAP - PATTERN incompatibility

• The End

Abstract

This Document refers to the syntax of map and symbol files for MapServer 6. The first version of the document
was based on the results of a project carried out at the University of Hannover, Institute of Landscape and Nature
Conservation. It was initiated by Mr. Dipl. Ing. Roland Hachmann. Parts have been taken from a study carried
through by Karsten Hoffmann, student of Geography and Cartography at the FU Berlin. In the context of a
hands-on training in the company GraS GmbH Mr. Hoffman mainly dealed with the development of symbols.
(Download study report in German) His degree dissertation will also concern this subject.

The document has been heavily revised for MapServer 6.

58 Chapter 4. Mapfile

http://www.mapmedia.de/fileadmin/user_upload/dokumente/umn_signaturen_howto/Praktikumsarbeit.zip

MapServer Documentation, Release 6.4.1

Introduction

A map is an abstract representation that makes use of point, line and area symbols. Bertin (1974) created a
clear and logical symbol scheme in which symbols can be varied referring to graphical variables. The following
graphical variables can be used within MapServer: FORM, SIZE, PATTERN, COLOR and LIGHTNESS. Point
and area symbols as well as text fonts (ttf) can additionally be displayed with a frame which we call OUTLINE.

The following figure shows the theoretical structure of cartographical symbols, which is also used in MapServer:

Figure 4.1: Structure of Cartographical Symbols‘

Multiple Rendering and Overlay

Say you want to display a highway with a black border line, two yellow lanes and a red center lane. This calls for
a combination of signatures.

Complex cartographical effects can be achieved by rendering the same vector data with different symbols, sizes
and colours on top of each other. This can be done using separate LAYERs. This could, however, have performance
effects for the application, as every rendering process of the same geometry will take up additional processor time.
The preferred solution is to use multiple STYLEs to create complex symbols by overlay.

To create the highway symbol mentioned above with a total width of 9 units, the lowest STYLE (in drawing order)
will be a broad black line with a width of 9 units. The second level STYLE will be a yellow line with a width of 7
units, and the topmost STYLE will be a red line with a width of 1 unit. That way each yellow coloured lane will
have a width of (7-1)/2 = 3 units.

Combining symbols can be a solution for many kinds of cartographical questions. A combination of different
geometry types is also possible. A polygon data set can be rendered as lines to frame the polygons with a line
signature. It can also be rendred as polygons with a symbol filling the polygon. When the polygon fill is rendered
on top of the lines, the inner part of the underlying outline is covered by the fill symbol of the polygon. What is

4.1. Mapfile 59

MapServer Documentation, Release 6.4.1

observed here is a clipping effect tha in will result in an asymmetric symbol for the boundary line. To present the
outline without clipping, just reorder the LAYERs or STYLEs and put the outline presentation on top of the fill.

Yet another way to construct advanced line signatures for framed polygons is to tamper with the original geome-
tries by buffering or clipping the original geometry such that the new objects lie inside the original polygons or
grow over the borders. PostGIS can help achieve a lot of effects.

The OPACITY parameter of LAYER and STYLE can be used to achieve transparency (making lower symbols
“shine” through upper symbols).

Symbol Scaling

There are two basically different ways of handling the display size of symbols and cartographical elements in a
map at different scales. The size of cartographical elements is either set in screen pixels or in real world units.

• If the size is set in real world units (for example meters), the symbol will shrink and grow according to the
scale at which the map is displayed.

• If the size is set in screen pixels, symbols look the same at all scales.

The default behaviour of MapServer is to implement the “screen pixels” size type for displaying cartographical
elements.

“Real world units”, as described above, can be achieved using either the SIZEUNITS or the SYMBOLSCALEDE-
NOM parameter of the LAYER.

• When SIZEUNITS is set (and is not pixels), symbol sizes are specified in real world units (for instance
meters). For available units, see the SIZEUNIT documentation.

• When SYMBOLSCALEDENOM is set, the given symbols size is used for the map scale 1:SYMBOLSCALE-
DENOM, for other scales, the symbols are scaled proportionally.

STYLE MAXSIZE and MINSIZE limits the scaling of symbols.

MapServer and symbol specification

In a MapServer application, SYMBOL parameters are organised in the map file as follows:

• Each LAYER has a TYPE parameter that defines the type of geometry (point, line or polygon). The symbols
are rendered at points, along lines or over areas accordingly.

• Basic symbols are defined in SYMBOL elements, using the parameters TYPE, POINTS, IMAGE, FILLED,
ANCHORPOINT and more (SYMBOL elements can be collected in separate symbol files for reuse).

• Colour, lightness, size and outline are defined inside the STYLE sections of a CLASS section using the
parameters COLOR, SIZE, WIDTH and OUTLINECOLOR.

• Patterns for styling lines and polygons are defined in STYLE sections using GAP and PATTERN.

• Several basic elements can be combined to achieve a complex signature using several STYLEs inside one
CLASS.

The following example shows the interaction of some of these elements and explains the configuration in the
LAYER and the SYMBOL sections necessary for rendering a cartographical point symbol (a red square with a 1
pixel wide black outline and a smaller blue circle inside):

Figure 4.2: The generated overlay symbol

60 Chapter 4. Mapfile

MapServer Documentation, Release 6.4.1

Table 4.1: Commented LAYER and SYMBOL sections.

LAYER section of the map file SYMBOL (from a separate symbol file or in-line in
the map file)

Start of layer definition
LAYER

Name of the layer
NAME "mytest"
TYPE POINT # Point geometries
STATUS DEFAULT # Always draw
Use the dataset test.shp
DATA t e s t
Start of a Class definition
CLASS

Start of the first Style
STYLE

Symbol to be used (reference)
SYMBOL "square"
Size of the symbol in pixels
SIZE 16
Colour (RGB) - red
COLOR 255 0 0
Outline colour (RGB) - black
OUTLINECOLOR 0 0 0

END # end of STYLE
Start of the second Style
STYLE

Symbol to be used (reference)
SYMBOL "circle"
Size of the symbol in pixels
SIZE 10
Colour (RGB) - blue
COLOR 0 0 255

END # end of STYLE
END # end of CLASS

END # end of LAYER

Start of symbol definition
SYMBOL

Symbol name (referenced in STYLEs)
NAME "square"
TYPE vector # Type of symbol
Start of the symbol geometry
POINTS
0 0
0 1
1 1
1 0
0 0

END # end of POINTS
The symbol should be filled
FILLED true
Place the according to its center
ANCHORPOINT 0.5 0.5

END # end of SYMBOL

Start of symbol definition
SYMBOL

Symbol name (referenced in STYLEs)
NAME "circle"
TYPE ellipse # Type of symbol
Start of the symbol geometry
POINTS
1 1

END # end of POINTS
The symbol should be filled
FILLED true
Place the according to its center
ANCHORPOINT 0.5 0.5

END # end of SYMBOL

Using Cartographical Symbols in MapServer

Vectors, truetype fonts and raster images are basic graphical elements that are defined by the TYPE parameter
in the STYLE element. This and the following sections explain how these elements can be combined to create
complex cartographical symbols, and they describes some other important aspects of map rendering in MapServer
.

Output formats

MapServer support raster output formats (e.g. PNG, JPEG and GIF) and vector output formats (e.g. PDF, SVG).
The raster formats (except for GIF) use anti-aliasing. See OUTPUTFORMAT (and MAP IMAGETYPE) for more.

Symbol units

The units used for specifying dimensions is defined in the SIZEUNITS parameter of the LAYER. The available
units are listed there. The default unit is pixels.

4.1. Mapfile 61

MapServer Documentation, Release 6.4.1

The MAP element’s RESOLUTION and DEFRESOLUTION parameters will determine the resolution of the re-
sulting map and hence the size in pixels of the symbols on the map. DEFRESOLUTION is by default 72 dpi (dots
per inch). If RESOLUTION is set to 144 (and DEFRESOLUTION is 72), all dimensions specified in the map file
will be multiplied by 144/72 = 2. This can be used to produce higher resolution images.

Dimensions can be specified using decimals.

Scaling of Symbols

The SYMBOLSCALEDENOM parameter in the LAYER section specifies the scale at which the symbol or text
label is displayed in exactly the dimensions defined in the STYLEs (for instance using SIZE and WIDTH). Observe
that all the parameters concerned with the symbol dimensions (SIZE, WIDTH, ...) are tightly connected to the
SYMBOLSCALEDENOM parameter. The MAXSIZE and MINSIZE parameters inside the STYLE element limit the
scaling of symbols to the maximum and minimum size specified here (but does not affect the size calculations).

When symbols are scaled as the scale changes, the elements (defined in STYLEs) of a composite cartographical
symbol may change their positions relative to each other. This is due to rounding effects when creating the image.
The effect is most noticable at small scales (large scale denominators), when the symbols get small. Due to the
same effects, symbols can also slightly change their shape when they get small.

It is not possibile to define the display intervals with MINSCALEDENOM and MAXSCALEDENOM in the STYLE-
section, so this kind of tuning has to be solved at the LAYER level. To do this, create several LAYERs with the
same geometries for different scale levels.

Always observe that cartographical symbols depend a lot on the scale! So be careful with the interaction of
content, symbols and scale. All three parameters heavily interact and have to be coordinated to produce a good
map.

Construction of Point Symbols

In the figure below, point symbols of TYPE truetype, pixmap, ellipse and vector are demonstrated. The precise
position of the point for which the symbol is rendered is shown with a small red dot. A small blue dot is used to
show an offset position.

All point symbols can be rotated using the ANGLE parameter.

Since version 6.2, the anchor point / reference point of all point symbols can be set using the SYMBOL ANCHOR-
POINT parameter. The default anchorpoint is at the center of the boundingbox of the symbol (ANCHORPOINT
0.5 0.5).

Symbols of TYPE vector and ellipse

For symbols of TYPE vector and ellipse the shape of the symbol by setting X and Y values in a local two di-
mensional coordinate system with X values increasing to the right and Y values increasing downwards. The
coordinates defining the symbol is listed in the POINTS parameter, which is explicitly ended using END. Negative
values should not be used.

• TYPE ellipse is used to create ellipses (and circles). The shape of the ellipse is defined in the POINTS
parameter (X - size in the horizontal direction, Y - size in the vertical direction). To create a circle, let X
and Y have the same value.

• TYPE vector is used to define advanced vector symbols. The shape of the symbol is defined in the POINTS
parameter. A vector symbol can consist of several elements. The coordinates -99 -99 are used to separate
the elements.

To create a polygon vector symbol, the SYMBOL FILLED parameter must be set to true. If the end point is
not equal to the start point of a polygon geometry, it will be closed automatically.

The maximum number of points is 100, but this can be increased by changing the parameter
MS_MAXVECTORPOINTS in the file mapsymbols.h before compilation.

62 Chapter 4. Mapfile

MapServer Documentation, Release 6.4.1

Figure 4.3: Basic point symbol TYPEs, showing effects of size, offset, angle and outlinecolor

When creating symbols of TYPE vector you should observe some style guidelines.

– Avoid downtilted lines in area symbols, as they will lead to heavy aliasing effects.

– Do not go below a useful minimum size. This is relevant for all types of symbols.

– Keep in mind that for pixel images, every symbol of TYPE vector has to be rendered using pixels.

Note: The bounding box of a vector symbol has (0,0) in the symbol coordinate system as its upper left cor-
ner. This can be used to precisely control symbol placement. Since version 6.2 SYMBOL ANCHORPOINT
should be used instead.

Symbols of TYPE truetype

You can use symbols from truetype fonts. The symbol settings are defined in the SYMBOL element. Specify the
character or the ASCII number of the character to be used in the CHARACTER parameter. The FONT parameter is
used to specify the font to be used (the alias name from the font file - often “fonts.list”). The FONTSET parameter
of the MAP element must be set for fonts to work.

For gif output (GD renderer), you can define that you want to apply antialiasing to the characters by using the
parameter ANTIALIAS. It is recommended to do this especially with more complex symbols and whenever they
don’t fit well into the raster matrix or show a visible pixel structure.

Colours for truetype symbols can be specified in LAYER CLASS STYLE (as with symbols of the TYPE vector and
ellipse). You can specify both fill colour and outline colour.

To find out the character number of a symbol use one of the following options:

• Use the software FontMap (Shareware, with free trial version for download, thanks Till!).

• Use the MS Windows truetype map.

• Trial and Error. :-)

4.1. Mapfile 63

MapServer Documentation, Release 6.4.1

Please note that the numbering of the so-called “symbol fonts” starts at 61440! So if you want to use character
T, you have to use 61440 + 84 = . (ain’t that a pain!!)

You can also place truetype characters and strings on the map using LABEL. Then you can control the placing
of the text by using the POSITION parameter [ul|uc|ur|cl|cc|cr|ll|lc|lr], that specifies the position relative to the
geometric origin of the geometry.

Symbols of TYPE pixmap

Symbols of the TYPE pixmap are simply small raster images. The file name of the raster image is specified in the
IMAGE parameter of the SYMBOL element. MapServer supports the raster formats GIF and PNG for pixmaps.

Observe the colour depth of the images and avoid using 24 bit PNG symbols displayed in 8 bit mode as this may
cause unexpected colour leaps.

When using raster images, the colour cannot be modified in the SYMBOL element subsequently.

You can specify a colour with the TRANSPARENT parameter which will not be displayed - i.e. it will be transpar-
ent. As a result, underlying objects and colours are visible.

The SIZE parameter defines the height of pixmap symbols when rendered. The pixel structure will show when
the SIZE grows too large. If you are using symbol scaling (LAYER SYMBOLSCALEDENOM is set or LAYER
SIZEUNITS is not pixels) and want to prevent this from happening, you should set the STYLE MAXSIZE parameter.

Symbol definitions for the figure that demonstrates point symbols

This code was used to produce the symbols in the point symbol figure.

First, the symbol definitions:

SYMBOL
NAME "o-flag-trans"
TYPE pixmap
IMAGE "o-flag-trans.png"

END # SYMBOL

SYMBOL
NAME "circlef"
TYPE ellipse
FILLED true
POINTS
10 10

END # POINTS
END # SYMBOL

SYMBOL
NAME "P"
TYPE truetype
FONT "arial"
CHARACTER "P"

END # SYMBOL

SYMBOL
NAME "v-line"
TYPE vector
FILLED false
POINTS
0 0
5 10
10 0

END # POINTS
END # SYMBOL

64 Chapter 4. Mapfile

MapServer Documentation, Release 6.4.1

SYMBOL
NAME "v-poly"
TYPE vector
FILLED true
POINTS
0 0
3.5 8
7 0
5.2 0
3.5 4
1.8 0
0 0

END # POINTS
END # SYMBOL

Then, the LAYERs and STYLEs used for producing the polygon V symbols in the point symbol figure:

LAYER # Vector v - polygon
STATUS DEFAULT
TYPE POINT
FEATURE
POINTS

10 30
END # Points

END # Feature
CLASS
STYLE

SYMBOL "v-poly"
COLOR 0 0 0

END # STYLE
STYLE

SYMBOL "circlef"
COLOR 255 0 0
SIZE 4

END # STYLE
END # CLASS

END # LAYER

LAYER # Vector v - polygon, size
STATUS DEFAULT
TYPE POINT
FEATURE
POINTS

20 30
END # Points

END # Feature
CLASS
STYLE

SYMBOL "v-poly"
COLOR 0 0 0
SIZE 30

END # STYLE
STYLE

SYMBOL "circlef"
COLOR 255 0 0
SIZE 4

END # STYLE
END # CLASS

END # LAYER

LAYER # Vector v - polygon, size, angle
STATUS DEFAULT
TYPE POINT

4.1. Mapfile 65

MapServer Documentation, Release 6.4.1

FEATURE
POINTS

30 30
END # Points

END # Feature
CLASS
STYLE

SYMBOL "v-poly"
COLOR 0 0 0
SIZE 30
ANGLE 60

END # STYLE
STYLE

SYMBOL "circlef"
COLOR 255 0 0
SIZE 4

END # STYLE
END # CLASS

END # LAYER

LAYER # Vector v - polygon, size, offset
STATUS DEFAULT
TYPE POINT
FEATURE
POINTS

40 30
END # Points

END # Feature
CLASS
STYLE

SYMBOL "v-poly"
COLOR 0 0 0
SIZE 30
OFFSET 0 15

END # STYLE
STYLE

SYMBOL "circlef"
COLOR 255 0 0
SIZE 4

END # STYLE
END # CLASS

END # LAYER

LAYER # Vector v - polygon, size, angle, offset
STATUS DEFAULT
TYPE POINT
FEATURE
POINTS

50 30
END # Points

END # Feature
CLASS
STYLE

SYMBOL "v-poly"
COLOR 0 0 0
SIZE 30
ANGLE 60
OFFSET 0 15

END # STYLE
STYLE

SYMBOL "circlef"
COLOR 255 0 0
SIZE 4

66 Chapter 4. Mapfile

MapServer Documentation, Release 6.4.1

END # STYLE
END # CLASS

END # LAYER

LAYER # Vector v - polygon, size outline
STATUS DEFAULT
TYPE POINT
FEATURE
POINTS

60 30
END # Points

END # Feature
CLASS
STYLE

SYMBOL "v-poly"
COLOR 0 0 0
SIZE 30
OUTLINECOLOR 0 255 0

END # STYLE
STYLE

SYMBOL "circlef"
COLOR 255 0 0
SIZE 4

END # STYLE
END # CLASS

END # LAYER

LAYER # Vector v - polygon, size, outline, width
STATUS DEFAULT
TYPE POINT
FEATURE
POINTS

70 30
END # Points

END # Feature
CLASS
STYLE

SYMBOL "v-poly"
COLOR 0 0 0
SIZE 30
OUTLINECOLOR 0 255 0
WIDTH 4

END # STYLE
STYLE

SYMBOL "circlef"
COLOR 255 0 0
SIZE 4

END # STYLE
END # CLASS

END # LAYER

LAYER # Vector v - polygon, size, outline, no color
STATUS DEFAULT
TYPE POINT
FEATURE
POINTS

80 30
END # Points

END # Feature
CLASS
STYLE

SYMBOL "v-poly"
SIZE 30

4.1. Mapfile 67

MapServer Documentation, Release 6.4.1

OUTLINECOLOR 0 255 0
END # STYLE
STYLE

SYMBOL "circlef"
COLOR 255 0 0
SIZE 4

END # STYLE
END # CLASS

END # LAYER

Combining symbols

The following figure shows how to combine several basic symbols to create a complex point symbol. The com-
bination is achieved by adding several STYLEs within one LAYER. Each STYLE element references one SYMBOL
element. All the basic symbols are centered and overlayed when rendered.

Notice that the SIZE parameter in the STYLE element refers to the height of the symbol (extent in the Y direction).
A standing rectangle will thus display with a smaller area than a lying rectangle, although both have the same
SIZE parameter and the same maximum Y value in the SYMBOL element. When combining several basic point
symbols on top of each other, they will not always be centered correctly due to the integer mathematics required
when rendering raster images. It is recommended not to combine elements with even and odd numbered SIZE
parameters, as this tends to produce larger irregularities.

Figure 4.4: Construction of Point Symbols

Construction of Line Symbols

For displaying line geometries, you specify the width of the lines using the WIDTH parameter and the colour
using the COLOR parameter. If no colour is specified, the line will not be rendered. If no width is specified, a thin

68 Chapter 4. Mapfile

MapServer Documentation, Release 6.4.1

line (one unit (pixel) wide) will be rendered. The LINECAP, LINEJOIN and LINEJOINMAXSIZE parameters are
used to specify how line ends and corners are to be rendered.

Overlaying lines

When combining several styles / symbols on a line, they will be positioned on the baseline which is defined by the
geometry of the object. In most cases MapServer correctly centers symbols. The combination of a line displayed
in 16 units width and overlayed with a 10 unit width line, results in a line symbol with a 3 unit border. If the
cartographical symbol is to contain a centered line with a width of 1 pixel, then the widths should be reconfigured,
for example to 11 and 17 units. As a rule of thumb don’t combine even numbered and odd numbered widths.

Use of the PATTERN and GAP parameters

The PATTERN and GAP parameters can be used to produce styled lines in MapServer.

To create line patterns, use the PATTERN parameter of the STYLE. Here you define dashes by specifying the length
of the first dash, followed by the length of the first gap, then the length of the second dash, followed by the second
gap, and so on. This pattern will be repeated as many times as that pattern will fit into the line. LINECAP can be
used to control how the ends of the dashes are rendered. LINEJOIN can be used to control how sharp bends are
rendered. In the left column of the figure, you will find three examples where PATTERN has been used. Number 2
from below uses LINECAP butt, number 3 from below uses LINECAP round (and LINEJOIN miter) and number
4 from below uses LINECAP butt (and is overlayed over a wider, dark grey line). To produce dots, use 0 for dash
length with LINECAP ‘round’.

Styled lines can be specified using GAP and a symbol for styling. In the figure, you will find examples where GAP
has been used (in the right column). At the bottom a SYMBOL of TYPE ellipse has been used, then a SYMBOL of
TYPE vector, then a SYMBOL of TYPE font and then a SYMBOL of TYPE pixmap. To control the placement of
the symbols relative to the line (to get asymmetrical styling), use SYMBOL ANCHORPOINT (as explained later).

Note: Since version 6.2 it is possible to specify an offset (start gap) when creating asymmetrical patterns using
the STYLE INITIALGAP parameter. INITIALGAP can be used with GAP and with PATTERN.

The following figure shows how to use styles to define different kinds of line symbols.

• PATTERN usage is demonstrated in the 2nd, 3rd, 4th and 5th symbol from the bottom in the left column.

• GAP usage is demonstrated in the 2nd symbol from the bottom in the left column and all the symbols in the
right column.

• negative GAP value usage is demonstrated in the all the symbols in the right column, except for the one at
the bottom.

• INITIALGAP usage is demonstrated in the 2nd and 5th symbol from the bottom in the left column.

• STYLE OFFSET usage is demonstrated in the 5th symbol from the bottom in the right column

Below you will find the SYMBOLs and STYLEs that were used to produce the line symbols in “Construction of
Line Symbols”. The LAYERs are ordered from bottom to top of the figure.

Styles and symbols for lines

SYMBOL
NAME "circlef"
TYPE ellipse
FILLED true
POINTS
1 1

END # POINTS
END # SYMBOL

SYMBOL

4.1. Mapfile 69

MapServer Documentation, Release 6.4.1

Figure 4.5: Construction of Line Symbols

NAME "P"
TYPE truetype
FONT "arial"
CHARACTER "P"

END # SYMBOL

SYMBOL
NAME "vertline"
TYPE vector
FILLED true
POINTS
0 0
0 10
2.8 10
2.8 0
0 0

END # POINTS
ANCHORPOINT 0.5 0

END # SYMBOL

SYMBOL
NAME "o-flag-trans"
TYPE pixmap
IMAGE "o-flag-trans.png"

END # SYMBOL

######## Left column ###############

LAYER # Simple line
STATUS DEFAULT
TYPE LINE

70 Chapter 4. Mapfile

MapServer Documentation, Release 6.4.1

FEATURE
POINTS

5 5
25 10
45 10
35 5

END # Points
END # Feature
CLASS
STYLE

COLOR 0 0 0
WIDTH 6.5

END # STYLE
END # CLASS

END # LAYER

LAYER # Dashed line with symbol overlay
STATUS DEFAULT
TYPE LINE
FEATURE
POINTS

5 15
25 20
45 20
35 15

END # Points
END # Feature
CLASS
STYLE

COLOR 0 0 0
WIDTH 5.0
PATTERN 40 10 END

END # STYLE
STYLE

SYMBOL "circlef"
COLOR 0 0 0
SIZE 8
INITIALGAP 20
GAP 50

END
END # CLASS

END # LAYER

LAYER # Dashed line, varying
STATUS DEFAULT
TYPE LINE
FEATURE
POINTS

5 25
25 30
45 30
35 25

END # Points
END # Feature
CLASS
STYLE

COLOR 0 0 0
WIDTH 5.0
LINECAP round #[butt|round|square|triangle]
LINEJOIN miter #[round|miter|bevel]
LINEJOINMAXSIZE 3
PATTERN 40 17 0 17 0 17 0 17 END

END # STYLE

4.1. Mapfile 71

MapServer Documentation, Release 6.4.1

END # CLASS
END # LAYER

LAYER # Line dash overlay
STATUS DEFAULT
TYPE LINE
FEATURE
POINTS

5 35
25 40
45 40
35 35

END # Points
END # Feature
CLASS
STYLE

COLOR 102 102 102
WIDTH 4.0

END # STYLE
STYLE

COLOR 255 255 255
WIDTH 2.0
LINECAP BUTT
PATTERN 8 12 END

END # STYLE
END # CLASS

END # LAYER

LAYER # Line dashed with dashed overlay
STATUS DEFAULT
TYPE LINE
FEATURE
POINTS

5 45
25 50
45 50
35 45

END # Points
END # Feature
CLASS
STYLE

COLOR 0 0 0
WIDTH 16.0
PATTERN 40 20 20 20 10 20 END

END # STYLE
STYLE

COLOR 209 66 0
WIDTH 12.0
INITIALGAP 2
PATTERN 36 24 16 24 6 24 END

END # STYLE
END # CLASS

END # LAYER

LAYER # Line overlay - 3
STATUS DEFAULT
TYPE LINE
FEATURE
POINTS

5 55
25 60
45 60
35 55

72 Chapter 4. Mapfile

MapServer Documentation, Release 6.4.1

END # Points
END # Feature
CLASS
STYLE

COLOR 0 0 0
WIDTH 17.0

END # STYLE
STYLE

COLOR 209 66 0
WIDTH 11.0

END # STYLE
STYLE

COLOR 0 0 0
WIDTH 1.0

END # STYLE
END # CLASS

END # LAYER

######## right column ############

LAYER # Line - ellipse overlay
STATUS DEFAULT
TYPE LINE
FEATURE
POINTS

50 5
70 10
90 10
80 5

END # Points
END # Feature
CLASS
STYLE

COLOR 0 0 0
WIDTH 3.6

END # STYLE
STYLE

COLOR 0 0 0
SYMBOL "circlef"
SIZE 10
GAP 42

END # STYLE
STYLE

COLOR 255 0 0
SYMBOL "circlef"
SIZE 3
GAP 42

END # STYLE
END # CLASS

END # LAYER

LAYER # Line - symbol overlay
STATUS DEFAULT
TYPE LINE
FEATURE
POINTS

50 15
70 20
90 20
80 15

END # Points
END # Feature
CLASS

4.1. Mapfile 73

MapServer Documentation, Release 6.4.1

STYLE
COLOR 0 0 0
WIDTH 2.8

END # STYLE
STYLE

COLOR 0 0 0
SYMBOL "vertline"
SIZE 10.0
ANGLE 30
GAP -50

END # STYLE
STYLE

COLOR 255 0 0
SYMBOL "circlef"
SIZE 3
GAP 50

END # STYLE
END # CLASS

END # LAYER

LAYER # Line - font overlay
STATUS DEFAULT
TYPE LINE
FEATURE
POINTS

50 25
70 30
90 30
80 25

END # Points
END # Feature
CLASS
STYLE

COLOR 0 0 0
WIDTH 6

END # STYLE
STYLE

COLOR 102 0 0
SYMBOL "P"
SIZE 20
GAP -30

END # STYLE
STYLE

COLOR 255 0 0
SYMBOL "circlef"
SIZE 3
GAP 30

END # STYLE
END # CLASS

END # LAYER

LAYER # Line - pixmap overlay
STATUS DEFAULT
TYPE LINE
FEATURE
POINTS

50 35
70 40
90 40
80 35

END # Points
END # Feature
CLASS

74 Chapter 4. Mapfile

MapServer Documentation, Release 6.4.1

STYLE
COLOR 0 0 0
WIDTH 6

END # STYLE
STYLE

COLOR 102 0 0
SYMBOL "o-flag-trans"
SIZE 20
GAP -30

END # STYLE
STYLE

COLOR 255 0 0
SYMBOL "circlef"
SIZE 3
GAP 30

END # STYLE
END # CLASS

END # LAYER

LAYER # Line - pixmap overlay
STATUS DEFAULT
TYPE LINE
FEATURE
POINTS

50 45
70 50
90 50
80 45

END # Points
END # Feature
CLASS
STYLE

COLOR 0 0 0
WIDTH 6

END # STYLE
STYLE

COLOR 102 0 0
SYMBOL "o-flag-trans"
SIZE 20
GAP -30
OFFSET -10 -99

END # STYLE
STYLE

COLOR 255 0 0
SYMBOL "circlef"
SIZE 3
GAP 30

END # STYLE
END # CLASS

END # LAYER

LINECAP By default, all lines (and patterns) will be drawn with rounded ends (extending the lines slightly
beyond their ends). This effect gets more obvious the larger the width of the line is. It is possible to alter this
behaviour using the LINECAP parameter of the STYLE. LINECAP butt will give butt ends (stops the line exactly
at the end), with no extension of the line. LINECAP square will give square ends, with an extension of the line.
LINECAP round is the default.

LINEJOIN The different values for the parameter LINEJOIN have the following visual effects. Default is
round. miter will follow line borders until they intersect and fill the resulting area. none will render each segment
using linecap butt. The figure below illustrates the different linejoins.

4.1. Mapfile 75

MapServer Documentation, Release 6.4.1

Figure 4.6: Different kinds of linejoins

LINEJOINMAXSIZE (only relevant for LINEJOIN miter) Specify the maximum length of miter linejoin
factor m (see the figure below). The value is a multiplication factor (default 3).

Figure 4.7: Miter linejoin

The max length of the miter join is calculated as follows (d is the line width, specified with the WIDTH parameter
of the STYLE):

m_max = d * LINEJOINMAXSIZE

If m > m_max, then the connection length will be set to m_max.

Use of the OFFSET parameter

In STYLE, an OFFSET parameter can be set to shift symbols in the X and Y direction. The displacement is not
influenced by the direction of the line geometry. Therefore the point symbols used for styling are all shifted in
the same direction, independent of the direction of the line (as defined in style number 2 in the map file example
below - red line in the map image). A positive X value shifts to the right. A positive Y value shifts downwards.

To generate lines that are shifted relative to the original lines, -99 has to be used for the Y value of the OFFSET.
Then the X value defines the distance to the line from the original geometry (perpendicular to the line). A positive
X value will shift to the right (when viewed in the direction of the line), a negative X value will shift to the left.

The example below shows how OFFSET works with the use of -99 (blue and green lines) and without the use of
-99 (red line). The thin black line shows the location of the line geometry.

76 Chapter 4. Mapfile

MapServer Documentation, Release 6.4.1

Figure 4.8: Use of the OFFSET parameter with lines - map image

Use of the OFFSET parameter with lines - Map file excerpt

LAYER #
STATUS DEFAULT
TYPE LINE
FEATURE

POINTS
20 20
280 160
280 20
160 20
160 60

END # Points
END # Feature
CLASS

STYLE # no offset
COLOR 0 0 0 # black
WIDTH 1

END # STYLE
STYLE # simple offset left and down

COLOR 255 0 0 # red
WIDTH 2
OFFSET -8 12

END # STYLE
STYLE # left offset rel. to line direction

COLOR 0 0 255 # blue
WIDTH 5
OFFSET -16 -99

END # STYLE
STYLE # right offset rel. to line direction

COLOR 0 255 0 # green
WIDTH 5
OFFSET 16 -99

END # STYLE
END # CLASS

END # LAYER

4.1. Mapfile 77

MapServer Documentation, Release 6.4.1

Asymmetrical line styling with point symbols

Line number 2 and 5 from the bottom in the right column of the “Construction of Line Symbols” figure are
examples of asymmetrical line styling using a point symbol. This can be achieved either by using an OFFSET
(with a Y value of -99), or by using ANCHORPOINT, as described in the tricks section below. Line number 2
from the bottom can be produced using ANCHORPOINT - this is the best method for placing symbols on lines.
Line number 5 from the bottom is produced using STYLE OFFSET. As can be seen, the symbols are here rendered
on the offset line, meaning that at sharp bends, some symbols will be placed far away from the line.

Area Symbols

Areas (polygons) can be filled with full colour. Areas can also be filled with symbols to create for instance hatches
and graticules.

The symbols are by default used as tiles, and rendered (without spacing) one after the other in the x and y direction,
filling the whole polygon.

If the SIZE parameter is used in the STYLE, the symbols will be scaled to the specified height.

The GAP parameter of the STYLE can be used to increase the spacing of the symbols.

The AGG renderer uses anti-aliasing by default, so edge effects around the symbols can occure.

Hatch fill

Simple line hatches (e.g. horizontal, vertical and diagonal) can be created by filling the polygon with a hatch
symbol.

Figure 4.9: Hatch examples

The SIZE parameter in the STYLE that uses a SYMBOL of type hatch specifies the distance from center to center
between the lines (the default is 1). The WIDTH parameter specifies the width of the lines in the hatch pattern
(default is 1). The ANGLE parameter specifies the direction of the lines (default is 0 - horizontal lines). Since
version 6.2, the PATTERN parameter can be used to create hatches with dashed lines.

78 Chapter 4. Mapfile

MapServer Documentation, Release 6.4.1

The figure demonstrates the use of SIZE (bottom left); WIDTH (bottom right); ANGLE, PATTERN and SIZE (top
left); and overlay (top right) of hatches.

The code below shows excerpts of the map file that was used to produce the figure.

First, the SYMBOL definition:

SYMBOL
NAME "hatchsymbol"
TYPE hatch

END

Then the CLASS definitions:

4.1. Mapfile 79

MapServer Documentation, Release 6.4.1

Table 4.2: Hatches

CLASS definitions

LAYER # hatch
...
CLASS
STYLE

SYMBOL "hatchsymbol"
COLOR 0 0 0
SIZE 10

END # STYLE
END # CLASS

END # LAYER

LAYER # hatch with angle and pattern
...
CLASS
STYLE

SYMBOL "hatchsymbol"
COLOR 0 0 0
SIZE 10
WIDTH 3
ANGLE 45
PATTERN 20 10 10 10 END

END # STYLE
END # CLASS

END # LAYER

LAYER # hatch with wide lines
...
CLASS
STYLE

SYMBOL "hatchsymbol"
COLOR 0 0 0
SIZE 10
WIDTH 5

END # STYLE
END # CLASS

END # LAYER

LAYER # cross hatch
...
CLASS
STYLE

SYMBOL "hatchsymbol"
COLOR 255 153 0
SIZE 10
WIDTH 4

END # STYLE
STYLE

SYMBOL "hatchsymbol"
COLOR 0 0 255
SIZE 20
ANGLE 90

END # STYLE
END # CLASS

END # LAYER

80 Chapter 4. Mapfile

MapServer Documentation, Release 6.4.1

Polygon fills with symbols of TYPE pixmap

Polygons can be filled with pixmaps.

Note: If the STYLE SIZE parameter is different from the image height of the pixmap, there can be rendering
artefacts around the pixmaps (visible as a grid with the “background” colour).

Pixmap symbols can be rotated using the ANGLE parameter, but for polygon fills, this produces strange effects,
and is not recommended.

To create complex area symbols, e.g. with defined distances between single characters or hatches with broad lines,
pixmap fill is probably the best option. Depending on the desired pattern you have to generate the raster image
with high precision using a graphical editor. The figure below is an example of how to obtain a regular allocation
of symbols with defined spacing.

Figure 4.10: Raster image for a regular symbol fill

You can use other shapes than circles. B defines the width and H the height of the raster image. For a regular
arrangment of symbols in a 45 degree angle B = H. For symbols, which are regularly arranged in parallel and
without offset between each other one centered symbol with the same x and y distances to the imageborder is
enough.

The following figure shows an example of how you can design a pixmap to produce a hatch with wide lines.

To create a 45 degree hatch use:

B = H and x = y

Note: When using the MapServer legend, observe that each raster pixmap is displayed only once in the original
size in the middle of the legend box.

The example below shows some pixmap symbols which can be used as area symbols with transparency. The raster
images were created using FreeHand, finished with Photoshop and exported to PNG with special attention to the
colour palette.

4.1. Mapfile 81

MapServer Documentation, Release 6.4.1

Figure 4.11: Raster image for a hatched fill

Table 4.3: Construction of a horizontally arranged area symbol

CLASS section SYMBOL definition

CLASS
STYLE

COLOR 255 255 0
END
STYLE

SYMBOL "in_the_star"
END
STYLE

OUTLINECOLOR 0 0 0
WIDTH 1

END
END

SYMBOL
NAME "in_the_star"
TYPE PIXMAP
IMAGE "stern.png"
TRANSPARENT 8

END

Figure 4.12: Polygon fill - regular grid pattern

82 Chapter 4. Mapfile

MapServer Documentation, Release 6.4.1

Table 4.4: Construction of a diagonally arranged area symbol

CLASS section SYMBOL definition

CLASS
STYLE

SYMBOL "in_point1"
END
STYLE

OUTLINECOLOR 0 0 0
WIDTH 1

END
END

SYMBOL
NAME "in_point1"
TYPE PIXMAP
IMAGE "flaeche1_1.png"
TRANSPARENT 13

END

Figure 4.13: Polygon fill - diagonal pattern

Table 4.5: Construction of a hatch

CLASS section SYMBOL definition

CLASS
STYLE

COLOR 255 255 0
END
STYLE

SYMBOL "in_hatch"
END
STYLE

OUTLINECOLOR 0 0 0
WIDTH 1

END
END

SYMBOL
NAME "in_hatch"
TYPE PIXMAP
IMAGE "schraffur.png"
TRANSPARENT 2

END

Figure 4.14: Polygon fill - hatch

Polygon fills with symbols of TYPE vector

Polygons can be filled with symbols of TYPE vector. As for the other symbol fills, the pattern will be generated
by using the specified symbol for the tiles. The bounding box of the symbol is used when tiling.

Creating vector symbols for polygon fills is done in much the same way as for pixmap symbols. Precision is
necessary to get nice symmetrical symbols.

The upper left corner of the bounding box of a symbol of TYPE vector is always (0, 0) in the symbol’s coordinate

4.1. Mapfile 83

MapServer Documentation, Release 6.4.1

system. The lower right corner of the bounding box is determined by the maximum x and y values of the symbol
definition (POINTS parameter). The fact that the upper left corner always is at (0,0) makes it convenient to
construct symbols such as the dash signature found as number two from the bottom in the centre column of the
example below.

Both polygon (FILLED true) and line (FILLED false) vector symbols can be used. For line symbols, the WIDTH
parameter of the STYLE will give the line width and the SIZE parameter will specify the height of the symbol.

Note: For vector line symbols (FILL off), if a width greater than 1 is specified, the lines will grow to extend
outside the original bounding box of the symbol. The parts that are outside of the bounding box will be cut away.

STYLE ANGLE can be used for polygon fills, but will only rotate each individual symbol, not the pattern as a
whole. It is therefore quite demanding to generate rotated patterns.

Below you will find some examples of vector symbols used for polygon fills. The polygon fill is accompanied by
the vector symbol used for the fill. The center of the vector symbol is indicated with a red dot.

Figure 4.15: Polygon fills - vector

Excerpts from the map file for the polygon fill vector examples above First, the LAYERs

LAYER # chess board
STATUS DEFAULT
TYPE POLYGON
FEATURE
POINTS

5 5
5 25
45 25
45 5

84 Chapter 4. Mapfile

MapServer Documentation, Release 6.4.1

5 5
END # Points

END # Feature
CLASS
STYLE

SYMBOL "chess"
COLOR 0 0 0
SIZE 35

END # STYLE
END # CLASS

END # LAYER

LAYER # x - line
STATUS DEFAULT
TYPE POLYGON
FEATURE
POINTS

5 30
5 50
45 50
45 30
5 30

END # Points
END # Feature
CLASS
STYLE

SYMBOL "x-line"
COLOR 0 0 0
WIDTH 5
SIZE 35

END # STYLE
END # CLASS

END # LAYER

LAYER # v polygon
STATUS DEFAULT
TYPE POLYGON
FEATURE
POINTS

5 55
5 75
45 75
45 55
5 55

END # Points
END # Feature
CLASS
STYLE

SYMBOL "v-poly"
COLOR 0 0 0
SIZE 35

END # STYLE
END # CLASS

END # LAYER

LAYER # Circles
STATUS DEFAULT
TYPE POLYGON
FEATURE
POINTS

5 80
5 100
45 100

4.1. Mapfile 85

MapServer Documentation, Release 6.4.1

45 80
5 80

END # Points
END # Feature
CLASS
STYLE

SYMBOL "circlef"
COLOR 0 0 0
SIZE 20
GAP 25

END # STYLE
END # CLASS

END # LAYER

LAYER # x polygon
STATUS DEFAULT
TYPE POLYGON
FEATURE
POINTS

55 5
55 25
95 25
95 5
55 5

END # Points
END # Feature
CLASS
STYLE

COLOR 0 0 0
SYMBOL "x-poly-fill"
SIZE 35

END # STYLE
END # CLASS

END # LAYER

LAYER # indistinct marsh
STATUS DEFAULT
TYPE POLYGON
FEATURE
POINTS

55 30
55 50
95 50
95 30
55 30

END # Points
END # Feature
CLASS
STYLE

COLOR 0 0 255
SYMBOL "ind_marsh_poly"
SIZE 25

END # STYLE
END # CLASS

END # LAYER

LAYER # diagonal circles
STATUS DEFAULT
TYPE POLYGON
FEATURE
POINTS

55 55
55 75

86 Chapter 4. Mapfile

MapServer Documentation, Release 6.4.1

95 75
95 55
55 55

END # Points
END # Feature
CLASS
STYLE

COLOR 255 230 51
SYMBOL "diag_dots"
SIZE 30

END # STYLE
END # CLASS

END # LAYER

LAYER # diagonal holes in yellow
STATUS DEFAULT
TYPE POLYGON
FEATURE
POINTS

55 80
55 100
95 100
95 80
55 80

END # Points
END # Feature
CLASS
STYLE

SYMBOL "diag_holes"
SIZE 30
COLOR 250 220 102

END # STYLE
END # CLASS

END # LAYER

LAYER # v line + circle
STATUS DEFAULT
TYPE POLYGON
FEATURE
POINTS

100 5
100 25
140 25
140 5
100 5

END # Points
END # Feature
CLASS
STYLE

COLOR 255 0 0
SYMBOL "circlef"
SIZE 30
GAP 45

END # STYLE
STYLE

COLOR 0 0 0
SYMBOL "v-line"
LINEJOIN miter
LINECAP butt
SIZE 35
WIDTH 10
GAP 45

4.1. Mapfile 87

MapServer Documentation, Release 6.4.1

END # STYLE
END # CLASS

END # LAYER

LAYER # indistinct marsh + diagonal holes in yellow
STATUS DEFAULT
TYPE POLYGON
FEATURE
POINTS

100 30
100 50
140 50
140 30
100 30

END # Points
END # Feature
CLASS
STYLE

COLOR 0 0 255
SYMBOL "ind_marsh_poly"
SIZE 25

END # STYLE
STYLE

SYMBOL "diag_holes"
SIZE 30
COLOR 250 220 0
OPACITY 75

END # STYLE
END # CLASS

END # LAYER

LAYER # x line + circle
STATUS DEFAULT
TYPE POLYGON
FEATURE
POINTS

100 55
100 75
140 75
140 55
100 55

END # Points
END # Feature
CLASS
STYLE

COLOR 0 0 255
SYMBOL "circle"
WIDTH 5
SIZE 20
GAP 30

END # STYLE
STYLE

COLOR 0 204 0
SYMBOL "x-line"
SIZE 10
WIDTH 3
GAP 30

END # STYLE
END # CLASS

END # LAYER

Then the SYMBOLs:

88 Chapter 4. Mapfile

MapServer Documentation, Release 6.4.1

SYMBOL
NAME "circlef"
TYPE ellipse
FILLED true
POINTS
10 10

END # POINTS
END # SYMBOL

SYMBOL
NAME "circle"
TYPE ellipse
FILLED false
POINTS
10 10

END # POINTS
END # SYMBOL

SYMBOL
NAME "v-line"
TYPE vector
POINTS
0 0
5 10
10 0

END
END

SYMBOL
NAME "v-poly"
TYPE vector
FILLED false
FILLED true
POINTS
0 0
3.5 8
7 0
5.2 0
3.5 4
1.8 0
0 0

END
END

SYMBOL
NAME "x-line"
TYPE vector
POINTS
0 0
1 1
-99 -99
0 1
1 0

END
END

SYMBOL
NAME "chess"
TYPE vector
FILLED true
POINTS

0 0
10 0

4.1. Mapfile 89

MapServer Documentation, Release 6.4.1

10 10
0 10
0 0
-99 -99
10 10
20 10
20 20
10 20
10 10

END
END

SYMBOL
NAME "x-poly-fill"
TYPE vector
FILLED true
POINTS
0 1.131
0 0
1.131 0
4.566 3.434
8 0
9.131 0
9.131 1.131
5.697 4.566
9.131 8
9.131 9.131
8 9.131
4.566 5.697
1.131 9.131
0 9.131
0 8
3.434 4.566
0 1.131

END # POINTS
END # SYMBOL

SYMBOL
NAME "ind_marsh_poly"
TYPE vector
FILLED true
POINTS
Half line
0 2
4.5 2
4.5 3
0 3
0 2
-99 -99
Half line
7 2
11.5 2
11.5 3
7 3
7 2
-99 -99
Hole line
1.25 5
10.25 5
10.25 6
1.25 6
1.25 5

END

90 Chapter 4. Mapfile

MapServer Documentation, Release 6.4.1

END

SYMBOL
NAME "diag_dots"
TYPE vector
FILLED true
POINTS
Central circle:
0.7450 0.4500
0.7365 0.5147
0.7115 0.5750
0.6718 0.6268
0.6200 0.6665
0.5597 0.6915
0.4950 0.7000
0.4303 0.6915
0.3700 0.6665
0.3182 0.6268
0.2785 0.5750
0.2535 0.5147
0.2450 0.4500
0.2535 0.3853
0.2785 0.3250
0.3182 0.2732
0.3700 0.2335
0.4303 0.2085
0.4950 0.2000
0.5597 0.2085
0.6200 0.2335
0.6718 0.2732
0.7115 0.3250
0.7365 0.3853
0.7450 0.4500
-99 -99
0.25 0.0
0.2415 0.0647
0.2165 0.1250
0.1768 0.1768
0.1250 0.2165
0.0647 0.2415
0.0 0.25
0.0 0.0
0.25 0.0
-99 -99
1 0.25
0.9252 0.2415
0.8649 0.2165
0.8132 0.1768
0.7734 0.1250
0.7485 0.0647
0.74 0.0
1 0.0
1 0.25
-99 -99
0.74 1
0.7485 0.9252
0.7734 0.8649
0.8132 0.8132
0.8649 0.7734
0.9252 0.7485
1 0.74
1 1
0.74 1

4.1. Mapfile 91

MapServer Documentation, Release 6.4.1

-99 -99
0.0 0.74
0.0647 0.7485
0.1250 0.7734
0.1768 0.8132
0.2165 0.8649
0.2415 0.9252
0.25 1
0.0 1
0.0 0.74

END
END

SYMBOL
NAME "diag_holes"
TYPE vector
FILLED true
POINTS
0.0 0.0
Left half circle
0.0 0.24
0.0647 0.2485
0.1250 0.2734
0.1768 0.3132
0.2165 0.3649
0.2415 0.4252
0.25 0.5
0.2415 0.5647
0.2165 0.6250
0.1768 0.6768
0.1250 0.7165
0.0647 0.7415
0.0 0.75

0.0 1.0
Bottom half circle
0.24 1
0.2485 0.9252
0.2734 0.8649
0.3132 0.8132
0.3649 0.7734
0.4252 0.7485
0.5 0.74
0.5647 0.7485
0.6250 0.7734
0.6768 0.8132
0.7165 0.8649
0.7415 0.9252
0.75 1

1.0 1.0
Right half circle
1 0.75
0.9252 0.7415
0.8649 0.7165
0.8132 0.6768
0.7734 0.6250
0.7485 0.5647
0.74 0.5
0.7485 0.4252
0.7734 0.3649
0.8132 0.3132
0.8649 0.2734

92 Chapter 4. Mapfile

MapServer Documentation, Release 6.4.1

0.9252 0.2485
1 0.24

1.0 0.0
Top half circle
0.75 0.0
0.7415 0.0647
0.7165 0.1250
0.6768 0.1768
0.6250 0.2165
0.5647 0.2415
0.5 0.25
0.4252 0.2415
0.3649 0.2165
0.3132 0.1768
0.2734 0.1250
0.2485 0.0647
0.24 0.0

0.0 0.0
END

END

Polygon outlines

Polygon outlines can be created by using OUTLINECOLOR in the STYLE. WIDTH specifies the width of the
outline.

STYLE
OUTLINECOLOR 0 255 0
WIDTH 3

END # STYLE

Dashed polygon outlines can be achieved by using OUTLINECOLOR, WIDTH and PATTERN (together with
LINECAP, LINEJOIN and LINEJOINMAXSIZE). For more information on the use of PATTERN, see Use of the
PATTERN and GAP parameters.

STYLE
OUTLINECOLOR 0 255 0
WIDTH 3
PATTERN
10 5

END # PATTERN
LINECAP BUTT

END # STYLE

For some symbol types, it is even possible to style polygon outlines using OUTLINECOLOR, SYMBOL and GAP.

STYLE
OUTLINECOLOR 0 255 0
SYMBOL ’circle’
SIZE 5
GAP 15

END # STYLE

Examples (MapServer 4)

The examples in this section were made for MapServer 4.

Note: Many of these symbols will not work with later versions of MapServer , but they contain a lot of useful
symbol definitions and are therefore provided as reference.

4.1. Mapfile 93

MapServer Documentation, Release 6.4.1

The symbols were created with map files and symbol files (download_old_symbols). If you want to use these
MAP files please note, that your MapServer must at least be able to handle 50 symbols. Otherwise you will get an
error while loading the symbol files.

Basic Symbols

94 Chapter 4. Mapfile

http://www.mapmedia.de/fileadmin/user_upload/dokumente/umn_signaturen_howto/vortrag_demo.zip

MapServer Documentation, Release 6.4.1

4.1. Mapfile 95

MapServer Documentation, Release 6.4.1

Complex Symbols

96 Chapter 4. Mapfile

MapServer Documentation, Release 6.4.1

4.1. Mapfile 97

MapServer Documentation, Release 6.4.1

Tricks

Changing the center of a point symbol

MapServer does all transformations (offset, rotation) with respect to the symbol anchor point. By default, the
anchor point is calculated from the symbol’s bounding box. In some cases it can be useful to change the anchor
point of a symbol. Since version 6.2, this can be done using the SYMBOL ANCHORPOINT.

Here are some examples of what can be achieved by using the ANCHORPOINT mechanisms for point symbols
and decorated lines. There are three examples in the illustration, and each example shows the result with and
without the use of ANCHORPOINT. At the top, arrows are added to lines using GEOMTRANSFORM start / end.
In the middle, tags are added to lines using GAP and ANGLE. At the bottom, a point symbol is shifted and rotated.
The red dots represent the center points, and the blue dots the offsets.

Below you will find three tables that contain the SYMBOLs and the STYLE mechanisms that were used to generate
the shifted symbols in the illustration.

98 Chapter 4. Mapfile

MapServer Documentation, Release 6.4.1

Figure 4.16: Shifting trick

4.1. Mapfile 99

MapServer Documentation, Release 6.4.1

Table 4.6: Symbol tricks - shift - arrows

SYMBOLs LAYER STYLEs

SYMBOL
NAME "arrow-start"
TYPE vector
FILLED true
POINTS

0 0.4
3 0.4
3 0
5 0.8
3 1.6
3 1.2
0 1.2
0 0.4

END # POINTS
ANCHORPOINT 0 0.5

END # SYMBOL
SYMBOL

NAME "arrow-end"
TYPE vector
FILLED true
POINTS

0 0.4
3 0.4
3 0
5 0.8
3 1.6
3 1.2
0 1.2
0 0.4

END # POINTS
ANCHORPOINT 1 0.5

END # SYMBOL

LAYER # Line
STATUS DEFAULT
TYPE LINE
FEATURE
POINTS
20 80
40 85
60 85
70 80

END # Points
END # Feature
CLASS
STYLE
COLOR 0 0 0
WIDTH 15
LINECAP butt

END # STYLE
STYLE
GEOMTRANSFORM "start"
COLOR 0 255 0
SYMBOL "arrow-start"
SIZE 15.0
ANGLE AUTO

END # STYLE
STYLE
GEOMTRANSFORM "start"
COLOR 255 0 0
SYMBOL "circlef"
SIZE 3

END # STYLE
STYLE
GEOMTRANSFORM "end"

COLOR 0 255 0
SYMBOL "arrow-end"
SIZE 15.0
ANGLE AUTO

END # STYLE
STYLE
GEOMTRANSFORM "end"
COLOR 255 0 0
SYMBOL "circlef"
SIZE 3

END # STYLE
END # CLASS

END # LAYER

100 Chapter 4. Mapfile

MapServer Documentation, Release 6.4.1

Table 4.7: Symbol tricks - shift - asymmetrical tags

SYMBOLs LAYER STYLEs

SYMBOL
NAME "vert-line-shift"
TYPE vector
POINTS

0 0
0 10

END # POINTS
ANCHORPOINT 0.5 0

END # SYMBOL

SYMBOL
NAME "vert-line"
TYPE vector
POINTS

0 0
0 10

END # POINTS
END # SYMBOL

LAYER # Line - symbol overlay
STATUS DEFAULT
TYPE LINE
FEATURE
POINTS
20 50
40 55
60 55
70 50

END # Points
END # Feature
CLASS
STYLE
COLOR 0 0 0
WIDTH 4

END # STYLE
STYLE
COLOR 0 0 0
SYMBOL "vert-line-shift"
SIZE 20.0
WIDTH 3
ANGLE 30
GAP -50

END # STYLE
STYLE
COLOR 255 0 0
SYMBOL "circlef"
SIZE 3
GAP 50

END # STYLE
END # CLASS

END # LAYER

4.1. Mapfile 101

MapServer Documentation, Release 6.4.1

Table 4.8: Symbol tricks. Unshifted symbol (top) and shifted symbol

SYMBOLs

SYMBOL
NAME "v-line"
TYPE vector
POINTS

0 0
5 10
10 0

END # POINTS
END # SYMBOL

SYMBOL
NAME "v-line-shift"
TYPE vector
POINTS

0 0
5 10
10 0

END # POINTS
ANCHORPOINT 0.5 0

END # SYMBOL

Mapfile changes related to symbols

Version 6.2

The ANCHORPOINT SYMBOL parameter was added.

The INITIALGAP STYLE parameter was added.

The GAP STYLE parameter’s behaviour was modified to specify center to center spacing.

PATTERN support for symbols of TYPE hatch.

Version 6.0

Parameters related to styling was moved from the SYMBOL element to the STYLE element of CLASS (in LAYER):

PATTERN (introduced in 5.0, previously called STYLE), GAP, LINECAP, LINEJOIN, LINEJOIN-
MAXSIZE

The SYMBOL TYPE cartoline is no longer needed, and therefore not available in version 6.0.

Current Problems / Open Issues

GAP - PATTERN incompatibility

Creating advanced line symbols involving dashed lines is difficult due to the incompatibility of the dashed line
mechanisms (PATTERN) and the symbol on line placement mechanisms (GAP). A solution could be to allow
GAP to be a list instead of a single number (perhaps renaming to GAPS or DISTANCES), but it would also be
necessary to introduce a new parameter to specify the distance to the first symbol on the line (INTIALGAP has
been implemented in the development version - 6.2).

GAP does not support two dimensions (relevant for polygon fills), so the same gap will have to be used for for the
x and the y directions. The introduction of new parameters - GAPX and GAPY could be a solution to this.

102 Chapter 4. Mapfile

MapServer Documentation, Release 6.4.1

The End

We hope that this document will help you to present your data in a cartographically nice manner with MapServer
and explains some basics and possibilities of the concept of MapServer as well as some weaknesses. It would be
great to put together a cartographical symbols library for the profit of everyone. This especially concerns truetype
fonts, which have been developed for some projects and contain some typical signatures for cartographical needs.

You can also view the discussion paper for the improvement of the MapServer Graphic-Kernel (German only).

4.1.2 Geometry Transformations

Author Håvard Tveite

Contact havard.tveite@nmbu.no

Table of Contents

• Transformations for simple styling (CLASS STYLE only)
– bbox
– centroid
– end and start
– vertices

• Labels (LABEL STYLE only)
– labelpnt and labelpoly

• Expressions and advanced transformations (LAYER and CLASS STYLE)
– Combining / chaining expressions
– buffer
– generalize ([shape], tolerance)
– simplify([shape], tolerance)
– simplifypt([shape], tolerance)
– smoothsia ([shape], smoothing_size, smoothing_iterations, preprocessing)

* Tuning the behaviour of smoothsia
* Dataset resolution is too high
* Dataset resolution is too low
* Curves

Geometry transformations return a new geometry. The purpose of a geometry transformation can be to achieve
special effects for symbol rendering and labeling.

Geometry transformation is available at the LAYER level and the STYLE level. At the LAYER level (since 6.4), the
original vector geometry (“real world” coordinates) is used. At the STYLE level, pixel coordinates are used.

It may be useful to apply pixel values also at the LAYER level, and that is possible. If UNITS is defined in the
LAYER, the [map_cellsize] variable can be used to convert to pixel values at the LAYER level:

GEOMTRANSFORM (simplify([shape], [map_cellsize]*10))

Transformations for simple styling (CLASS STYLE only)

The following simple geometry transformations are available at the CLASS STYLE level:

• bbox

• centroid

• end

• start

• vertices

4.1. Mapfile 103

http://www.mapmedia.de/fileadmin/user_upload/dokumente/umn_signaturen_howto/DiskussionsPaper-UMNGraphikKernel.pdf
mailto:havard.tveite@nmbu.no

MapServer Documentation, Release 6.4.1

bbox

• GEOMTRANSFORM bbox returns the bounding box of the geometry.

– GEOMTRANSFORM “bbox”

Note: Only available for STYLE in the CLASS context.

Figure 4.17: Geomtransform bbox

Class definitions for the example:

CLASS
STYLE
COLOR 0 0 0
WIDTH 6

END # STYLE
STYLE
GEOMTRANSFORM "bbox"
OUTLINECOLOR 255 0 0
WIDTH 1
PATTERN 1 2 END

END # STYLE
END # CLASS

centroid

• GEOMTRANSFORM centroid returns the centroid of the geometry.

– GEOMTRANSFORM “centroid”

Note: Only available for STYLE in the CLASS context.

Figure 4.18: Geomtransform centroid

Style definitions for the example.:

104 Chapter 4. Mapfile

MapServer Documentation, Release 6.4.1

STYLE
GEOMTRANSFORM "centroid"
COLOR 255 0 0
SYMBOL circlef
SIZE 5

END # STYLE

Symbol definition for the circlef symbol:

SYMBOL
NAME "circlef"
TYPE ellipse
FILLED true
POINTS
1 1

END # POINTS
END # SYMBOL

end and start

• GEOMTRANSFORM end returns the end point of a line.

• GEOMTRANSFORM start returns the start point of a line.

– GEOMTRANSFORM “start”

– GEOMTRANSFORM “end” (since END is used to end objects in the map file, end must be embedded
in quotes)

The direction of the line at the start / end point is available for rendering effects.

Note: Only available for STYLE in the CLASS context.

Figure 4.19: Geomtransform start and end usage

Class definitions for the example.

Lower part of the figure:

CLASS
STYLE
GEOMTRANSFORM "start"
SYMBOL "circlef"

4.1. Mapfile 105

MapServer Documentation, Release 6.4.1

COLOR 255 0 0
SIZE 20

END # STYLE
STYLE
COLOR 0 0 0
WIDTH 4

END # STYLE
STYLE
GEOMTRANSFORM "end"
SYMBOL "circlef"
COLOR 0 255 0
SIZE 20

END # STYLE
END # CLASS

Upper part of the figure:

CLASS
STYLE
COLOR 0 0 0
WIDTH 4

END # STYLE
STYLE
GEOMTRANSFORM "start"
SYMBOL "startarrow"
COLOR 255 0 0
SIZE 20
ANGLE auto

END # STYLE
STYLE
GEOMTRANSFORM "start"
SYMBOL "circlef"
COLOR 0 0 255
SIZE 5

END # STYLE
STYLE
GEOMTRANSFORM "end"
SYMBOL "endarrow"
COLOR 0 255 0
SIZE 20
ANGLE auto

END # STYLE
STYLE
GEOMTRANSFORM "end"
SYMBOL "circlef"
COLOR 0 0 255
SIZE 5

END # STYLE
END # CLASS

The startarrow symbol defintion (endarrow is the same, except for ANCHORPOINT (value for endarrow: 1 0.5):

SYMBOL
NAME "startarrow"
TYPE vector
FILLED true
POINTS
0 0.4
3 0.4
3 0
5 0.8
3 1.6
3 1.2
0 1.2

106 Chapter 4. Mapfile

MapServer Documentation, Release 6.4.1

0 0.4
END # POINTS
ANCHORPOINT 0 0.5

END # SYMBOL

vertices

• GEOMTRANSFORM vertices produces the set of vertices of a line (with direction information).

– GEOMTRANSFORM “vertices”

Note: Only available for STYLE in the CLASS context.

Figure 4.20: Geomtransform vertices

Class definitions for the example:

CLASS
STYLE
COLOR 0 0 0
WIDTH 4

END # STYLE
STYLE
GEOMTRANSFORM "vertices"
SYMBOL "vertline"
COLOR 0 0 0
WIDTH 2
SIZE 20
ANGLE AUTO

END # STYLE
END # CLASS

The vertline symbol definition:

SYMBOL
NAME "vertline"
TYPE vector
POINTS
0 0
0 1

END # POINTS
END # SYMBOL

Labels (LABEL STYLE only)

The following simple geometry transformations are available at the LABEL STYLE level:

• labelpnt

• labelpoly

4.1. Mapfile 107

MapServer Documentation, Release 6.4.1

These are used for label styling (background colour, background shadow, background frame).

Note: The result of using labelpnt is affected by the LAYER LABELCACHE setting. If LABELCACHE is ON (the
default), the label will be shifted when a non-zero sized symbol is added using labelpnt.

labelpnt and labelpoly

• GEOMTRANSFORM labelpnt produces the geographic position the label is attached to. This corresponds
to the center of the label text only if the label is in position CC.

– GEOMTRANSFORM “labelpnt”

• GEOMTRANSFORM labelpoly produces a polygon that covers the label plus a 1 pixel padding.

– GEOMTRANSFORM “labelpoly”

Note: Only available for STYLE in the LABEL context.

These transformations can be used to make background rectangles for labels and add symbols to the label points.

Figure 4.21: Geomtransform labelpnt and labelpoly

Class definitions for the example:

CLASS
STYLE
OUTLINECOLOR 255 255 204

END # STYLE
LABEL
SIZE giant
POSITION UC
STYLE # shadow

GEOMTRANSFORM "labelpoly"
COLOR 153 153 153
OFFSET 3 3

END # Style
STYLE # background

GEOMTRANSFORM "labelpoly"
COLOR 204 255 204

END # Style
STYLE # outline

GEOMTRANSFORM "labelpoly"
OUTLINECOLOR 0 0 255
WIDTH 1

END # Style
STYLE

GEOMTRANSFORM "labelpnt"
SYMBOL ’circlef’
COLOR 255 0 0

108 Chapter 4. Mapfile

MapServer Documentation, Release 6.4.1

SIZE 15
END # Style

END # Label
END # Class

Symbol definition for the circlef symbol:

SYMBOL
NAME "circlef"
TYPE ellipse
FILLED true
POINTS
1 1

END # POINTS
END # SYMBOL

Expressions and advanced transformations (LAYER and CLASS STYLE)

Combining / chaining expressions

A geometry transformation produces a geometry, and that geometry can be used as input to another geometry
transformation. There are (at least) two ways to accomplish this. One is to combine basic geometry transforma-
tion expressions into more complex geometry transformation expressions, and another is to combine a geometry
transformation expression at the LAYER level with a geometry transformation expressions or a simple geometry
transformation at the CLASS STYLE level.

Combining geometry transformation expressions A geometry transformation expression contains a [shape] part.
The [shape] part can be replaced by a geometry transformation expression.

For example:

GEOMTRANSFORM (simplify(buffer([shape], 20),10))

In this transformation, buffer is first applied on the geometry ([shape]). The resulting geometry is then used as
input to simplify.

A style that demonstrates this:

STYLE
GEOMTRANSFORM (simplify(buffer([shape], 20),10))
OUTLINECOLOR 255 0 0
WIDTH 2

END # STYLE

The result of this transformation is shown at the top of the following figure (red line). The original polygon is
shown with a full black line and the buffer with a dashed black line.

Combining expressions with simple geometry transformations Simple geometry transformations are only avaiable
for CLASS STYLE, but can be combined with geometry transformation expressions at the LAYER level.

Excerpts from a layer definitions that does this kind of combination:

LAYER
...
GEOMTRANSFORM (simplify(buffer([shape], 10),5))
CLASS
...
STYLE

GEOMTRANSFORM "vertices"
COLOR 255 102 102
SYMBOL vertline
SIZE 20
WIDTH 2

4.1. Mapfile 109

MapServer Documentation, Release 6.4.1

ANGLE auto
END # STYLE

END # CLASS
END # LAYER

The result of this transformation is shown at the bottom of the following figure (the red lines). The result of the
LAYER level geomtransform is shown with a full black line. The original polygon is the same as the one used at
the top of the figure.

Figure 4.22: Combining geomtransform expressions

buffer

• GEOMTRANSFORM buffer returns the buffer of the original geometry. The result is always a polygon
geometry.

– GEOMTRANSFORM (buffer ([shape], buffersize))

Note: Negative values for buffersize (setback) is not supported.

Note: Can be used at the LAYER level and for STYLE in the CLASS context.

Note: Buffer does not seem to work for point geometries.

Some class definitions for the example.

Lower part (polygon with buffers):

CLASS
STYLE
OUTLINECOLOR 0 255 0
GEOMTRANSFORM (buffer([shape], 20))
WIDTH 1

END # STYLE
STYLE
OUTLINECOLOR 0 0 255
GEOMTRANSFORM (buffer([shape], 10)) #
WIDTH 1

110 Chapter 4. Mapfile

MapServer Documentation, Release 6.4.1

Figure 4.23: Geomtransform buffer

END # STYLE
STYLE
COLOR 255 0 0
GEOMTRANSFORM (buffer([shape], 5)) #

END # STYLE
STYLE
COLOR 0 0 0

END # STYLE
END # CLASS

Upper right part (layer level geomtransform):

LAYER # line buffer layer
STATUS DEFAULT
TYPE LINE
FEATURE
POINTS

80 70
80 75

END # Points
END # Feature
GEOMTRANSFORM (buffer([shape], 10))
CLASS
STYLE

COLOR 0 0 255
END # STYLE

END # CLASS
END # LAYER

generalize ([shape], tolerance)

• GEOMTRANSFORM generalize simplifies a geometry ([shape]) in a way comparable to FME’s ThinNo-
Point algorithm. See http://trac.osgeo.org/gdal/ticket/966 for more information.

– GEOMTRANSFORM (generalize([shape], tolerance))

tolerance is mandatory, and is a specification of the maximum deviation allowed for the generalized line
compared to the original line. A higher value for tolerance will give a more generalised / simplified line.

Note: Can be used at the LAYER level and for STYLE in the CLASS context.

4.1. Mapfile 111

http://trac.osgeo.org/gdal/ticket/966

MapServer Documentation, Release 6.4.1

Note: Depends on GEOS.

The figure below shows the result of applying generalize at the STYLE level with increasing values for tolerance
(10 - green, 20 - blue and 40 - red).

Figure 4.24: Geomtransform generalize

One of the STYLE definitions for the example (tolerance 40):

STYLE
GEOMTRANSFORM (generalize([shape], 40))
COLOR 255 0 0
WIDTH 1
PATTERN 3 3 END

END # STYLE

simplify([shape], tolerance)

• GEOMTRANSFORM simplify simplifies a geometry ([shape]) using the standard Douglas-Peucker algo-
rithm.

– GEOMTRANSFORM (simplify([shape], tolerance))

tolerance is mandatory, and is a specification of the maximum deviation allowed for the generalized line
compared to the original line. A higher value for tolerance will give a more generalised / simplified line.

Note: Can be used at the LAYER level and for STYLE in the CLASS context.

The figure below shows the result of applying simplify at the STYLE level with increasing values for tolerance (10
- green, 20 - blue and 40 - red).

One of the STYLE definitions for the example (tolerance 40):

STYLE
GEOMTRANSFORM (simplify([shape], 40))
COLOR 255 0 0
WIDTH 1
PATTERN 3 3 END

END # STYLE

112 Chapter 4. Mapfile

MapServer Documentation, Release 6.4.1

Figure 4.25: Geomtransform simplify

simplifypt([shape], tolerance)

• GEOMTRANSFORM simplifypt simplifies a geometry ([shape]), ensuring that the result is a valid geometry
having the same dimension and number of components as the input. tolerance must be non-negative.

– GEOMTRANSFORM (simplifypt([shape], tolerance))

tolerance is mandatory, and is a specification of the maximum deviation allowed for the generalized line
compared to the original line. A higher value for tolerance will give a more generalised / simplified line.

Note: Can be used at the LAYER level and for STYLE in the CLASS context.

The figure below shows the result of applying simplifypt at the STYLE level with increasing values for tolerance
(10 - green, 20 - blue and 40 - red).

Figure 4.26: Geomtransform simplifypt

One of the STYLE definitions for the example (tolerance 40):

4.1. Mapfile 113

MapServer Documentation, Release 6.4.1

STYLE
GEOMTRANSFORM (simplifypt([shape], 40))
COLOR 255 0 0
WIDTH 1
PATTERN 3 3 END

END # STYLE

smoothsia ([shape], smoothing_size, smoothing_iterations, preprocessing)

• GEOMTRANSFORM smoothsia returns a smoothed version of a line.

– GEOMTRANSFORM (smoothsia ([shape], smoothing_size, smoothing_iterations, preprocessing))

The following parameters are used:

– shape (mandatory). Specify the geometry to be used

– smoothing_size (optional). The window size (number of points) used by the algorithm. The default is
3.

– smoothing_iterations (optional). The number of iterations of the algorithm. The default is 1.

– preprocessing (optional). Preprocessing method to add more vertices to the geometry prior to smooth-
ing, described below. There are two possible preprocessing methods:

* all Adds two intermediate vertices on each side of each original vertex. This is useful to preserve
the general shape of the line with low resolution data.

* angle Add vertices at some specific places based on angle detection.

Note: Can be used at the LAYER level and for STYLE in the CLASS context.

Example of a simple layer definition:

LAYER NAME "my_layer"
TYPE LINE
STATUS DEFAULT
DATA roads.shp
GEOMTRANSFORM (smoothsia([shape], 3, 1, ’angle’))
CLASS

STYLE
WIDTH 2
COLOR 255 0 0

END
END

Here are some examples showing results with different parameter values.

Tuning the behaviour of smoothsia smoothsia has several parameters that can be used to tune its behaviour.
The following sections describe some cases / possiblities.

Dataset resolution is too high If you are trying to smooth a line that has a very high resolution (high density of
vertices at the current view scale), you may not get the expected result because the vertices are too dense for the
smoothing window size. In this case you might want to simplify the geometries before the smoothing. You can
combine smoothing and simplification in a single geomtransform for that:

GEOMTRANSFORM (smoothsia(simplifypt([shape], 10)))

See RFC 89: Layer Geomtransform for more info. Here’s a visualization of the issue:

114 Chapter 4. Mapfile

MapServer Documentation, Release 6.4.1

Figure 4.27: Original geometry (left) and smoothsia with default parameters (right)

Figure 4.28: Smoothsia - Larger window size (left) and larger window size with more iterations (right)

4.1. Mapfile 115

MapServer Documentation, Release 6.4.1

Figure 4.29: High resolution geometry, smoothing and simplification

Dataset resolution is too low If you are trying to smooth a long line that has a low density of vertices, you may
not get the expected result in some situations. You may lose some important parts of the geometry during the
smoothing, for instance around acute angles. You can improve the result by enabling a preprocessing step to add
intermediate vertices along the line prior to smoothing.

This behavior is controlled using the all value in the preprocessing argument of the smoothsia geomtransform:

GEOMTRANSFORM (smoothsia([shape], 3, 1, ’all’))

This preprocessing will be performed before the smoothing. It adds 2 intermediate vertices on each side of each
original vertex. This is useful if we really need to preserve the general shape of the low resolution line. Note that
this might have an impact on the rendering since there will be more vertices in the output.

Here’s a visualization of the issue:

Figure 4.30: Effects of normal smoothing and preprocessing

Curves The preprocessing step might not be appropriate for all cases since it can impact the smoothing result
significantly. However, without it, you might notice bad smoothing for curved lines with large distances between
the line vertices. See this example:

You can improve that by enabling another type of preprocessing: angle. This one will add points at some specific
places based on angle detection to recognize the curves. Here’s how you can enable it:

GEOMTRANSFORM (smoothsia([shape], 3, 1, ’angle’))

4.1.3 CLASS

BACKGROUNDCOLOR [r] [g] [b] - deprecated

Deprecated since version 6.0: Use CLASS STYLEs.

COLOR [r] [g] [b]

116 Chapter 4. Mapfile

MapServer Documentation, Release 6.4.1

Figure 4.31: Effects of normal smoothing (without preprocessing)

Figure 4.32: The use of angle with smoothsia

4.1. Mapfile 117

MapServer Documentation, Release 6.4.1

Deprecated since version 6.0: Use CLASS STYLEs.

DEBUG [on|off] Enables debugging of the class object. Verbose output is generated and sent to the standard
error output (STDERR) or the MapServer logfile if one is set using the LOG parameter in the WEB object.

See Also:

rfc28

EXPRESSION [string] Four types of expressions are now supported to define which class a feature belongs to:
String comparisons, regular expressions, logical expressions, and string functions (see Expressions). If no
expression is given, then all features are said to belong to this class.

• String comparisons are case sensitive and are the fastest to evaluate. No special delimiters are neces-
sary although strings must be quoted if they contain special characters. (As a matter of good habit, it is
recommended that you quote all strings). The attribute to use for comparison is defined in the LAYER
CLASSITEM parameter.

• Regular expression are limited using slashes (/regex/). The attribute to use for comparison is defined
in the LAYER CLASSITEM parameter.

• Logical expressions allow the building of fairly complex tests based on one or more attributes and
therefore are only available with shapefiles. Logical expressions are delimited by parentheses “(ex-
pression)”. Attribute names are delimited by square brackets “[ATTRIBUTE]”. Attribute names are
case sensitive and must match the items in the shapefile. For example:

EXPRESSION ([P O P U L A T I ON] > 50000 AND ’[LANGUAGE]’ eq ’FRENCH’)

The following logical operators are supported: =, >, <, <=, >=, =, or, and, lt, gt, ge, le, eq, ne, in, ~,
~*. As one might expect, this level of complexity is slower to process.

– One string function exists: length(). It computes the length of a string:

EXPRESSION (l e n g t h (’[NAME_E]’) < 8)

String comparisons and regular expressions work from the classitem defined at the layer level. You may
mix expression types within the different classes of a layer.

GROUP [string] Allows for grouping of classes. It is only used when a CLASSGROUP at the LAYER level is set.
If the CLASSGROUP parameter is set, only classes that have the same group name would be considered at
rendering time. An example of a layer with grouped classes might contain:

LAYER
...
CLASSGROUP "group1"
...
CLASS

NAME "name1"
GROUP "group1"
...

END
CLASS

NAME "name2"
GROUP "group2"
...

END
CLASS

NAME "name3"
GROUP "group1"
...

END
...

END # layer

118 Chapter 4. Mapfile

MapServer Documentation, Release 6.4.1

KEYIMAGE [filename] Full filename of the legend image for the CLASS. This image is used when building a
legend (or requesting a legend icon via MapScript or the CGI application).

LABEL Signals the start of a LABEL object. A class can contain multiple labels (since MapServer 6.2).

LEADER Signals the start of a LEADER object. Use this along with a LABEL object to create label leader lines.
New in version 6.2.

MAXSCALEDENOM [double] Minimum scale at which this CLASS is drawn. Scale is given as the denomi-
nator of the actual scale fraction, for example for a map at a scale of 1:24,000 use 24000. Implemented in
MapServer 5.0, to replace the deprecated MAXSCALE parameter.

See Also:

Map Scale

MAXSIZE [integer]

Deprecated since version 6.0: Use CLASS STYLEs.

MINSCALEDENOM [double] Maximum scale at which this CLASS is drawn. Scale is given as the denominator
of the actual scale fraction, for example for a map at a scale of 1:24,000 use 24000. Implemented in
MapServer 5.0, to replace the deprecated MINSCALE parameter.

See Also:

Map Scale

MINSIZE [integer]

Deprecated since version 6.0: Use CLASS STYLEs.

NAME [string] Name to use in legends for this class. If not set class won’t show up in legend.

OUTLINECOLOR [r] [g] [b]

Deprecated since version 6.0: Use CLASS STYLEs.

SIZE [integer]

Deprecated since version 6.0: Use CLASS STYLEs.

STATUS [on|off] Sets the current display status of the class. Default turns the class on.

STYLE Signals the start of a STYLE object. A class can contain multiple styles. Multiple styles can be used
create complex symbols (by overlay/stacking). See Cartographical Symbol Construction with MapServer
for more information on advanced symbol construction.

SYMBOL [integer|string|filename]

Deprecated since version 6.0: Use CLASS STYLEs.

TEMPLATE [filename] Template file or URL to use in presenting query results to the user. See Templating for
more info.

TEXT [string|expression] Text to label features in this class with. This overrides values obtained from the
LAYER LABELITEM. The string can contain references to feature attributes. This allows you to concatenate
multiple attributes into a single label. You can for example concatenate the attributes FIRSTNAME and
LASTNAME like this:

TEXT ’[FIRSTNAME] [LASTNAME]’

More advanced Expressions can be used to specify the labels. Since version 6.0, there are functions available
for formatting numbers:

TEXT ("Area is: " + tostring([area],"%.2f"))

VALIDATION Signals the start of a VALIDATION block.

As of MapServer 5.4.0, VALIDATION blocks are the preferred mechanism for specifying validation patterns
for CGI param runtime substitutions. See Run-time Substitution.

4.1. Mapfile 119

MapServer Documentation, Release 6.4.1

4.1.4 CLUSTER

Table of Contents

• CLUSTER
– Description
– Supported Layer Types
– Mapfile Parameters
– Supported Processing Options
– Mapfile Snippet
– Feature attributes
– PHP MapScript Usage
– Example: Clustering Railway Stations

Description

Since version 6.0, MapServer has the ability to combine multiple features from a point layer into single (ag-
gregated) features based on their relative positions. Only POINT layers are supported. This feature was added
through rfc69.

Supported Layer Types

POINT

Mapfile Parameters

MAXDISTANCE [double] Specifies the distance of the search region (rectangle or ellipse) in pixel positions.

REGION [string] Defines the search region around a feature in which the neighbouring features are negotiated.
Can be ‘rectangle’ or ‘ellipse’.

BUFFER [double] Defines a buffer region around the map extent in pixels. Default is 0. Using a buffer allows
that the neighbouring shapes around the map are also considered during the cluster creation.

GROUP [string] This expression evaluates to a string and only the features that have the same group value are
negotiated. This parameter can be omitted. The evaluated group value is available in the ‘Cluster:Group’
feature attribute.

FILTER [string] We can define the FILTER expression filter some of the features from the final output. This
expression evaluates to a boolean value and if this value is false the corresponding shape is filtered out. This
expression is evaluated after the the feature negotiation is completed, therefore the ‘Cluster:FeatureCount’
parameter can also be used, which provides the option to filter the shapes having too many or to few neigh-
bors within the search region.

Supported Processing Options

The following processing options can be used with the cluster layers:

CLUSTER_GET_ALL_SHAPES Return all shapes contained by a cluster instead of a single shape. This setting
affects both the drawing and the query processing.

Mapfile Snippet

120 Chapter 4. Mapfile

MapServer Documentation, Release 6.4.1

LAYER
NAME "my-cluster"
TYPE POINT
...
CLUSTER

MAXDISTANCE 20 # in pixels
REGION "ellipse" # can be rectangle or ellipse
GROUP (expression) # an expression to create separate groups for each value
FILTER (expression) # a logical expression to specify the grouping condition

END
LABELITEM "Cluster:FeatureCount"
CLASS
...
LABEL
...

END
END
...

END

Feature attributes

The clustered layer itself provides the following aggregated attributes:

1. Cluster:FeatureCount - count of the features in the clustered shape

2. Cluster:Group - The group value of the cluster (to which the group expression is evaluated)

These attributes (in addition to the attributes provided by the original data source) can be used to configure the
labels of the features and can also be used in expressions. The ITEMS processing option can be used to specify a
subset of the attributes from the original layer in the query operations according to the user’s preference.

We can use simple aggregate functions (Min, Max, Sum, Count) to specify how the clustered attribute should be
calculated from the original attributes. The aggregate function should be specified as a prefix separated by ‘:’ in the
attibute definition, like: [Max:itemname]. If we don’t specify aggregate functions for the source layer attributes,
then the actual value of the cluster attribute will be non-deterministic if the cluster contains multiple shapes with
different values. The Count aggregate function in fact provides the same value as Cluster:FeatureCount.

PHP MapScript Usage

The CLUSTER object is exposed through PHP MapScript. An example follows:

$map = ms_newMapobj("/var/www/vhosts/mysite/httpdocs/test.map");
$layer1=$map->getLayerByName("test1");
$layer1->cluster;

Example: Clustering Railway Stations

The following example uses a point datasource, in this case in KML format, to display clusters of railway stations.
Two classes are used: one to style and label the cluster, and one to style and label the single railway station.

Note: Since we can’t declare 2 labelitems, for the single railway class we use the TEXT parameter to label the
station.

4.1. Mapfile 121

MapServer Documentation, Release 6.4.1

Mapfile Layer

####################
Lightrail Stations
####################
SYMBOL

NAME "lightrail"
TYPE PIXMAP
IMAGE "../etc/lightrail.png"

END
LAYER

NAME "lightrail"
GROUP "default"
STATUS DEFAULT
TYPE POINT
CONNECTIONTYPE OGR
CONNECTION "lightrail-stations.kml"
DATA "lightrail-stations"
LABELITEM "Cluster:FeatureCount"
CLASSITEM "Cluster:FeatureCount"
###########################
Define the cluster object
###########################
CLUSTER

MAXDISTANCE 50
REGION "ellipse"

END
################################
Class1: For the cluster symbol
################################
CLASS

NAME "Clustered Lightrail Stations"
EXPRESSION ("[Cluster:FeatureCount]" != "1")
STYLE

SIZE 30
SYMBOL "citycircle"
COLOR 255 0 0

END
LABEL

FONT s c b
TYPE TRUETYPE
SIZE 8
COLOR 255 255 255
ALIGN CENTER
PRIORITY 10
BUFFER 1
PARTIALS TRUE
POSITION cc

END
END
################################
Class2: For the single station
################################
CLASS

NAME "Lightrail Stations"
EXPRESSION "1"
STYLE

SIZE 30
SYMBOL "lightrail"

END
TEXT "[Name]"
LABEL

122 Chapter 4. Mapfile

MapServer Documentation, Release 6.4.1

FONT s c b
TYPE TRUETYPE
SIZE 8
COLOR 0 0 0
OUTLINECOLOR 255 255 255
ALIGN CENTER
PRIORITY 9
BUFFER 1
PARTIALS FALSE
POSITION ur

END
END
the following is used for a query
TOLERANCE 50
UNITS PIXELS
HEADER "../htdocs/templates/cluster_header.html"
FOOTER "../htdocs/templates/cluster_footer.html"
TEMPLATE "../htdocs/templates/cluster_query.html"

END

Map Image

4.1.5 Display of International Characters in MapServer

Author Jeff McKenna

Contact jmckenna at gatewaygeomatics.com

Revision $Revision: 12506 $

Date $Date: 2011-08-29 14:26:49 +0200 (Mon, 29 Aug 2011) $

4.1. Mapfile 123

MapServer Documentation, Release 6.4.1

Table of Contents

• Display of International Characters in MapServer
– Credit
– Related Links
– Requirements
– How to Enable in Your Mapfile

* Step 1: Verify ICONV Support and MapServer Version
* Step 2: Verify That Your Files’ Encoding is Supported by ICONV
* Step 3: Add ENCODING Parameter to your LABEL Object
* Step 4: Test with the shp2img utility

– Example Using PHP MapScript
– Notes

Credit

The following functionality was added to MapServer 4.4.0 as a part of a project sponsored by the Information-
technology Promotion Agency (IPA), in Japan. Project members included: Venkatesh Raghavan, Masumoto
Shinji, Nonogaki Susumu, Nemoto Tatsuya, Hirai Naoki (Osaka City University, Japan), Mario Basa, Hagiwara
Akira, Niwa Makoto, Mori Toru (Orkney Inc., Japan), and Hattori Norihiro (E-Solution Service, Inc., Japan).

Related Links

• MapServer ticket:858

Requirements

• MapServer >= 4.4.0

• MapServer compiled with the libiconv library

How to Enable in Your Mapfile

The mapfile LABEL object’s parameter named ENCODING can be used to convert strings from its original en-
coding system into one that can be understood by the True Type Fonts. The ENCODING parameter accepts the
encoding name as its parameter.

MapServer uses GNU’s libiconv library (http://www.gnu.org/software/libiconv/) to deal with encodings. The
libiconv web site has a list of supported encodings. One can also use the “iconv -l” command on a system with
libiconv installed to get the complete list of supported encodings on that specific system.

So, theoretically, every string with an encoding system supported by libiconv can be displayed as labels in
MapServer as long as it has a matching font-set.

Step 1: Verify ICONV Support and MapServer Version

Execute ‘’mapserv -v’ at the commandline, and verify that your MapServer version >= 4.4.0 and it includes
‘’SUPPORTS=ICONV’‘, such as:

> mapserv -v

MapServer version 5.6.5 OUTPUT=GIF OUTPUT=PNG OUTPUT=JPEG
OUTPUT=WBMP OUTPUT=PDF OUTPUT=SWF OUTPUT=SVG SUPPORTS=PROJ
SUPPORTS=AGG SUPPORTS=FREETYPE SUPPORTS=ICONV SUPPORTS=FRIBIDI
SUPPORTS=WMS_SERVER SUPPORTS=WMS_CLIENT SUPPORTS=WFS_SERVER
SUPPORTS=WFS_CLIENT SUPPORTS=WCS_SERVER SUPPORTS=SOS_SERVER

124 Chapter 4. Mapfile

http://trac.osgeo.org/mapserver/ticket/858/
http://www.gnu.org/software/libiconv/

MapServer Documentation, Release 6.4.1

SUPPORTS=FASTCGI SUPPORTS=THREADS SUPPORTS=GEOS SUPPORTS=RGBA_PNG
SUPPORTS=TILECACHE INPUT=JPEG INPUT=POSTGIS INPUT=OGR INPUT=GDAL
INPUT=SHAPEFILE

Step 2: Verify That Your Files’ Encoding is Supported by ICONV

Since MapServer uses the libiconv library to handle encodings, you can check the list of supported encodings
here: http://www.gnu.org/software/libiconv/

Unix users can also use the iconv -l command on a system with libiconv installed to get the complete list of
supported encodings on that specific system.

Step 3: Add ENCODING Parameter to your LABEL Object

Now you can simply add the ENCODING parameter to your mapfile LAYER object, such as:

MAP
...
LAYER
...
CLASS

...
LABEL

...
ENCODING "SHIFT_JIS"

END
END

END
END

One of the benefits of having an “ENCODING” parameter within the LABEL object is that different LAYERS
with different encoding systems can be combined together and display labels within a single map. For example,
labels from a Layer using Shapefile as it source which contains attributes in SHIFT-JIS can be combined with a
Layer from a PostGIS database server with EUC-JP attributes. A sample Mapfile can look like this:

LAYER
NAME "chimei"
DATA c h i m e i
STATUS DEFAULT
TYPE POINT
LABELITEM "NAMAE"
CLASS
NAME "CHIMEI"
STYLE

COLOR 10 100 100
END
LABEL

TYPE TRUETYPE
FONT k o c h i - g o t h i c
COLOR 220 20 20
SIZE 10
POSITION CL
PARTIALS FALSE
BUFFER 0
ENCODING S H I F T _ J I S

END
END

END

LAYER
NAME "chimeipg"

4.1. Mapfile 125

http://www.gnu.org/software/libiconv/

MapServer Documentation, Release 6.4.1

CONNECTION "user=username password=password dbname=gis host=localhost port=5432"
CONNECTIONTYPE postgis
DATA "the_geom from chimei"
STATUS DEFAULT
TYPE POINT
LABELITEM "NAMAE"
CLASS
NAME "CHIMEI PG"
STYLE

COLOR 10 100 100
END
LABEL

TYPE TRUETYPE
FONT k o c h i - m i n c h o
COLOR 20 220 20
SIZE 10
POSITION CL
PARTIALS FALSE
BUFFER 0
ENCODING E UC- J P

END
END

END

Step 4: Test with the shp2img utility

• see shp2img commandline utility

Example Using PHP MapScript

For PHP Mapscript, the Encoding parameter is included in the LabelObj Class, so that the encoding parameter of
a layer can be modified such as:

// Loading the php_mapscript library
dl("php_mapscript.so");

// Loading the map file
$map = ms_newMapObj("example.map");

// get the desired layer
$layer = $map->getLayerByName("chimei");

// get the layer’s class object
$class = $layer->getClass(0);

// get the class object’s label object
$clabel= $class->label;

// get encoding parameter
$encode_str = $clabel->encoding;
print "Encoding = ".$encode_str."\n";

// set encoding parameter
$clabel->set("encoding","UTF-8");

Notes

126 Chapter 4. Mapfile

MapServer Documentation, Release 6.4.1

Note: During initial implementation, this functionality was tested using the different Japanese encoding
systems: Shift-JIS, EUC-JP, UTF-8, as well as Thai’s TIS-620 encoding system.

Examples of encodings for the Latin alphabet supported by libiconv are: ISO-8859-1 (Latin alphabet No. 1 - also
known as LATIN-1 - western European languages), ISO-8859-2 (Latin alphabet No. 2 - also known as LATIN-2
- eastern European languages), CP1252 (Microsoft Windows Latin alphabet encoding - English and some other
Western languages).

4.1.6 Expressions

Author Dirk Tilger

Contact dirk at MIRIUP.DE

Author Umberto Nicoletti

Contact umberto.nicoletti at gmail.com

Revision $Revision$

Date $Date$

Last Updated 2011/06/30

Contents

• Expressions
– Introduction

* String quotation
* Quotes escaping in strings
* Using attributes
* Character encoding

– Expression Types
* String comparison (equality)
* Regular expression comparison
* List expressions

– “MapServer expressions”
* Logical expressions
* String expressions that return a logical value
* Arithmetic expressions that return a logical value
* Spatial expressions that return a logical value (GEOS)
* String operations that return a string
* Functions that return a string
* String functions that return a number
* Arithmetic operations and functions that return a number
* Spatial functions that return a number (GEOS)
* Spatial functions that return a shape (GEOS)
* Temporal expressions

Introduction

As of version 6.0, expressions are used in four places:

• In LAYER FILTER to specify the features of the dataset that are to be included in the layer.

• In CLASS EXPRESSION to specify to which features of the dataset the CLASS applies to.

• In CLASS TEXT to specify text for labeling features.

• In STYLE GEOMTRANSFORM.

4.1. Mapfile 127

MapServer Documentation, Release 6.4.1

String quotation

Strings can be quoted using single or double quotes:

’This is a string’
"And this is also a string"

Quotes escaping in strings

Note: Quotes escaping is not supported in MapServer versions lower than 5.0.

Starting with MapServer 5.0, if your dataset contains double-quotes, you can use a C-like escape sequence:

"National \"hero\" statue"

To escape a single quote use the following sequence instead:

"National \’hero\’ statue"

Starting with MapServer 6.0 you don’t need to escape single quotes within double qouted strings and you don’t
need to escape double quotes within single quoted strings. In 6.0 you can also write the string as follows:

’National "hero" statue’
...

To escape a single quote use the following sequence instead:

"National ’hero’ statue"

Using attributes

Attribute values can be referenced in the Map file and used in expressions. Attribute references are case sensitive
and can be used in the following types of expressions:

• In LAYER FILTER

• In CLASS EXPRESSION

• In CLASS TEXT

Referencing an attribute is done by enclosing the attribute name in square brackets, like this: [ATTRIBUTE-
NAME]. Then, every occurrence of “[ATTRIBUTENAME]” will be replaced by the actual value of the attribute
“ATTRIBUTENAME”.

Example: The data set of our layer has the attribute “BUILDING_NAME”. We want the value of this attribute to
appear inside a string. This can be accomplished as follows (single or double qoutes):

’The [BUILDING_NAME] building’

For the building which has its BUILDING_NAME attribute set to “Historical Museum”, the resulting string is:

’The Historical Museum building’

For Raster Data layers special attributes have been defined that can be used for classification, for example:

• [PIXEL] ... will become the pixel value as number

• [RED], [GREEN], [BLUE] ... will become the color value for the red, green and blue component in the
pixel value, respectively.

128 Chapter 4. Mapfile

MapServer Documentation, Release 6.4.1

Character encoding

With MapServer there is no way to specify the character encoding of the mapfile or the layer data sources, so
MapServer can’t do the character encoding translation. If the character encoding of the data source is not the same
as the character encoding of the map file, they could be converted to a common encoding.

Expression Types

Expression are used to match attribute values with certain logical checks. There are three different types of
expressions you can use with MapServer:

• String comparisons: A single attribute is compared with a string value.

• Regular expressions: A single attribute is matched with a regular expression.

• Logical “MapServer expressions”: One or more attributes are compared using logical expressions.

String comparison (equality)

String comparison means, as the name suggests, that attribute values are checked if they are equal to some value.
String comparisons are the simplest form of MapServer expressions and the fastest option.

To use a string comparison for filtering a LAYER, both FILTERITEM and FILTER must be set. FILTERITEM is
set to the attribute name. FILTER is set to the value for comparison. The same rule applies to CLASSITEM in the
LAYER object and EXPRESSION in the CLASS object.

Example for a simple string comparison filter

FILTER "2005"
FILTERITEM "year"

would match all records that have the attribute “year” set to “2005”. The rendered map would appear as if the
dataset would only contain those items that have the “year” set to “2005”.

Similarly, a classification for the items matched above would be done by setting the CLASSITEM in the LAYER
and the EXPRESSION in the CLASS:

LAYER
NAME "example"
CLASSITEM "year"
...
CLASS

NAME "year-2005"
EXPRESSION "2005"
...

END
END

For reasons explained later, the values for both CLASSITEM and FILTERITEM should start with neither a ‘/’ nor
a ‘(‘ character.

Regular expression comparison

Regular expressions are a standard text pattern matching mechanism from the Unix world. The functionality
of regular expression matching is provided by the operating system on UNIX systems and therefore slightly
operating system dependent. However, their minimum set of features are those defined by the POSIX standard.
The documentation of the particular regular expression library is usually in the “regex” manual page (“man regex”)
on Unix systems.

Regular expression with MapServer work similarly to string comparison, but allow more complex operation. They
are slower than pure string comparisons, but might be still faster than logical expression. As for string comparison,

4.1. Mapfile 129

MapServer Documentation, Release 6.4.1

when using a regular expressions, FILTERITEM (LAYER FILTER) or CLASSITEM (CLASS EXPRESSION) has
to be defined if the items are not included in the LAYER FILTER or CLASS EXPRESSION.

A regular expression typically consists of characters with special meanings and characters that are interpreted as
they are. Alphanumeric characters (A-Z, a-z and 0-9) are taken as they are. Characters with special meanings are:

• . will match a single character.

• [and] are used for grouping. For example [A-Z] would match the characters A,B,C,...,X,Y,Z.

• {, }, and * are used to specify how often something should match.

• ^ matches the beginning, $ matches the end of the value.

• The backslash \ is used to take away the special meaning. For example \$ would match the dollar sign.

MapServer supports two regex operators:

• ~ case sensitive regular expression

• ~* case insensitive regular expression

The following LAYER configuration would have all records rendered on the map that have “hotel” in the attribute
named “placename”

LAYER
NAME ’regexp-example’
FILTERITEM ’placename’
FILTER /hotel/
...

END

Note: For FILTER, the regular expression is case-sensitive, thus records having “Hotel” in them would not have
matched.

Example: Match records that have a value from 2000 to 2010 in the attribute “year”:

FILTERITEM "year"
FILTER /^20[0-9][0-9]/

Example: Match all the records that are either purely numerical or empty

FILTER /^[0-9]*$/

Example: Match all the features where the name attribute ends with “by”, “BY”, “By” or “bY” (case insensitive
matching):

EXPRESSION (’[name]’ ~* ’by$’)

Example: Match all the features where the rdname attribute starts with “Main”.

LAYER
...
CLASSITEM ’rdname’
CLASS

EXPRESSION /^Main.*$/

Note: If you experience frequently segmentation faults when working with MapServer and regular expressions,
it might be that your current working environment is linked against more than one regular expression library.
This can happen when MapServer is linked with components that bring their own copy, like the Apache httpd
or PHP. In these cases the author has made best experiences with making all those components using the regular
expression library of the operating system (i.e. the one in libc). That involved editing the build files of some of
the components, however.

130 Chapter 4. Mapfile

MapServer Documentation, Release 6.4.1

List expressions

New in version 6.4. List expressions (see rfc95) are a performant way to compare a string attribute to a list of
multiple possible values. Their behavior duplicates the existing regex or mapserver expressions, however they are
significantly more performant. To activate them enclose a comma separated list of values between {}, without
adding quotes or extra spaces.

LAYER
NAME ’list-example’
CLASSITEM ’roadtype’
...
CLASS

EXPRESSION {motorway,trunk}
#equivalent to regex EXPRESSION /motorway|trunk/
#equivalent to mapserver EXPRESSION ("[roadtype]" IN "motorway,trunk")
...

END
CLASS

EXPRESSION {primary,secondary}
...

END
END

Warning: List expressions do not support quote escaping, or attribute values that contain a comma in them.

“MapServer expressions”

MapServer expressions are the most complex and depending how they are written can become quite slow. They
can match any of the attributes and thus allow filtering and classification depending on more than one attribute.
Besides pure logical operations there are also expressions that allow certain arithmetic, string and time operations.

To be able to use a MapServer expression for a FILTER or EXPRESSION value, the expression has to finally
become a logical value.

Logical expressions

Syntactically, a logical expression is everything encapsulated in round brackets. Logical expressions take logical
values as their input and return logical values. A logical expression is either ‘true’ or ‘false’.

• ((Expression1) AND (Expression2))

((Expression1) && (Expression2))

returns true when both of the logical expressions (Expression1 and Expression2) are true.

• ((Expression1) OR (Expression2))

((Expression1) || (Expression2))

returns true when at least one of the logical expressions (Expression1 or Expression2) is true.

• NOT (Expression1)

! (Expression1)

returns true when Expression1 is false.

String expressions that return a logical value

Syntactically, a string is something encapsulated in single or double quotes.

4.1. Mapfile 131

MapServer Documentation, Release 6.4.1

• (“String1” eq “String2”)

(“String1” == “String2”) - deprecated since 6.0

(“String1” = “String2”)

returns true when the strings are equal. Case sensitive.

• (“String1” =* “String2”)

returns true when the strings are equal. Case insensitive.

• (“String1” != “String2”)

(“String1” ne “String2”)

returns true when the strings are not equal.

• (“String1” < “String2”)

(“String1” lt “String2”)

returns true when “String1” is lexicographically smaller than “String2”

• (“String1” > “String2”)

(“String1” gt “String2”)

returns true when “String1” is lexicographically larger than “String2”.

• (“String1” <= “String2”)

(“String1” le “String2”)

returns true when “String1” is lexicographically smaller than or equal to “String2”

• (“String1” >= “String2”)

(“String1” ge “String2”)

returns true when “String1” is lexicographically larger than or equal to “String2”.

• (“String1” IN “token1,token2,...,tokenN”)

returns true when “String1” is equal to one of the given tokens.

Note: The separator for the tokens is the comma. That means that there can not be unnecessary white space
in the list and that tokens that have commas in them cannot be compared.

• (“String1” ~ “regexp”)

returns true when “String1” matches the regular expression “regexp”. This operation is identical to the
regular expression matching described earlier.

• (“String1” ~* “regexp”)

returns true when “String1” matches the regular expression “regexp” (case insensitive). This operation is
identical to the regular expression matching described earlier.

Arithmetic expressions that return a logical value

The basic element for arithmetic operations is the number. Arithmetic operations that return numbers will be
covered in the next section.

• (n1 eq n2)

(n1 == n2) - deprecated since 6.0

(n1 = n2)

returns true when the numbers are equal.

132 Chapter 4. Mapfile

MapServer Documentation, Release 6.4.1

• (n1 != n2)

(n1 ne n2)

returns true when the numbers are not equal.

• (n1 < n2)

(n1 lt n2)

returns true when n1 is smaller than n2.

• (n1 > n2)

(n1 gt n2)

returns true when n1 is larger than n2.

• (n1 <= n2)

(n1 le n2)

returns true when n1 is smaller than or equal to n2.

• (n1 >= n2)

(n1 ge n2)

returns true when n1 is larger than or equal to n2.

• (n1 IN “number1,number2,...,numberN”)

returns true when n1 is equal to one of the given numbers.

Spatial expressions that return a logical value (GEOS)

• (shape1 eq shape2)

returns true if shape1 and shape2 are equal

• (shape1 intersects shape2)

returns true if shape1 and shape2 intersect New in version 6.0.

• (shape1 disjoint shape2)

returns true if shape1 and shape2 are disjoint New in version 6.0.

• (shape1 touches shape2)

returns true if shape1 and shape2 touch New in version 6.0.

• (shape1 overlaps shape2)

returns true if shape1 and shape2 overlap New in version 6.0.

• (shape1 crosses shape2)

returns true if shape1 and shape2 cross New in version 6.0.

• (shape1 within shape2)

returns true if shape1 is within shape2 New in version 6.0.

• (shape1 contains shape2)

returns true if shape1 contains shape2 New in version 6.0.

• (shape1 dwithin shape2)

returns true if the distance between shape1 and shape2 is equal to 0 New in version 6.0.

• (shape1 beyond shape2)

returns true if the distance between shape1 and shape2 is greater than 0 New in version 6.0.

4.1. Mapfile 133

MapServer Documentation, Release 6.4.1

String operations that return a string

• “String1” + “String2’

returns “String1String2”, that is, the two strings concatenated to each other.

Functions that return a string

• tostring (n1, “Format1”)

uses “Format1” to format the number n1 (C style formatting - sprintf). New in version 6.0.

• commify (“String1”)

adds thousands separators (commas) to a long number to make it more readable New in version 6.0.

String functions that return a number

• length (“String1”)

returns the number of characters of “String1”

Arithmetic operations and functions that return a number

• round (n1 , n2)

returns n1 rounded to a multiple of n2: n2 * round(n1/n2) New in version 6.0.

• n1 + n2

returns the sum of n1 and n2

• n1 - n2

returns n2 subtracted from n1

• n1 * n2

returns n1 multiplicated with n2

• n1 / n2>

returns n1 divided by n2

• -n1

returns n1 negated

• n1 ^ n2

returns n1 to the power of n2

Note: When the numerical operations above are used like logical operations, the following rule applies: values
equal to zero will be taken as ‘false’ and everything else will be ‘true’. That means the expression

(6 + 5)

would return true, but

(5 - 5)

would return false.

134 Chapter 4. Mapfile

MapServer Documentation, Release 6.4.1

Spatial functions that return a number (GEOS)

• area (shape1)

returns the area of shape1 New in version 6.0.

Spatial functions that return a shape (GEOS)

• fromtext (“String1”)

returns the shape corresponding to String1 (WKT - well known text)

fromText(’POINT(500000 5000000)’)

New in version 6.0.

• buffer (shape1 , n1)

returns the shape that results when shape1 is buffered with bufferdistance n1 New in version 6.0.

• difference (shape1 , shape2)

returns the shape that results when the common area of shape1 and shape2 is subtracted from shape1 New
in version 6.0.

Temporal expressions

MapServer uses an internal time type to do comparison. To convert a string into this time type it will check the
list below from the top and down to check if the specified time matches, and if so, it will do the conversion. The
following are integer values: YYYY - year, MM - month, DD - date, hh - hours, mm - minutes, ss - seconds. The
following are character elements of the format: - (dash) - date separator, : (colon) - time separator, T - marks the
start of the time component (ISO 8601), space - marks the end of the date and start of the time component, Z -
zulu time (0 UTC offset).

• YYYY-MM-DDThh:mm:ssZ

• YYYY-MM-DDThh:mm:ss

• YYYY-MM-DD hh:mm:ss

• YYYY-MM-DDThh:mm

• YYYY-MM-DD hh:mm

• YYYY-MM-DDThh

• YYYY-MM-DD hh

• YYYY-MM-DD

• YYYY-MM

• YYYY

• Thh:mm:ssZ

• Thh:mm:ss

For temporal values obtained this way, the following operations are supported:

• (t1 eq t2)

(t1 == t2) - deprecated since 6.0

(t1 = t2)

returns true when the times are equal.

4.1. Mapfile 135

MapServer Documentation, Release 6.4.1

• (t1 != t2)

(t1 ne t2)

returns true when the times are not equal.

• (t1 < t2)

(t1 lt t2)

returns true when t1 is earlier than t2

• (t1 > t2)

(t1 gt t2)

returns true when t1 is later than t2.

• (t1 <= t2)

(t1 le t2)

returns true when t1 is earlier than or equal to t2

• (t1 >= t2)

(t1 ge t2)

returns true when t1 is later than or equal to t2.

4.1.7 FEATURE

POINTS A set of xy pairs terminated with an END, for example:

POINTS 1 1 50 50 1 50 1 1 END

Note: POLYGON/POLYLINE layers POINTS must start and end with the same point (i.e. close the
feature).

ITEMS Comma separated list of the feature attributes:

ITEMS "value1;value2;value3"

Note: Specifying the same number of items is recommended for each features of the same layer. The item
names should be specified as a PROCESSING option of the layer.

TEXT [string] String to use for labeling this feature.

WKT [string] A geometry expressed in OpenGIS Well Known Text geometry format. This feature is only sup-
ported if MapServer is built with OGR or GEOS support.

WKT "POLYGON((500 500, 3500 500, 3500 2500, 500 2500, 500 500))"
WKT "POINT(2000 2500)"

Note: Inline features should be defined as their own layers in the mapfile. If another CONNECTIONTYPE is
specified in the same layer, MapServer will always use the inline features to draw the layer and ignore the other
CONNECTIONTYPEs.

4.1.8 FONTSET

Author Kari Guerts

Author Jeff McKenna

136 Chapter 4. Mapfile

MapServer Documentation, Release 6.4.1

Contact jmckenna at gatewaygeomatics.com

Revision $Revision$

Date $Date$

Last Updated 2008/10/08

Contents

• FONTSET
– Format of the fontset file

FONTSET is a MAP parameter. The syntax is:

FONTSET [filename]

Where filename gives the location of the fontset file of the system. The location of the system fontset file could for
instance be /usr/share/fonts/truetype/font.list (Debian). The location can be specified using a relative or absolute
path.

Format of the fontset file

The format of the fontset file is very simple. Each line contains 2 items: An alias and the name/path of the font
separated by white space. The alias is simply the name you refer to the font as in your Mapfile (eg. times-bold).
The name is the actual name of the TrueType file. If not full path then it is interpreted as relative to the location of
the fontset. Here’s the fontset I use (the font.list file and all .ttf files are stored in the same sub-directory).

Note: Aliases are case sensitive. Excellent reference information about the TrueType format and online font
resources is available from the FreeType.

arial arial.ttf
arial-bold arialbd.ttf
arial-italic ariali.ttf
arial-bold-italic arialbi.ttf
arial_black ariblk.ttf
comic_sans comic.ttf
comic_sans-bold comicbd.ttf
courier cour.ttf
courier-bold courbd.ttf
courier-italic couri.ttf
courier-bold-italic courbi.ttf
georgia georgia.ttf
georgia-bold georgiab.ttf
georgia-italic georgiai.ttf
georgia-bold-italic georgiaz.ttf
impact impact.ttf
monotype.com monotype.ttf
recreation_symbols recreate.ttf
times times.ttf
times-bold timesbd.ttf
times-italic timesi.ttf
times-bold-italic timesbi.ttf
trebuchet_ms trebuc.ttf
trebuchet_ms-bold trebucbd.ttf
trebuchet_ms-italic trebucit.ttf
trebuchet_ms-bold-italic trebucbi.ttf
verdana verdana.ttf
verdana-bold verdanab.ttf
verdana-italic verdanai.ttf
verdana-bold-italic verdanaz.ttf

4.1. Mapfile 137

http://www.freetype.org/

MapServer Documentation, Release 6.4.1

4.1.9 GRID

Description

The GRID object can be used to add labeled graticule lines to your map. Initially developed in 2003 by John
Novak, the GRID object is designed to be used inside a LAYER object to allow multiple GRID objects for a single
map (allowing for example: a lat/long GRID, a State Plane GRID, and a UTM GRID to be displayed on the same
map image).

Mapfile Parameters:

LABELFORMAT [DD|DDMM|DDMMSS|C format string] Format of the label. “DD” for degrees, “DDMM”
for degrees minutes, and “DDMMSS” for degrees, minutes, seconds. A C-style formatting string is also
allowed, such as “%g°” to show decimal degrees with a degree symbol. The default is decimal display of
whatever SRS you’re rendering the GRID with.

MINARCS [double] The minimum number of arcs to draw. Increase this parameter to get more lines. Optional.

MAXARCS [double] The maximum number of arcs to draw. Decrease this parameter to get fewer lines. Op-
tional.

MININTERVAL [double] The minimum number of intervals to try to use. The distance between the grid lines,
in the units of the grid’s coordinate system. Optional.

MAXINTERVAL [double] The maximum number of intervals to try to use. The distance between the grid lines,
in the units of the grid’s coordinate system. Optional.

MINSUBDIVIDE [double] The minimum number of segments to use when rendering an arc. If the lines should
be very curved, use this to smooth the lines by adding more segments. Optional.

MAXSUBDIVIDE [double] The maximum number of segments to use when rendering an arc. If the graticule
should be very straight, use this to minimize the number of points for faster rendering. Optional, default
256.

Example1: Grid Displaying Degrees

LAYER
NAME "grid"
METADATA
"DESCRIPTION" "Grid"

END
TYPE LINE
STATUS ON
CLASS
NAME "Graticule"
COLOR 0 0 0
LABEL

COLOR 255 0 0
FONT "sans"
TYPE truetype
SIZE 8
POSITION AUTO
PARTIALS FALSE
BUFFER 2
OUTLINECOLOR 255 255 255

END
END
PROJECTION
"init=epsg:4326"

END
GRID

138 Chapter 4. Mapfile

MapServer Documentation, Release 6.4.1

LABELFORMAT "DD"
END

END # Layer

Example2: Grid Displaying Degrees with Symbol

LAYER
NAME "grid"
METADATA
"DESCRIPTION" "Grid"

END
TYPE LINE
STATUS ON
CLASS
NAME "Graticule"
COLOR 0 0 0
LABEL

COLOR 255 0 0
FONT "sans"
TYPE truetype
SIZE 8
POSITION AUTO
PARTIALS FALSE
BUFFER 2
OUTLINECOLOR 255 255 255

END
END
PROJECTION
"init=epsg:4326"

END
GRID
LABELFORMAT ’%g°’

END
END # Layer

4.1. Mapfile 139

MapServer Documentation, Release 6.4.1

Example2: Grid Displayed in Other Projection (Google Mercator)

LAYER
NAME "grid"
METADATA
"DESCRIPTION" "Grid"

END
TYPE LINE
STATUS ON
CLASS
NAME "Graticule"
COLOR 0 0 0
LABEL

COLOR 255 0 0
FONT "sans"
TYPE truetype
SIZE 8
POSITION AUTO
PARTIALS FALSE
BUFFER 2
OUTLINECOLOR 255 255 255

END
END
PROJECTION
"init=epsg:3857"

END
GRID
LABELFORMAT ’%.0fm’
MININTERVAL 5000000

END
END # Layer

140 Chapter 4. Mapfile

MapServer Documentation, Release 6.4.1

Note: Pay attention to the values you use for the INTERVAL parameter; it is possible to confuse/overload
MapServer by telling it to draw a graticule line every meter (MININTERVAL 1).

4.1.10 INCLUDE

When this directive is encountered parsing switches to the included file immediately. As a result the included file
can be comprised of any valid mapfile syntax. For example:

INCLUDE ’myLayer.map’

Performance does not seem to be seriously impacted with limited use, however in high performance instances you
may want to use includes in a pre-processing step to build a production mapfile. The C pre-processor can also be
used (albeit with a different syntax) and is far more powerful.

Notes

• Supported in versions 4.10 and higher.

• The name of the file to be included MUST be quoted (single or double quotes).

• Includes may be nested, up to 5 deep.

• File location can be given as a full path to the file, or (in MapServer >= 4.10.1) as a path relative to the
mapfile.

• Debugging can be problematic because:

1. the file an error occurs in does not get output to the user

2. the line number counter is not reset for each file. Here is one possible error that is thrown when the
include file cannot be found:

4.1. Mapfile 141

MapServer Documentation, Release 6.4.1

msyylex(): Unable to access file. Error opening included file "parks_include.map"

Example

MAP
NAME "include_mapfile"
EXTENT 0 0 500 500
SIZE 250 250

INCLUDE "test_include_symbols.map"
INCLUDE "test_include_layer.map"

END

where test_include_symbols.map contains:

SYMBOL
NAME ’square’
TYPE VECTOR
FILLED TRUE
POINTS 0 0 0 1 1 1 1 0 0 0 END

END

and test_include_layer.map contains:

LAYER
TYPE POINT
STATUS DEFAULT
FEATURE
POINTS 10 10 40 20 300 300 400 10 10 400 END

END
CLASS
NAME ’Church’
COLOR 0 0 0
SYMBOL ’square’
SIZE 7
STYLE

SYMBOL "square"
SIZE 5
COLOR 255 255 255

END
STYLE

SYMBOL "square"
SIZE 3
COLOR 0 0 255

END
END

END

4.1.11 JOIN

Description

Joins are defined within a LAYER object. It is important to understand that JOINs are ONLY available once a query
has been processed. You cannot use joins to affect the look of a map. The primary purpose is to enable lookup
tables for coded data (e.g. 1 => Forest) but there are other possible uses.

Supported Formats

• DBF/XBase files

142 Chapter 4. Mapfile

MapServer Documentation, Release 6.4.1

• CSV (comma delimited text file)

• PostgreSQL tables

• MySQL tables

Mapfile Parameters:

CONNECTION [string] Parameters required for the join table’s database connection (not required for DBF or
CSV joins). The following is an example connection for PostgreSQL:

CONNECTION "host=127.0.0.1 port=5432 user=pg password=pg dbname=somename"
CONNECTIONTYPE POSTGRESQL

CONNECTIONTYPE [csv|mysql|postgresql] Type of connection (not required for DBF joins). For Post-
greSQL use postgresql, for CSV use csv, for MySQL use mysql.

FOOTER [filename] Template to use after a layer’s set of results have been sent. In other words, this header
HTML will be displayed after the contents of the TEMPLATE HTML.

FROM [column] Join column in the dataset. This is case sensitive.

HEADER [filename] Template to use before a layer’s set of results have been sent. In other words, this header
HTML will be displayed before the contents of the TEMPLATE HTML.

NAME [string] Unique name for this join. Required.

TABLE [filename|tablename] For file-based joins this is the name of XBase or comma delimited file (relative to
the location of the mapfile) to join TO. For PostgreSQL support this is the name of the PostgreSQL table to
join TO.

TEMPLATE [filename] Template to use with one-to-many joins. The template is processed once for each record
and can only contain substitutions for columns in the joined table. Refer to the column in the joined table in
your template like [joinname_columnname], where joinname is the NAME specified for the JOIN object.

TO [column] Join column in the table to be joined. This is case sensitive.

TYPE [ONE-TO-ONE|ONE-TO-MANY] The type of join. Default is one-to-one.

Example 1: Join from Shape dataset to DBF file

Mapfile Layer

LAYER
NAME "prov_bound"
TYPE POLYGON
STATUS DEFAULT
DATA "prov.shp"
CLASS
NAME "Province"
STYLE

OUTLINECOLOR 120 120 120
COLOR 255 255 0

END
END
TEMPLATE "../htdocs/cgi-query-templates/prov.html"
HEADER "../htdocs/cgi-query-templates/prov-header.html"
FOOTER "../htdocs/cgi-query-templates/footer.html"
JOIN
NAME "test"
TABLE "../data/lookup.dbf"
FROM "ID"
TO "IDENT"

4.1. Mapfile 143

MapServer Documentation, Release 6.4.1

TYPE ONE-TO-ONE
END

END # layer

Ogrinfo

>ogrinfo lookup.dbf lookup -summary
INFO: Open of ‘lookup.dbf’
using driver ‘ESRI Shapefile’ successful.

Layer name: lookup
Geometry: None
Feature Count: 12
Layer SRS WKT:
(unknown)
IDENT: Integer (2.0)
VAL: Integer (2.0)

>ogrinfo prov.shp prov -summary
INFO: Open of ‘prov.shp’
using driver ‘ESRI Shapefile’ successful.

Layer name: prov
Geometry: Polygon
Feature Count: 12
Extent: (-2340603.750000, -719746.062500) - (3009430.500000, 3836605.250000)
Layer SRS WKT:
(unknown)
NAME: String (30.0)
ID: Integer (2.0)

Template

<tr bgcolor="#EFEFEF">
<td align="left">[NAME]</td>
<td align="left">[test_VAL]</td>

</tr>

Example 2: Join from Shape dataset to PostgreSQL table

Mapfile Layer

LAYER
NAME "prov_bound"
TYPE POLYGON
STATUS DEFAULT
DATA "prov.shp"
CLASS
NAME "Province"
STYLE

OUTLINECOLOR 120 120 120
COLOR 255 255 0

END
END
TOLERANCE 20
TEMPLATE "../htdocs/cgi-query-templates/prov.html"
HEADER "../htdocs/cgi-query-templates/prov-header.html"

144 Chapter 4. Mapfile

MapServer Documentation, Release 6.4.1

FOOTER "../htdocs/cgi-query-templates/footer.html"
JOIN
NAME "test"
CONNECTION "host=127.0.0.1 port=5432 user=pg password=pg dbname=join"
CONNECTIONTYPE postgresql
TABLE "lookup"
FROM "ID"
TO "ident"
TYPE ONE-TO-ONE

END
END # layer

Ogrinfo

>ogrinfo -ro PG:"host=127.0.0.1 port=5432 user=pg password=pg dbname=join"
lookup -summary

INFO: Open of ‘PG:host=127.0.0.1 port=5432 user=pg password=pg dbname=join’
using driver ‘PostgreSQL’ successful.

Layer name: lookup
Geometry: Unknown (any)
Feature Count: 12
Layer SRS WKT:
(unknown)
ident: Integer (0.0)
val: Integer (0.0)

Template

<tr bgcolor="#EFEFEF">
<td align="left">[NAME]</td>
<td align="left">[test_val]</td>

</tr>

Example 3: Join from Shape dataset to CSV file

Mapfile Layer

LAYER
NAME "prov_bound"
TYPE POLYGON
STATUS DEFAULT
DATA "prov.shp"
CLASS
NAME "Province"
STYLE

OUTLINECOLOR 120 120 120
COLOR 255 255 0

END
END
TOLERANCE 20
TEMPLATE "../htdocs/cgi-query-templates/prov.html"
HEADER "../htdocs/cgi-query-templates/prov-header.html"
FOOTER "../htdocs/cgi-query-templates/footer.html"
JOIN
NAME "test"
CONNECTIONTYPE CSV

4.1. Mapfile 145

MapServer Documentation, Release 6.4.1

TABLE "../data/lookup.csv"
FROM "ID"
#TO "IDENT" # see note below
TO "1" # see note below
TYPE ONE-TO-ONE

END
END # layer

CSV File Structure

"IDENT","VAL"
1,12
2,11
3,10
4,9
5,8
6,7
7,6
8,5
9,4
10,3
11,2
12,1

Note: The CSV driver currently doesn’t read column names from the first row. It just uses indexes (1, 2, ... n) to
reference the columns. It’s ok to leave column names as the first row since they likely won’t match anything but
they aren’t used. Typically you’d see something like TO “1” in the JOIN block. Then in the template you’d use
[name_1], [name_2], etc...

Ogrinfo

>ogrinfo lookup.csv lookup -summary
INFO: Open of ‘lookup.csv’
using driver ‘CSV’ successful.

Layer name: lookup
Geometry: None
Feature Count: 12
Layer SRS WKT:
(unknown)
IDENT: String (0.0)
VAL: String (0.0)

Template (prov.html)

Ideally this the template should look like this:

<!-- MapServer Template -->
<tr bgcolor="#EFEFEF">

<td align="left">[NAME]</td>
<td align="left">[test_VAL]</td>

</tr>

But since attribute names are not supported for CSV files (see note above), the following will have to be used:

146 Chapter 4. Mapfile

MapServer Documentation, Release 6.4.1

<!-- MapServer Template -->
<tr bgcolor="#EFEFEF">

<td align="left">[NAME]</td>
<td align="left">[test_2]</td>

</tr>

Example 4: Join from Shape dataset to MySQL

Mapfile Layer

LAYER
NAME "prov_bound"
TYPE POLYGON
STATUS DEFAULT
DATA "prov.shp"
CLASS
NAME "Province"
STYLE

OUTLINECOLOR 120 120 120
COLOR 255 255 0

END # style
END # class
TOLERANCE 20
TEMPLATE "../htdocs/cgi-query-templates/prov.html"
HEADER "../htdocs/cgi-query-templates/prov-header.html"
FOOTER "../htdocs/cgi-query-templates/footer.html"
JOIN
NAME "mysql-join"
CONNECTIONTYPE MYSQL
CONNECTION ’server:user:password:database’
TABLE "mysql-tablename"
FROM "ID"
TO "mysql-column"
TYPE ONE-TO-ONE

END # join
END # layer

Example 5: One-to-many join

In a join of type ONE-TO-MANY, the JOIN object needs to contain a TEMPLATE. This TEMPLATE
is used for each matching record in the join table. Columns in the join table are referenced using
<join_name>_<join_column_name>. Columns in the layer table are referenced using <column_name>.

For a one-to-many join, the LAYER TEMPLATE file has to contain a reference to the the JOIN object, as follows:
[join_<join_name>].

In this example, it is assumed that the join table many.dbf contains the columns MANYFIELD1 and MANY-
FIELD2 in addition to the join column (IDENT).

Layer object:

LAYER
NAME "joinonetomany"
TYPE POLYGON
STATUS DEFAULT
DATA "prov.shp"
CLASS
NAME "Province"
STYLE

OUTLINECOLOR 120 120 120

4.1. Mapfile 147

MapServer Documentation, Release 6.4.1

COLOR 255 255 0
END # style

END # class
TEMPLATE "oneToMany.html"
HEADER "oneToMany_header.html"
FOOTER "oneToMany_footer.html"
JOIN
NAME "onetomanytest"
TABLE "many.dbf"
FROM "ID"
TO "IDENT"
TYPE ONE-TO-MANY
TEMPLATE "oneToMany_join.html"

END # join
END # layer

Template oneToMany_header.html:

<!-- Mapserver Template -->
<html>

<head><title>One to Many Join</title></head>
<body>
<h1>Mapserver output</h1>
<table>

Template oneToMany.html:

<!-- Mapserver Template -->
<tr>

<td>[ID]</td>
<td><table>

[join_onetomanytest]
</table></td>

</tr>

Template oneToMany_join.html:

<!-- Mapserver Template -->
<tr>
<td>[NAME]</td>
<td>[onetomanytest_MANYFIELD1]</td>
<td>[onetomanytest_MANYFIELD2]</td>

</tr>

Template oneToMany_footer.html:

<!-- Mapserver Template -->
</table>

</body>
<html>

4.1.12 LABEL

ALIGN [left|center|right] Specifies text alignment for multiline labels (see WRAP) Note that the alignment
algorithm is far from precise, so don’t expect fabulous results (especially for right alignment) if you’re not
using a fixed width font. New in version 5.4.

ANGLE [double|auto|auto2|follow|attribute]

• Angle, given in degrees, to draw the label.

• AUTO allows MapServer to compute the angle. Valid for LINE layers only.

148 Chapter 4. Mapfile

MapServer Documentation, Release 6.4.1

• AUTO2 same as AUTO, except no logic is applied to try to keep the text from being rendered in
reading orientation (i.e. the text may be rendered upside down). Useful when adding text arrows
indicating the line direction.

• FOLLOW was introduced in version 4.10 and tells MapServer to compute a curved label for appropri-
ate linear features (see RFC11 for specifics). See also MAXOVERLAPANGLE.

• [Attribute] was introduced in version 5.0, to specify the item name in the attribute table to use for
angle values. The hard brackets [] are required. For example, if your shapefile’s DBF has a field
named “MYANGLE” that holds angle values for each record, your LABEL object might contain:

LABEL
COLOR 150 150 150
OUTLINECOLOR 255 255 255
FONT "sans"
TYPE truetype
SIZE 6
ANGLE [MYANGLE]
POSITION AUTO
PARTIALS FALSE

END

The associated RFC document for this feature is RFC19.

ANTIALIAS [true|false] Should text be antialiased? Note that this requires more available colors, decreases
drawing performance, and results in slightly larger output images. Only useful for GD (gif) rendering.
Default is false. Has no effect for the other renderers (where anti-aliasing can not be turned off).

BACKGROUNDCOLOR [r] [g] [b] Color to draw a background rectangle (i.e. billboard). Off by default.

Note: Removed in 6.0. Use a LABEL STYLE object with GEOMTRANSFORM labelpoly and COLOR.

BACKGROUNDSHADOWCOLOR [r] [g] [b] Color to draw a background rectangle (i.e. billboard) shadow.
Off by default.

Note: Removed in 6.0. Use a LABEL STYLE object with GEOMTRANSFORM labelpoly, COLOR and
OFFSET.

BACKGROUNDSHADOWSIZE [x][y] How far should the background rectangle be offset? Default is 1.

Note: Removed in 6.0. Use a LABEL STYLE object with GEOMTRANSFORM labelpoly, COLOR and
OFFSET.

BUFFER [integer] Padding, in pixels, around labels. Useful for maintaining spacing around text to enhance
readability. Available only for cached labels. Default is 0.

COLOR [r] [g] [b] | [attribute]

• Color to draw text with.

• [Attribute] was introduced in version 5.0, to specify the item name in the attribute table to use for
color values. The hard brackets [] are required. For example, if your shapefile’s DBF has a field
named “MYCOLOR” that holds color values for each record, your LABEL object might contain:

LABEL
COLOR [MYCOLOR]
OUTLINECOLOR 255 255 255
FONT "sans"
TYPE truetype
SIZE 6
POSITION AUTO

4.1. Mapfile 149

MapServer Documentation, Release 6.4.1

PARTIALS FALSE
END

The associated RFC document for this feature is RFC19.

ENCODING [string] Supported encoding format to be used for labels. If the format is not supported, the label
will not be drawn. Requires the iconv library (present on most systems). The library is always detected if
present on the system, but if not, the label will not be drawn.

Required for displaying international characters in MapServer. More information can be found in the Label
Encoding document.

EXPRESSION [string] Expression that determines when the LABEL is to be applied. See EXPRESSION in
CLASS. New in version 6.2.

FONT [name|attribute]

• Font alias (as defined in the FONTSET) to use for labeling.

• [Attribute] was introduced in version 5.6 to specfify the font alias.

• May contain a comma-separated list of up to MS_MAX_LABEL_FONTS (usually 5) font aliases used
as fallback fonts in renderers supporting it, if a glyph is not available in a font. If specified directly, be
sure to enclose the list with quotes. See RFC80.

FORCE [true|false] Forces labels for a particular class on, regardless of collisions. Available only for cached
labels. Default is false. If FORCE is true and PARTIALS is false, FORCE takes precedence, and partial
labels are drawn.

MAXLENGTH [integer] This keyword interacts with the WRAP keyword so that line breaks only occur after
the defined number of characters.

Table 4.9: Interaction with WRAP keyword

maxlength = 0 maxlength > 0 maxlength < 0
wrap =
‘char’

always wrap at the
WRAP character

newline at the first WRAP
character after MAXLENGTH
characters

hard wrap (always break at
exactly MAXLENGTH
characters)

no
wrap

no processing skip label if it contains more than
MAXLENGTH characters

hard wrap (always break at
exactly MAXLENGTH
characters)

The associated RFC document for this feature is RFC40. New in version 5.4.

MAXOVERLAPANGLE [double] Angle threshold to use in filtering out ANGLE FOLLOW labels in which
characters overlap (floating point value in degrees). This filtering will be enabled by default starting with
MapServer 6.0. The default MAXOVERLAPANGLE value will be 22.5 degrees, which also matches the
default in GeoServer. Users will be free to tune the value up or down depending on the type of data they are
dealing with and their tolerance to bad overlap in labels. As per RFC 60, if MAXOVERLAPANGLE is set
to 0, then we fall back on pre-6.0 behavior which was to use maxoverlapangle = 0.4*MS_PI (40% of 180
degrees = 72degree).

The associated RFC document for this feature is RFC60.

MAXSCALEDENOM [double] Minimum scale at which this LABEL is drawn. Scale is given as the denomi-
nator of the actual scale fraction, for example for a map at a scale of 1:24,000 use 24000. New in version
5.4.

See Also:

Map Scale

MAXSIZE [double] Maximum font size to use when scaling text (pixels). Default is 256. Starting from version
5.4, the value can also be a fractional value (and not only integer). See LAYER SYMBOLSCALEDENOM.

MINDISTANCE [integer] Minimum distance between duplicate labels. Given in pixels.

150 Chapter 4. Mapfile

MapServer Documentation, Release 6.4.1

MINFEATURESIZE [integer|auto] Minimum size a feature must be to be labeled. Given in pixels. For line
data the overall length of the displayed line is used, for polygons features the smallest dimension of the
bounding box is used. “Auto” keyword tells MapServer to only label features that are larger than their
corresponding label. Available for cached labels only.

MINSCALEDENOM [double] Maximum scale at which this LABEL is drawn. Scale is given as the denomi-
nator of the actual scale fraction, for example for a map at a scale of 1:24,000 use 24000. New in version
5.4.

See Also:

Map Scale

MINSIZE [double] Minimum font size to use when scaling text (pixels). Default is 4. Starting from version 5.4,
the value can also be a fractional value (and not only integer). See LAYER SYMBOLSCALEDENOM.

OFFSET [x][y] Offset values for labels, relative to the lower left hand corner of the label and the label point.
Given in pixels. In the case of rotated text specify the values as if all labels are horizontal and any rotation
will be compensated for.

When used with FOLLOW angle, two additional options are available to render the label parallel to the
original feature:

• OFFSET x -99 : will render the label to the left or to the right of the feature, depending on the sign of
{x}.

• OFFSET x 99 : will render the label above or below the feature, depending on the sign of {x}.

See LAYER SYMBOLSCALEDENOM.

OUTLINECOLOR [r] [g] [b] | [attribute]

• Color to draw a one pixel outline around the characters in the text.

• [attribute] was introduced in version 5.0, to specify the item name in the attribute table to use for color
values. The hard brackets [] are required. For example, if your shapefile’s DBF has a field named
“MYOUTCOLOR” that holds color values for each record, your LABEL object might contain:

LABEL
COLOR 150 150 150
OUTLINECOLOR [MYOUTCOLOR]
FONT "sans"
TYPE truetype
SIZE 6
POSITION AUTO
PARTIALS FALSE

END

The associated RFC document for this feature is RFC19.

OUTLINEWIDTH [integer] Width of the outline if OUTLINECOLOR has been set. Defaults to 1. Currently
only the AGG renderer supports values greater than 1, and renders these as a ‘halo’ effect: recommended
values are 3 or 5.

PARTIALS [true|false] Can text run off the edge of the map? Default is true. If FORCE is true and PARTIALS
is false, FORCE takes precedence, and partial labels are drawn.

POSITION [ul|uc|ur|cl|cc|cr|ll|lc|lr|auto] Position of the label relative to the labeling point (layers only). First
letter is “Y” position, second letter is “X” position. “Auto” tells MapServer to calculate a label position
that will not interfere with other labels. With points, MapServer selects from the 8 outer positions (i.e.
excluding cc). With polygons, MapServer selects from cc (added in MapServer 5.4), uc, lc, cl and cr as
possible positions. With lines, it only uses lc or uc, until it finds a position that doesn’t collide with labels
that have already been drawn. If all positions cause a conflict, then the label is not drawn (Unless the label’s
FORCE a parameter is set to “true”). “Auto” placement is only available with cached labels.

PRIORITY [integer]|[item_name]|[attribute] The priority parameter takes an integer value between 1 (lowest)
and 10 (highest). The default value is 1. It is also possible to bind the priority to an attribute (item_name)
using square brackets around the [item_name]. e.g. “PRIORITY [someattribute]”

4.1. Mapfile 151

MapServer Documentation, Release 6.4.1

Labels are stored in the label cache and rendered in order of priority, with the highest priority levels rendered
first. Specifying an out of range PRIORITY value inside a map file will result in a parsing error. An out of
range value set via MapScript or coming from a shape attribute will be clamped to the min/max values at
rendering time. There is no expected impact on performance for using label priorities.

[Attribute] was introduced in version 5.6. New in version 5.0.

REPEATDISTANCE [integer] The label will be repeated on every line of a multiline shape and will be repeated
multiple times along a given line at an interval of REPEATDISTANCE pixels.

The associated RFC document for this feature is RFC57. New in version 5.6.

SHADOWCOLOR [r] [g] [b] Color of drop shadow. A label with the same text will be rendered in this color
before the main label is drawn, resulting in a shadow effect on the the label characters. The offset of the
renderered shadow is set with SHADOWSIZE.

SHADOWSIZE [x][y]|[attribute][attribute]|[x][attribute]|[attribute][y] Shadow offset in pixels, see SHAD-
OWCOLOR.

[Attribute] was introduced in version 6.0, and can be used like:

SHADOWSIZE 2 2
SHADOWSIZE [shadowsizeX] 2
SHADOWSIZE 2 [shadowsizeY]
SHADOWSIZE [shadowsize] [shadowsize]

SIZE [double]|[tiny|small|medium|large|giant]|[attribute]

• Text size. Use a number to give the size in pixels of your TrueType font based label, or any of the
other 5 listed keywords for bitmap fonts.

When scaling is in effect (SYMBOLSCALEDENOM is specified for the LAYER), SIZE gives the size
of the font to be used at the map scale 1:SYMBOLSCALEDENOM.

• Starting from version 5.4, the value can also be a fractional value (and not only integer).

• [Attribute] was introduced in version 5.0, to specify the item name in the attribute table to use for size
values. The hard brackets [] are required. For example, if your shapefile’s DBF has a field named
“MYSIZE” that holds size values for each record, your LABEL object might contain:

LABEL
COLOR 150 150 150
OUTLINECOLOR 255 255 255
FONT "sans"
TYPE truetype
SIZE [MYSIZE]
POSITION AUTO
PARTIALS FALSE

END

The associated RFC document for this feature is RFC19.

STYLE The start of a STYLE object.

Label specific mechanisms of the STYLE object are the GEOMTRANSFORM options:

GEOMTRANSFORM [labelpnt|labelpoly] Creates a geometry that can be used for styling the label.

• labelpnt draws a marker on the geographic position the label is attached to. This corresponds to
the center of the label text only if the label is in position CC.

• labelpoly generates the bounding rectangle for the text, with 1 pixel of padding added in all
directions.

The resulting geometries can be styled using the mechanisms available in the STYLE object.

Example - draw a red background rectangle for the labels (i.e. billboard) with a “shadow” in
gray:

152 Chapter 4. Mapfile

MapServer Documentation, Release 6.4.1

STYLE
GEOMTRANSFORM ’labelpoly’
COLOR 153 153 153
OFFSET 3 2

END # STYLE
STYLE
GEOMTRANSFORM ’labelpoly’
COLOR 255 0 0

END # STYLE

New in version 6.0.

TEXT [string|expression] Text to label features with (useful when multiple labels are used). Overrides values
obtained from the LAYER LABELITEM and the CLASS TEXT. See TEXT in CLASS.

New in version 6.2.

TYPE [bitmap|truetype] Type of font to use. Generally bitmap fonts are faster to draw then TrueType fonts.
However, TrueType fonts are scalable and available in a variety of faces. Be sure to set the FONT parameter
if you select TrueType.

Note: Bitmap fonts are only supported with the AGG and GD renderers.

WRAP [character] Character that represents an end-of-line condition in label text, thus resulting in a multi-line
label. Interacts with MAXLENGTH for conditional line wrapping after a given number of characters

4.1.13 LAYER

CLASS Signals the start of a CLASS object.

Inside a layer, only a single class will be used for the rendering of a feature. Each feature is tested against
each class in the order in which they are defined in the mapfile. The first class that matches the its min/max
scale constraints and its EXPRESSION check for the current feature will be used for rendering.

CLASSGROUP [string] Specify the class’s group that would be considered at rendering time. The CLASS
object’s GROUP parameter must be used in combination with CLASSGROUP.

CLASSITEM [attribute] Item name in attribute table to use for class lookups.

CLUSTER Signals the start of a CLUSTER object.

The CLUSTER configuration option provides to combine multiple features from the layer into single (ag-
gregated) features based on their relative positions. Supported only for POINT layers.

See Also:

rfc69

CONNECTION [string] Database connection string to retrieve remote data.

An SDE connection string consists of a hostname, instance name, database name, username and password
separated by commas.

A PostGIS connection string is basically a regular PostgreSQL connection string, it takes the form of
“user=nobody password=****** dbname=dbname host=localhost port=5432”

An Oracle connection string: user/pass[@db]

See Also:

Vector Data for specific connection information for various data sources.

CONNECTIONTYPE [contour|local|ogr|oraclespatial|plugin|postgis|sde|union|uvraster|wfs|wms] Type of
connection. Default is local. See additional documentation for any other type.

See Also:

4.1. Mapfile 153

MapServer Documentation, Release 6.4.1

Vector Data for specific connection information for various data sources. See Union Layer for combining
layers, added in MapServer 6.0

Note: mygis is another connectiontype, but it is deprecated; please see the MySQL section of the Vector
Data document for connection details.

DATA [filename]|[sde parameters][postgis table/column][oracle table/column] Full filename of the spatial
data to process. No file extension is necessary for shapefiles. Can be specified relative to the SHAPEPATH
option from the Map Object.

If this is an SDE layer, the parameter should include the name of the layer as well as the geometry column,
i.e. “mylayer,shape,myversion”.

If this is a PostGIS layer, the parameter should be in the form of “<columnname> from <tablename>”,
where “columnname” is the name of the column containing the geometry objects and “tablename” is the
name of the table from which the geometry data will be read.

For Oracle, use “shape FROM table” or “shape FROM (SELECT statement)” or even more complex Oracle
compliant queries! Note that there are important performance impacts when using spatial subqueries how-
ever. Try using MapServer’s FILTER whenever possible instead. You can also see the SQL submitted by
forcing an error, for instance by submitting a DATA parameter you know won’t work, using for example a
bad column name.

See Also:

Vector Data for specific connection information for various data sources.

DEBUG [off|on|0|1|2|3|4|5] Enables debugging of a layer in the current map.

Debugging with MapServer versions >= 5.0:

Verbose output is generated and sent to the standard error output (STDERR) or the MapServer errorfile if
one is set using the “MS_ERRORFILE” environment variable. You can set the environment variable by
using the CONFIG parameter at the MAP level of the mapfile, such as:

CONFIG "MS_ERRORFILE" "/ms4w/tmp/ms_error.txt"

You can also set the environment variable in Apache by adding the following to your httpd.conf:

SetEnv MS_ERRORFILE "/ms4w/tmp/ms_error.txt"

Once the environment variable is set, the DEBUG mapfile parameter can be used to control the level of
debugging output. Here is a description of the possible DEBUG values:

• DEBUG O or OFF - only msSetError() calls are logged to MS_ERRORFILE. No msDebug() output
at all. This is the default and corresponds to the original behavior of MS_ERRORFILE in MapServer
4.x

• DEBUG 1 or ON - includes all output from DEBUG 0 plus msDebug() warnings about common pit-
falls, failed assertions or non-fatal error situations (e.g. missing or invalid values for some parameters,
missing shapefiles in tileindex, timeout error from remote WMS/WFS servers, etc.)

• DEBUG 2 - includes all output from DEBUG 1 plus notices and timing information useful for tuning
mapfiles and applications

• DEBUG 3 - all of DEBUG 2 plus some debug output useful in troubleshooting problems such as
WMS connection URLs being called, database connection calls, etc. This is the recommended level
for debugging mapfiles.

• DEBUG 4 - DEBUG 3 plus even more details...

• DEBUG 5 - DEBUG 4 plus any msDebug() output that might be more useful to the developers than
to the users.

You can also set the debug level by using the “MS_DEBUGLEVEL” environment variable.

154 Chapter 4. Mapfile

MapServer Documentation, Release 6.4.1

The DEBUG setting can also be specified for the entire map, by setting the DEBUG parameter in the MAP
object.

For more details on this debugging mechanism, please see RFC28.

Debugging with MapServer versions < 5:

Verbose output is generated and sent to the standard error output (STDERR) or the MapServer logfile if
one is set using the LOG parameter in the WEB object. Apache users will see timing details for drawing in
Apache’s error_log file. Requires MapServer to be built with the DEBUG=MSDEBUG option (–with-debug
configure option).

DUMP [true|false] Since 6.0, DUMP is not used anymore. LAYER METADATA is used instead.

Switch to allow MapServer to return data in GML format. Useful when used with WMS GetFeatureInfo
operations. “false” by default. Deprecated since version 6.0: LAYER METADATA is used instead.

See Also:

WMS Server

EXTENT [minx] [miny] [maxx] [maxy] The spatial extent of the data. In most cases you will not need to
specify this, but it can be used to avoid the speed cost of having MapServer compute the extents of the
data. An application can also possibly use this value to override the extents of the map.

FEATURE Signals the start of a FEATURE object.

FILTER [string] This parameter allows for data specific attribute filtering that is done at the same time spatial
filtering is done, but before any CLASS expressions are evaluated. For OGR and shapefiles the string is
simply a mapserver regular expression. For spatial databases the string is a SQL WHERE clause that is
valid with respect to the underlying database.

For example: FILTER ([type]=’road’ and [size]<2)

FILTERITEM [attribute] Item to use with simple FILTER expressions. OGR and shapefiles only.

FOOTER [filename] Template to use after a layer’s set of results have been sent. Multiresult query modes only.

GEOMTRANSFORM [<expression>] Used to indicate that the current feature will be transformed. Introduced
in version 6.4.

• <expression>: Applies the given expression to the geometry.

Supported expressions:

– (buffer([shape],dist)): Buffer the geometry ([shape]) using dist pixels as buffer distance. For
polygons, a negative dist will produce a setback.

– (simplify([shape],tolerance)): simplifies a geometry ([shape]) using the standard Douglas-
Peucker algorithm.

– (simplifypt([shape], tolerance)): simplifies a geometry ([shape]), ensuring that the result is a
valid geometry having the same dimension and number of components as the input. tolerance
must be non-negative.

– (generalize([shape],tolerance)): simplifies a geometry ([shape]) in way comparable to FME’s
ThinNoPoint algorithm. See http://trac.osgeo.org/gdal/ticket/966 for more information.

– (smoothsia([shape], smoothing_size, smoothing_iteration, preprocessing)): will smooth a geom-
etry ([shape]) using the SIA algorithm

See Also:

Geometry Transformations and shape_smoothing

There is a difference between STYLE and LAYER GEOMTRANSFORM. LAYER-level will receive
ground coordinates (meters, degress, etc) and STYLE-level will receive pixel coordinates. The argument to
methods such as simplify() must be in the same units as the coordinates of the shapes at that point of the
rendering workflow, i.e. pixels at the STYLE-level and in ground units at the LAYER-level.

4.1. Mapfile 155

http://trac.osgeo.org/gdal/ticket/966

MapServer Documentation, Release 6.4.1

LAYER NAME "my_layer"
TYPE LINE
STATUS DEFAULT
DATA "lines.shp"
GEOMTRANSFORM (s i m p l i f y ([s h a p e], 10)) ## 10 ground units
CLASS

STYLE
GEOMTRANSFORM (buffer([s h a p e], 5) ## 5 pixels
WIDTH 2
COLOR 255 0 0

END
END

END

The [map_cellsize] variable is available if you need to pass a pixel value at the LAYER-level.

LAYER NAME "my_layer"
TYPE LINE
STATUS DEFAULT
DATA "lines.shp"
UNITS meters
10 * [map_cellsize] == 10 pixels converted to ground units
GEOMTRANSFORM (s i m p l i f y ([s h a p e], [map_cellsize]*10))

...

To get this variable working in the math expression parser, the [map_cellsize] has to be converted into the
layer ground unit. If you choose to use [map_cellsize] in your GEOMTRANSFORM expression, you must
explicitly set the UNITS option in the layer.

See Also:

Geometry Transformations

GRID Signals the start of a GRID object.

GROUP [name] Name of a group that this layer belongs to. The group name can then be reference as a regular
layer name in the template files, allowing to do things like turning on and off a group of layers at once.

If a group name is present in the LAYERS parameter of a CGI request, all the layers of the group are
returned (the STATUS of the LAYERs have no effect).

HEADER [filename] Template to use before a layer’s set of results have been sent. Multiresult query modes
only.

JOIN Signals the start of a JOIN object.

LABELANGLEITEM [attribute] (As of MapServer 5.0 this parameter is no longer available. Please see the
LABEL object’s ANGLE parameter) For MapServer versions < 5.0, this is the item name in attribute table
to use for class annotation angles. Values should be in degrees. Deprecated since version 5.0.

LABELCACHE [on|off] Specifies whether labels should be drawn as the features for this layer are drawn, or
whether they should be cached and drawn after all layers have been drawn. Default is on. Label overlap
removal, auto placement etc... are only available when the label cache is active.

LABELITEM [attribute] Item name in attribute table to use for class annotation (i.e. labeling).

LABELMAXSCALEDENOM [double] Minimum scale at which this LAYER is labeled. Scale is given as
the denominator of the actual scale fraction, for example for a map at a scale of 1:24,000 use 24000.
Implemented in MapServer 5.0, to replace the deprecated LABELMAXSCALE parameter.

See Also:

Map Scale

LABELMINSCALEDENOM [double] Maximum scale at which this LAYER is labeled. Scale is given as
the denominator of the actual scale fraction, for example for a map at a scale of 1:24,000 use 24000.
Implemented in MapServer 5.0, to replace the deprecated LABELMINSCALE parameter.

156 Chapter 4. Mapfile

MapServer Documentation, Release 6.4.1

See Also:

Map Scale

LABELREQUIRES [expression] Sets context for labeling this layer, for example:

LABELREQUIRES "![orthoquads]"

means that this layer would NOT be labeled if a layer named “orthoquads” is on. The expression consists
of a boolean expression based on the status of other layers, each [layer name] substring is replaced by a 0 or
a 1 depending on that layer’s STATUS and then evaluated as normal. Logical operators AND and OR can
be used.

LABELSIZEITEM [attribute] (As of MapServer 5.0 this parameter is no longer available. Please see the LA-
BEL object’s SIZE parameter) For MapServer versions < 5.0, this is the item name in attribute table to use
for class annotation sizes. Values should be in pixels. Deprecated since version 5.0.

MASK [layername] The data from the current layer will only be rendered where it intersects features from the
[layername] layer. [layername] must reference the NAME of another LAYER defined in the current mapfile.
can be any kind of mapserver layer, i.e. vector or raster. If the current layer has labelling configured, then
only labels who’s label-point fall inside the unmasked area will be added to the labelcache (the actual glyphs
for the label may be rendered ontop of the masked-out area.

Note: Unless you want the features of [layername] to actually appear on the generated map, [layername]
should usually be set to STATUS OFF.

See Also:

rfc79

MAXFEATURES [integer] Specifies the number of features that should be drawn for this layer in the CUR-
RENT window. Has some interesting uses with annotation and with sorted data (i.e. lakes by area).

MAXGEOWIDTH [double] Maximum width, in the map’s geographic units, at which this LAYER is drawn. If
MAXSCALEDENOM is also specified then MAXSCALEDENOM will be used instead.

The width of a map in geographic units can be found by calculating the following from the extents:

[maxx] - [minx]

New in version 5.4.0.

MAXSCALEDENOM [double] Minimum scale at which this LAYER is drawn. Scale is given as the denomi-
nator of the actual scale fraction, for example for a map at a scale of 1:24,000 use 24000. New in version
5.0.0: Replaced MAXSCALE.

See Also:

Map Scale

METADATA This keyword allows for arbitrary data to be stored as name value pairs. This is used with OGC
WMS to define things such as layer title. It can also allow more flexibility in creating templates, as anything
you put in here will be accessible via template tags.

Example:

METADATA
"title" "My layer title"
"author" "Me!"

END

MINGEOWIDTH [double]

Minimum width, in the map’s geographic units, at which this LAYER is drawn. If MINSCALEDE-
NOM is also specified then MINSCALEDENOM will be used instead.

The width of a map in geographic units can be found by calculating the following from the extents:

4.1. Mapfile 157

MapServer Documentation, Release 6.4.1

[maxx] - [minx]

New in version 5.4.0.

MINSCALEDENOM [double] Maximum scale at which this LAYER is drawn. Scale is given as the denomi-
nator of the actual scale fraction, for example for a map at a scale of 1:24,000 use 24000. Implemented in
MapServer 5.0, to replace the deprecated MINSCALE parameter.

See Also:

Map Scale

NAME [string] Short name for this layer. This name is the link between the mapfile and web interfaces that
refer to this name. They must be identical. The name should be unique, unless one layer replaces another
at different scales. Use the GROUP option to associate layers with each other. It is recommended that the
name not contain spaces, special characters, or begin with a number (which could cause problems through
interfaces such as OGC services).

OFFSITE [r] [g] [b] Sets the color index to treat as transparent for raster layers.

OPACITY [integer|alpha] Sets the opacity level (or the inability to see through the layer) of all classed pixels
for a given layer. The value can either be an integer in the range (0-100) or the named symbol “ALPHA”. A
value of 100 is opaque and 0 is fully transparent. Implemented in MapServer 5.0, to replace the deprecated
TRANSPARENCY parameter.

The “ALPHA” symbol directs the MapServer rendering code to honor the indexed or alpha transparency of
pixmap symbols used to style a layer. This is only needed in the case of RGB output formats, and should be
used only when necessary as it is expensive to render transparent pixmap symbols onto an RGB map image.

PLUGIN [filename] Additional library to load by MapServer, for this layer. This is commonly used to load
specific support for SDE and Microsoft SQL Server layers, such as:

CONNECTIONTYPE PLUGIN
CONNECTION "hostname,port:xxx,database,username,password"
PLUGIN "C:/ms4w/Apache/specialplugins/msplugin_sde_92.dll"
DATA "layername,geometrycolumn,SDE.DEFAULT"

POSTLABELCACHE [true|false] Tells MapServer to render this layer after all labels in the cache have been
drawn. Useful for adding neatlines and similar elements. Default is false.

PROCESSING [string] Passes a processing directive to be used with this layer. The supported processing direc-
tives vary by layer type, and the underlying driver that processes them.

• Attributes Directive - The ITEMS processing option allows to specify the name of attributes for inline
layers or specify the subset of the attributes to be used by the layer, such as:

PROCESSING "ITEMS=itemname1,itemname2,itemname3"

• Connection Pooling Directive - This is where you can enable connection pooling for certain layer
layer types. Connection pooling will allow MapServer to share the handle to an open database or layer
connection throughout a single map draw process. Additionally, if you have FastCGI enabled, the
connection handle will stay open indefinitely, or according to the options specified in the FastCGI con-
figuration. Oracle Spatial, ArcSDE, OGR and PostGIS/PostgreSQL currently support this approach.

PROCESSING "CLOSE_CONNECTION=DEFER"

• Label Directive - The LABEL_NO_CLIP processing option can be used to skip clipping of shapes
when determining associated label anchor points. This avoids changes in label position as extents
change between map draws. It also avoids duplicate labels where features appear in multiple adjacent
tiles when creating tiled maps.

PROCESSING "LABEL_NO_CLIP=True"

• Line Rendering Directive - The POLYLINE_NO_CLIP processing option can be used to skip clip-
ping of shapes when rendering styled lines (dashed or styled with symbols). This avoids changes in the

158 Chapter 4. Mapfile

MapServer Documentation, Release 6.4.1

line styling as extents change between map draws. It also avoids edge effects where features appear in
multiple adjacent tiles when creating tiled maps.

PROCESSING "POLYLINE_NO_CLIP=True"

• OGR Styles Directive - This directive can be used for obtaining label styles through MapScript. For
more information see the MapServer’s OGR document.

PROCESSING "GETSHAPE_STYLE_ITEMS=all"

• Raster Directives - All raster processing options are described in Raster Data. Here we see the
SCALE and BANDs directives used to autoscale raster data and alter the band mapping.

PROCESSING "SCALE=AUTO"
PROCESSING "BANDS=3,2,1"

PROJECTION Signals the start of a PROJECTION object.

REQUIRES [expression] Sets context for displaying this layer (see LABELREQUIRES).

SIZEUNITS [feet|inches|kilometers|meters|miles|nauticalmiles|pixels] Sets the unit of CLASS object SIZE
values (default is pixels). Useful for simulating buffering. nauticalmiles was added in MapServer 5.6.

STATUS [on|off|default] Sets the current status of the layer. Often modified by MapServer itself. Default turns
the layer on permanently.

Note: In CGI mode, layers with STATUS DEFAULT cannot be turned off using normal mechanisms.
It is recommended to set layers to STATUS DEFAULT while debugging a problem, but set them back to
ON/OFF in normal use.

Note: For WMS, layers in the server mapfile with STATUS DEFAULT are always sent to the client.

Note: The STATUS of the individual layers of a GROUP has no effect when the group name is present in
the LAYERS parameter of a CGI request - all the layers of the group will be returned.

STYLEITEM [<attribute>|auto] Item to use for feature specific styling. The style information may be repre-
sented by a separate attribute (style string) attached to the feature. MapServer supports the following style
string representations:

• MapServer STYLE definition - The style string can be represented as a MapServer STYLE block
according to the following example:

STYLE BACKGROUNDCOLOR 128 0 0 COLOR 0 0 208 END

• MapServer CLASS definition - By specifying the entire CLASS instead of a single style allows to
use further options (like setting expressions, label attributes, multiple styles) on a per feature basis.

• OGR Style String - MapServer support rendering the OGR style string format according to the OGR -
Feature Style Specification documentation. Currently only a few data sources support storing the styles
along with the features (like MapInfo, AutoCAD DXF, Microstation DGN), however those styles can
easily be transferred to many other data sources as a separate attribute by using the ogr2ogr command
line tool as follows:

ogr2ogr -sql "select *, OGR_STYLE from srclayer" "dstlayer" "srclayer"

The value: AUTO can be used for automatic styling.

• Automatic styling can be provided by the driver. Currently, only the OGR driver supports automatic
styling.

• When used for a Union Layer, the styles from the source layers will be used.

4.1. Mapfile 159

http://www.gdal.org/ogr/ogr_feature_style.html
http://www.gdal.org/ogr/ogr_feature_style.html
http://www.gdal.org/ogr2ogr.html

MapServer Documentation, Release 6.4.1

SYMBOLSCALEDENOM [double] The scale at which symbols and/or text appear full size. This allows for
dynamic scaling of objects based on the scale of the map. If not set then this layer will always appear at
the same size. Scaling only takes place within the limits of MINSIZE and MAXSIZE as described above.
Scale is given as the denominator of the actual scale fraction, for example for a map at a scale of 1:24,000
use 24000. Implemented in MapServer 5.0, to replace the deprecated SYMBOLSCALE parameter.

See Also:

Map Scale

TEMPLATE [file|url] Used as a global alternative to CLASS TEMPLATE. See Templating for more info.

TILEINDEX [filename|layername] Name of the tileindex file or layer. A tileindex is similar to an ArcInfo
library index. The tileindex contains polygon features for each tile. The item that contains the location of the
tiled data is given using the TILEITEM parameter. When a file is used as the tileindex for shapefile or raster
layers, the tileindex should be a shapefile. For CONNECTIONTYPE OGR layers, any OGR supported
datasource can be a tileindex. Normally the location should contain the path to the tile file relative to the
shapepath, not relative to the tileindex itself. If the DATA parameter contains a value then it is added to the
end of the location. When a tileindex layer is used, it works similarly to directly referring to a file, but any
supported feature source can be used (ie. postgres, oracle).

Note: All files in the tileindex should have the same coordinate system, and for vector files the same set of
attributes in the same order.

Note: Starting with MapServer 6.4, raster layers can use a tileindex with tiles of different projections. For
that, the TILESRS parameter must be specified.

TILEITEM [attribute] Item that contains the location of an individual tile, default is “location”.

TILESRS [attribute] Name of the attribute that contains the SRS of an individual tile. That SRS can be ex-
pressed in WKT format, as an EPSG:XXXX code or as a PROJ.4 string. If the tileindex contains rasters
in different projections, this option must be specified. If the tileindex has been generated with gdaltin-
dex (GDAL >= 2.0), the value of TILESRS is the value of the -src_srs_name option of gdaltindex. See
Tileindexes with tiles in different projections

Note: This option is currently available only on raster layers.

TOLERANCE [double] Sensitivity for point based queries (i.e. via mouse and/or map coordinates). Given in
TOLERANCEUNITS. If the layer is a POINT or a LINE, the default is 3. For all other layer types, the
default is 0. To restrict polygon searches so that the point must occur in the polygon set the tolerance to
zero. This setting does not apply to WFS GetFeature operations.

TOLERANCEUNITS [pixels|feet|inches|kilometers|meters|miles|nauticalmiles|dd] Units of the TOLER-
ANCE value. Default is pixels. Nauticalmiles was added in MapServer 5.6.

TRANSPARENCY [integer|alpha] - deprecated

Deprecated since version 5.0: Use OPACITY instead.

TRANSFORM [true|false ul|uc|ur|lc|cc|lr|ll|lc|lr] Tells MapServer whether or not a particular layer needs to be
transformed from some coordinate system to image coordinates. Default is true. This allows you to create
shapefiles in image/graphics coordinates and therefore have features that will always be displayed in the
same location on every map. Ideal for placing logos or text in maps. Remember that the graphics coordinate
system has an origin in the upper left hand corner of the image, contrary to most map coordinate systems.

Version 4.10 introduces the ability to define features with coordinates given in pixels (or percentages, see
UNITS), most often inline features, relative to something other than the UL corner of an image. That is
what ‘TRANSFORM FALSE’ means. By setting an alternative origin it allows you to anchor something
like a copyright statement to another portion of the image in a way that is independent of image size.

160 Chapter 4. Mapfile

MapServer Documentation, Release 6.4.1

TYPE [chart|circle|line|point|polygon|raster|query] Specifies how the data should be drawn. Need not be the
same as the shapefile type. For example, a polygon shapefile may be drawn as a point layer, but a point
shapefile may not be drawn as a polygon layer. Common sense rules.

In order to differentiate between POLYGONs and POLYLINEs (which do not exist as a type), simply
respectively use or omit the COLOR keyword when classifying. If you use it, it’s a polygon with a fill color,
otherwise it’s a polyline with only an OUTLINECOLOR.

A circle must be defined by a a minimum bounding rectangle. That is, two points that define the smallest
square that can contain it. These two points are the two opposite corners of said box. The following is an
example using inline points to draw a circle:

LAYER
NAME ’inline_circles’
TYPE CIRCLE
STATUS ON
FEATURE

POINTS
74.01 -53.8
110.7 -22.16

END
END
CLASS

STYLE
COLOR 0 0 255

END
END

END

TYPE query means the layer can be queried but not drawn.

Note: TYPE annotation has been deprecated since version 6.2. Identical functionality can be obtained by
adding LABEL level STYLE blocks, and do not require loading the datasets twice in two different layers as
was the case with layers of TYPE annotation.

See Also:

The Dynamic Charting HowTo for TYPE chart.

UNITS [dd|feet|inches|kilometers|meters|miles|nauticalmiles|percentages|pixels] Units of the layer. percent-
ages (in this case a value between 0 and 1) was added in MapServer 4.10 and is mostly geared for inline
features. nauticalmiles was added in MapServer 5.6.

VALIDATION Signals the start of a VALIDATION block.

As of MapServer 5.4.0, VALIDATION blocks are the preferred mechanism for specifying validation patterns
for CGI param runtime substitutions. See Run-time Substitution.

4.1.14 LEADER

Table of Contents

• LEADER
– Description
– Supported Layer Types
– Mapfile Parameters
– Mapfile Snippet
– Example: World Countries Labels

4.1. Mapfile 161

MapServer Documentation, Release 6.4.1

Description

Since version 6.2, MapServer has the ability to draw label lines to features where space is an issue for the label
(often when the label text is larger than the polygon being labelled). This feature was added through rfc81.

Supported Layer Types

POLYGON

Mapfile Parameters

GRIDSTEP [integer] Specifies the number of pixels between positions that are tested for a label line. You might
start with a value of 5, and increase depending on performance (see example below).

MAXDISTANCE [integer] Specifies the maximum distance in pixels from the normal label location that a leader
line can be drawn. You might start with a value of 30, and increase depending on the resulting placement
(see example below).

STYLE Signals the start of a STYLE object. Use this to style the leader line.

Mapfile Snippet

LAYER
NAME "my-labels"
TYPE POLYGON
...
CLASS
...
LABEL
...

END
LEADER

GRIDSTEP 5 # number of pixels between positions that are tested
MAXDISTANCE 30 # distance in pixels that leader text can be drawn
STYLE # normal line styles are supported

COLOR 255 0 0
WIDTH 1

END
END

END
END

Example: World Countries Labels

The following example uses a polygon layer to display country labels.

Note: The data and mapfile for this example are available for download at:
http://download.osgeo.org/mapserver/tickets/label-leader.zip (11MB).

Mapfile Example #1

MAP

NAME "leader-test"
STATUS ON
SIZE 800 600

162 Chapter 4. Mapfile

http://download.osgeo.org/mapserver/tickets/label-leader.zip

MapServer Documentation, Release 6.4.1

SYMBOLSET "../etc/symbols.txt"
EXTENT -43 10 83 83
UNITS DD
SHAPEPATH "../data"
IMAGECOLOR 255 255 255
FONTSET "../etc/fonts.txt"

WEB
IMAGEPATH "/ms4w/tmp/ms_tmp/"
IMAGEURL "/ms_tmp/"

END

#
Start of layer definitions
#

LAYER
NAME "continents"
TYPE POLYGON
STATUS ON
DATA "world_countries-dissolve"
LABELITEM "NA2DESC"
CLASS
NAME "World Countries"
STYLE

COLOR 200 200 200
OUTLINECOLOR 120 120 120

END
LABEL
COLOR 0 0 0
FONT s a n s
TYPE truetype
SIZE 8
POSITION AUTO
PARTIALS FALSE
OUTLINECOLOR 255 255 255
MINFEATURESIZE 2
MINDISTANCE 1000
BUFFER 5

END
################################
Leader Object
################################
LEADER

GRIDSTEP 40
MAXDISTANCE 1000
STYLE
COLOR 200 100 100
WIDTH 2

END
END

END
END

END # Map File

4.1. Mapfile 163

MapServer Documentation, Release 6.4.1

Map Image

Mapfile Example #2

This time use a shorter maximum leader line (MAXDISTANCE) and increase the number of tests (GRIDSTEP).

MAP

LAYER
...
CLASS
...
LABEL
...

END
################################
Leader Object
################################
LEADER

GRIDSTEP 10
MAXDISTANCE 100
STYLE

COLOR 200 100 100
WIDTH 2

END
END

END
END

END # Map File

164 Chapter 4. Mapfile

MapServer Documentation, Release 6.4.1

Map Image

4.1.15 LEGEND

The size of the legend image is NOT known prior to creation so be careful not to hard-code width and height in
the tag in the template file.

IMAGECOLOR [r] [g] [b] Color to initialize the legend with (i.e. the background).

INTERLACE [on|off] Default is [on]. This keyword is now deprecated in favor of using the FORMATOPTION
“INTERLACE=ON” line in the OUTPUTFORMAT declaration. Deprecated since version 4.6.

KEYSIZE [x][y] Size of symbol key boxes in pixels. Default is 20 by 10.

KEYSPACING [x][y] Spacing between symbol key boxes ([y]) and labels ([x]) in pixels. Default is 5 by 5.

LABEL Signals the start of a LABEL object

OUTLINECOLOR [r] [g] [b] Color to use for outlining symbol key boxes.

POSITION [ul|uc|ur|ll|lc|lr] Where to place an embedded legend in the map. Default is lr.

POSTLABELCACHE [true|false] Tells MapServer to render this legend after all labels in the cache have been
drawn. Useful for adding neatlines and similar elements. Default is false.

STATUS [on|off|embed] Is the legend image to be created.

TEMPLATE [filename] HTML legend template file.

See Also:

HTML Legends with MapServer

TRANSPARENT [on|off] Should the background color for the legend be transparent. This flag is now depre-
cated in favor of declaring transparency within OUTPUTFORMAT declarations. Default is off. Deprecated

4.1. Mapfile 165

MapServer Documentation, Release 6.4.1

since version 4.6.

4.1.16 MAP

Note: The map object is started with the word MAP, and ended with the word END.

ANGLE [double] Angle, given in degrees, to rotate the map. Default is 0. The rendered map will rotate in a
clockwise direction. The following are important notes:

• Requires a PROJECTION object specified at the MAP level and for each LAYER object (even if all
layers are in the same projection).

• Requires MapScript (SWIG, PHP MapScript). Does not work with CGI mode.

• If using the LABEL object’s ANGLE or the LAYER object’s LABELANGLEITEM parameters as well,
these parameters are relative to the map’s orientation (i.e. they are computed after the MAP object’s
ANGLE). For example, if you have specified an ANGLE for the map of 45, and then have a layer
LABELANGLEITEM value of 45, the resulting label will not appear rotated (because the resulting
map is rotated clockwise 45 degrees and the label is rotated counter-clockwise 45 degrees).

• More information can be found on the MapRotation Wiki Page.

CONFIG [key] [value] This can be used to specify several values at run-time, for both MapServer and
GDAL/OGR libraries. Developers: values will be passed on to CPLSetConfigOption(). Details on
GDAL/OGR options are found in their associated driver documentation pages (GDAL/OGR). The following
options are available specifically for MapServer:

CGI_CONTEXT_URL [value] This CONFIG parameter can be used to enable loading a map context
from a URL. See the Map Context HowTo for more info.

MS_ENCRYPTION_KEY [filename] This CONFIG parameter can be used to specify an encryption key
that is used with MapServer’s msencypt utility.

MS_ERRORFILE [filename] This CONFIG parameter can be used to write MapServer errors to a file
(as of MapServer 5.0). With MapServer 5.x, a full path (absolute reference) is required, includ-
ing the filename. Starting with MapServer 6.0, a filename with relative path can be passed via this
CONFIG directive, in which case the filename is relative to the mapfile location. Note that setting
MS_ERRORFILE via an environment variable always requires an absolute path since there would be
no mapfile to make the path relative to. For more on this see the DEBUG parameter below.

MS_NONSQUARE [yes|no] This CONFIG parameter can be used to allow non-square pixels (meaning
that the pixels represent non-square regions). For “MS_NONSQUARE” “yes” to work, the MAP, and
each LAYER will have to have a PROJECTION object.

Note: Has no effect for WMS.

ON_MISSING_DATA [FAIL|LOG|IGNORE] This CONFIG parameter can be used to tell MapServer
how to handle missing data in tile indexes (as of MapServer 5.3-dev, r8015). Previous MapServer ver-
sions required a compile-time switch (“IGNORE_MISSING_DATA”), but this is no longer required.

FAIL This will cause MapServer to throw an error and exit (to crash, in other words) on a missing
file in a tile index. This is the default.

CONFIG "ON_MISSING_DATA" "FAIL"

LOG This will cause MapServer to log the error message for a missing file in a tile index, and continue
with the map creation. Note: DEBUG parameter and CONFIG “MS_ERRORFILE” need to be
set for logging to occur, so please see the DEBUG parameter below for more information.

CONFIG "ON_MISSING_DATA" "LOG"

166 Chapter 4. Mapfile

https://github.com/mapserver/mapserver/wiki/MapRotation
http://www.gdal.org/formats_list.html
http://www.gdal.org/ogr/ogr_formats.html

MapServer Documentation, Release 6.4.1

IGNORE This will cause MapServer to not report or log any errors for missing files, and map creation
will occur normally.

CONFIG "ON_MISSING_DATA" "IGNORE"

PROJ_LIB [path] This CONFIG parameter can be used to define the location of your EPSG files for the
Proj.4 library. Setting the [key] to PROJ_LIB and the [value] to the location of your EPSG files will
force PROJ.4 to use this value. Using CONFIG allows you to avoid setting environment variables to
point to your PROJ_LIB directory. Here are some examples:

1. Unix

CONFIG "PROJ_LIB" "/usr/local/share/proj/"

2. Windows

CONFIG "PROJ_LIB" "C:/somedir/proj/nad/"

DATAPATTERN [regular expression] This defines a regular expression to be applied to requests to change
DATA parameters via URL requests (i.e. map.layer[layername]=DATA+...). If a pattern doesn’t exist then
web users can’t monkey with support files via URLs. This allows you to isolate one application from another
if you desire, with the default operation being very conservative. See also TEMPLATEPATTERN.

DEBUG [off|on|0|1|2|3|4|5] Enables debugging of all of the layers in the current map.

Debugging with MapServer versions >= 5.0:

Verbose output is generated and sent to the standard error output (STDERR) or the MapServer errorfile if
one is set using the “MS_ERRORFILE” environment variable. You can set the environment variable by
using the CONFIG parameter at the MAP level of the mapfile, such as:

CONFIG "MS_ERRORFILE" "/ms4w/tmp/ms_error.txt"

You can also set the environment variable in Apache by adding the following to your httpd.conf:

SetEnv MS_ERRORFILE "/ms4w/tmp/ms_error.txt"

Once the environment variable is set, the DEBUG mapfile parameter can be used to control the level of
debugging output. Here is a description of the possible DEBUG values:

• DEBUG O or OFF - only msSetError() calls are logged to MS_ERRORFILE. No msDebug() output
at all. This is the default and corresponds to the original behavior of MS_ERRORFILE in MapServer
4.x.

• DEBUG 1 or ON - includes all output from DEBUG 0 plus msDebug() warnings about common pit-
falls, failed assertions or non-fatal error situations (e.g. missing or invalid values for some parameters,
missing shapefiles in tileindex, timeout error from remote WMS/WFS servers, etc.).

• DEBUG 2 - includes all output from DEBUG 1 plus notices and timing information useful for tuning
mapfiles and applications.

• DEBUG 3 - all of DEBUG 2 plus some debug output useful in troubleshooting problems such as
WMS connection URLs being called, database connection calls, etc. This is the recommended level
for debugging mapfiles.

• DEBUG 4 - DEBUG 3 plus even more details...

• DEBUG 5 - DEBUG 4 plus any msDebug() output that might be more useful to the developers than
to the users.

You can also set the debug level by using the “MS_DEBUGLEVEL” environment variable.

The DEBUG setting can also be specified for a layer, by setting the DEBUG parameter in the LAYER object.

For more details on this debugging mechanism, please see the Debugging MapServer document.

Debugging with MapServer versions < 5:

4.1. Mapfile 167

MapServer Documentation, Release 6.4.1

Verbose output is generated and sent to the standard error output (STDERR) or the MapServer logfile if
one is set using the LOG parameter in the WEB object. Apache users will see timing details for drawing in
Apache’s error_log file. Requires MapServer to be built with the DEBUG=MSDEBUG option (–with-debug
configure option).

DEFRESOLUTION [int] Sets the reference resolution (pixels per inch) used for symbology. Default is 72.

Used to automatically scale the symbology when RESOLUTION is changed, so the map maintains the same
look at each resolution. The scale factor is RESOLUTION / DEFRESOLUTION. New in version 5.6.

EXTENT [minx] [miny] [maxx] [maxy] The spatial extent of the map to be created. In most cases you will
need to specify this, although MapServer can sometimes (expensively) calculate one if it is not specified.

FONTSET [filename] Filename of fontset file to use. Can be a path relative to the mapfile, or a full path.

IMAGECOLOR [r] [g] [b] Color to initialize the map with (i.e. background color). When transparency is
enabled (TRANSPARENT ON in OUTPUTFORMAT) for the typical case of 8-bit pseudocolored map gen-
eration, this color will be marked as transparent in the output file palette. Any other map components drawn
in this color will also be transparent, so for map generation with transparency it is best to use an otherwise
unused color as the background color.

IMAGEQUALITY [int] Deprecated Use FORMATOPTION “QUALITY=n” in the OUTPUTFORMAT dec-
laration to specify compression quality for JPEG output. Deprecated since version 4.6.

IMAGETYPE [jpeg|pdf|png|svg|...|userdefined] Output format (raster or vector) to generate. The name used
here must match the ‘NAME’ of a user defined or internally available OUTPUTFORMAT . For a complete
list of available IMAGEFORMATs, see the OUTPUTFORMAT section.

INTERLACE [on|off] Deprecated Use FORMATOPTION “INTERLACE=ON” in the OUTPUTFORMAT
declaration to specify if the output images should be interlaced. Deprecated since version 4.6.

LAYER Signals the start of a LAYER object.

LEGEND Signals the start of a LEGEND object.

MAXSIZE [integer] Sets the maximum size of the map image. This will override the default value. For example,
setting this to 2048 means that you can have up to 2048 pixels in both dimensions (i.e. max of 2048x2048).
Default is 2048.

NAME [name] Prefix attached to map, scalebar and legend GIF filenames created using this mapfile. It should
be kept short.

PROJECTION Signals the start of a PROJECTION object.

QUERYMAP Signals the start of a QUERYMAP object.

REFERENCE Signals the start of a REFERENCE MAP object.

RESOLUTION [int] Sets the pixels per inch for output, only affects scale computations. Default is 72.

SCALEDENOM [double] Computed scale of the map. Set most often by the application. Scale is given as
the denominator of the actual scale fraction, for example for a map at a scale of 1:24,000 use 24000.
Implemented in MapServer 5.0, to replace the deprecated SCALE parameter.

See Also:

Map Scale

SCALEBAR Signals the start of a SCALEBAR object.

SHAPEPATH [filename] Path to the directory holding the shapefiles or tiles. There can be further subdirectories
under SHAPEPATH.

SIZE [x][y] Size in pixels of the output image (i.e. the map).

STATUS [on|off] Is the map active? Sometimes you may wish to turn this off to use only the reference map or
scale bar.

168 Chapter 4. Mapfile

MapServer Documentation, Release 6.4.1

SYMBOLSET [filename] Filename of the symbolset to use. Can be a path relative to the mapfile, or a full path.

Note: The SYMBOLSET file must start with the word SYMBOLSET and end with the word END.

SYMBOL Signals the start of a SYMBOL object.

TEMPLATEPATTERN [regular expression] This defines a regular expression to be applied to requests to
change the TEMPLATE parameters via URL requests (i.e. map.layer[layername].template=...). If a pat-
tern doesn’t exist then web users can’t monkey with support files via URLs. This allows you to isolate
one application from another if you desire, with the default operation being very conservative. See also
DATAPATTERN.

TRANSPARENT [on|off]

Deprecated since version 4.6. Use TRANSPARENT ON in the OUTPUTFORMAT declaration to
specify if the output images should be transparent.

UNITS [dd|feet|inches|kilometers|meters|miles|nauticalmiles] Units of the map coordinates. Used for scalebar
and scale computations. Nauticalmiles was added in MapServer 5.6.

WEB Signals the start of a WEB object.

4.1.17 OUTPUTFORMAT

A map file may have zero, one or more OUTPUTFORMAT object declarations, defining available output formats
supported including formats like PNG, GIF, JPEG, GeoTIFF, SVG, PDF and KML.

If OUTPUTFORMAT sections declarations are not found in the map file, the following implicit declarations will
be made. Only those for which support is compiled in will actually be available. The GeoTIFF depends on
building with GDAL support, and the PDF and SVG depend on building with cairo support.

OUTPUTFORMAT
NAME "png"
DRIVER AGG/PNG
MIMETYPE "image/png"
IMAGEMODE RGB
EXTENSION "png"
FORMATOPTION "GAMMA=0.75"

END
OUTPUTFORMAT

NAME "gif"
DRIVER GD/GIF
MIMETYPE "image/gif"
IMAGEMODE PC256
EXTENSION "gif"

END
OUTPUTFORMAT

NAME "png8"
DRIVER AGG/PNG8
MIMETYPE "image/png; mode=8bit"
IMAGEMODE RGB
EXTENSION "png"
FORMATOPTION "QUANTIZE_FORCE=on"
FORMATOPTION "QUANTIZE_COLORS=256"
FORMATOPTION "GAMMA=0.75"

END
OUTPUTFORMAT

NAME "jpeg"
DRIVER AGG/JPEG
MIMETYPE "image/jpeg"
IMAGEMODE RGB
EXTENSION "jpg"

4.1. Mapfile 169

MapServer Documentation, Release 6.4.1

FORMATOPTION "GAMMA=0.75"
END
OUTPUTFORMAT

NAME "svg"
DRIVER CAIRO/SVG
MIMETYPE "image/svg+xml"
IMAGEMODE RGB
EXTENSION "svg"

END
OUTPUTFORMAT

NAME "pdf"
DRIVER CAIRO/PDF
MIMETYPE "application/x-pdf"
IMAGEMODE RGB
EXTENSION "pdf"

END
OUTPUTFORMAT

NAME "GTiff"
DRIVER GDAL/GTiff
MIMETYPE "image/tiff"
IMAGEMODE RGB
EXTENSION "tif"

END
OUTPUTFORMAT

NAME "kml"
DRIVER KML
MIMETYPE "application/vnd.google-earth.kml.xml"
IMAGEMODE RGB
EXTENSION "kml"

END
OUTPUTFORMAT

NAME "kmz"
DRIVER KMZ
MIMETYPE "application/vnd.google-earth.kmz"
IMAGEMODE RGB
EXTENSION "kmz"

END
OUTPUTFORMAT

NAME "cairopng"
DRIVER CAIRO/PNG
MIMETYPE "image/png"
IMAGEMODE RGB
EXTENSION "png"

END

DRIVER [name] The name of the driver to use to generate this output format. Some driver names include
the definition of the format if the driver supports multiple formats. For AGG, the possbile driver names
are “AGG/PNG” and “AGG/JPEG”. For GD the possible driver names are “GD/Gif” and “GD/PNG”. For
output through OGR the OGR driver name is appended, such as “OGR/Mapinfo File”. For output through
GDAL the GDAL shortname for the format is appended, such as “GDAL/GTiff”. Note that PNG, JPEG
and GIF output can be generated with either GDAL or GD (GD is generally more efficient). TEMPLATE
should be used for template based output. (mandatory)

EXTENSION [type] Provide the extension to use when creating files of this type. (optional)

FORMATOPTION [option] Provides a driver or format specific option. Zero or more FORMATOPTION state-
ment may be present within a OUTPUTFORMAT declaration. (optional)

• AGG/*: “GAMMA=n” is used to specify the gamma correction to apply to polygon rendering. Al-
lowed values are [0.0,1.0] , default is 0.75. This value is used to prevent artifacts from appearing on
the border of contiguous polygons. Set to 1.0 to disable gamma correction.

• AGG/JPEG: The “QUALITY=n” option may be used to set the quality of jpeg produced (value from
0-100).

170 Chapter 4. Mapfile

MapServer Documentation, Release 6.4.1

• AGG/PNG: “COMPRESSION=n” is used to determine the ZLIB compression applied to the png
creation. n is expected to be an integer value from 0 to 9, with 0 meaning no compression (not
recommended), 1 meaning fastest compression, and 9 meaning best compression. The compression
levels come at a cost (be it in terms of cpu processing or file size, chose the setting that suits you most).
The default is COMPRESSION=6.

• AGG/PNG supports quantizing from 24/32 bits to 8bits, in order to reduce the final image size (and
therefore save bandwidth) (see also http://trac.osgeo.org/mapserver/ticket/2436#comment:4 for strate-
gies when applying these options):

– “QUANTIZE_FORCE=on” used to reduce an RGB or RGBA image into an 8bit (or less) paletted
images. The colors used in the palette are selected to best fit the actual colors in the RGB or RGBA
image.

– “QUANTIZE_COLORS=256” used to specify the number of colors to be used when applying
quantization. Maximum value is 256. Specifying anything between 17 and 255 is probably a
waste of quality as each pixel is still encoded with a full byte. Specifying a value under 16 will
produce tiny images, but severly degraded.

– “PALETTE=/path/to/palette.txt” is used to define the absolute path where palette colors can be
found. This file must contain 256 entries of r,g,b triplets for RGB imagemodes, or r,g,b,a quadru-
plets for RGBA imagemodes. The expected format is one triplet (or quadruplet) per line, each
value separated by commas, and each triplet/quadruplet on a single line. If you want to use trans-
parency with a palette, it is important to have these two colors in the palette file: 0,0,0,0 and
255,255,255,255.

Note: 0,0,0,0 is important if you have fully transparent areas. 255,255,255,255 is opaque white.
The important colors to have in your palette really depend on your actual map, although 0,0,0,0 ,
0,0,0,255 , and 255,255,255,255 are very likely to show up most of the time.

– “PALETTE_FORCE=on” is used to reduce image depth with a predefined palette. This option is
incompatible with the previous quantization options. To allow additional colours for anti-aliasing
other than those in the predefined palette, use with “QUANTIZE_COLORS”.

• CAIRO/PDF:

– “GEO_ENCODING=ISO32000” or “GEO_ENCODING=OGC_BP”: Geospatial PDF will be
generated. Requires GDAL 1.10 with PDF driver. See the GDAL Geospatial PDF documen-
tation for requirements. New in version 6.2.

– “METADATA_ITEM:option=value”: Additional PDF options can be provided using the META-
DATA_ITEM prefix. The following options are available: AUTHOR, CREATOR, CRE-
ATION_DATE, KEYWORDS, PRODUCER, SUBJECT, TITLE. New in version 6.2.

Example:

OUTPUTFORMAT
NAME pdf
DRIVER "CAIRO/PDF"
MIMETYPE "application/x-pdf"
IMAGEMODE RGB
EXTENSION "pdf"
FORMATOPTION "GEO_ENCODING=ISO32000"
FORMATOPTION "METADATA_ITEM:CREATOR=MapServer, with GDAL trunk"
FORMATOPTION "METADATA_ITEM:PRODUCER=MapServer, with GDAL trunk"

END

• GD/PNG: The “INTERLACE=[ON/OFF]” option may be used to turn interlacing on or off.

• GD/GIF: The “INTERLACE=[ON/OFF]” option may be used to turn interlacing on or off.

• GDAL/GTiff: Supports the “TILED=YES”, “BLOCKXSIZE=n”, “BLOCKYSIZE=n”, “INTER-
LEAVE=[PIXEL/BAND]” and “COMPRESS=[NONE,PACKBITS,JPEG,LZW,DEFLATE]” format
specific options.

4.1. Mapfile 171

http://trac.osgeo.org/mapserver/ticket/2436#comment:4
http://www.gdal.org/frmt_pdf.html

MapServer Documentation, Release 6.4.1

• GDAL/*: All FORMATOPTIONs are passed onto the GDAL create function. Options supported by
GDAL are described in the detailed documentation for each GDAL format.

• GDAL/*: “NULLVALUE=n” is used in raw image modes (IMAGEMODE BYTE/INT16/FLOAT) to
pre-initialize the raster and an attempt is made to record this in the resulting file as the nodata value.
This is automatically set in WCS mode if rangeset_nullvalue is set.

• OGR/*: See the OGR Output document for details of OGR format options.

IMAGEMODE [PC256/RGB/RGBA/INT16/FLOAT32/FEATURE] Selects the imaging mode in which the
output is generated. Does matter for non-raster formats like Flash. Not all formats support all combinations.
For instance GD supports only PC256. (optional)

• PC256: Produced a pseudocolored result with up to 256 colors in the palette (legacy MapServer mode).
Only supported for GD/GIF and GD/PNG.

• RGB: Render in 24bit Red/Green/Blue mode. Supports all colors but does not support transparency.

• RGBA: Render in 32bit Red/Green/Blue/Alpha mode. Supports all colors, and alpha based trans-
parency. All features are rendered against an initially transparent background.

• BYTE: Render raw 8bit pixel values (no presentation). Only works for RASTER layers (through
GDAL) and WMS layers currently.

• INT16: Render raw 16bit signed pixel values (no presentation). Only works for RASTER layers
(through GDAL) and WMS layers currently.

• FLOAT32: Render raw 32bit floating point pixel values (no presentation). Only works for RASTER
layers (through GDAL) and WMS layers currently.

• FEATURE: Output is a non-image result, such as features written via templates or OGR.

MIMETYPE [type] Provide the mime type to be used when returning results over the web. (optional)

NAME [name] The name to use in the IMAGETYPE keyword of the map file to select this output format. This
name is also used in metadata describing wxs formats allowed, and can be used (sometimes along with
mimetype) to select the output format via keywords in OGC requests. (optional)

TRANSPARENT [ON/OFF] Indicates whether transparency should be enabled for this format. Note that trans-
parency does not work for IMAGEMODE RGB output. Not all formats support transparency (optional).
When transparency is enabled for the typical case of 8-bit pseudocolored map generation, the IMAGE-
COLOR color will be marked as transparent in the output file palette. Any other map components drawn
in this color will also be transparent, so for map generation with transparency it is best to use an otherwise
unused color as the background color.

4.1.18 PROJECTION

Background

There are thousands of geographical reference systems. In order to combine datasets with different geographical
reference systems into a map, the datasets will have to be transformed (projected) to the chosen geographical
reference system of the map. If you want to know more about geographical reference systems and map projections
in general, please see the More Information links below, or look into Geomatics courses (Geographical Information
Systems, Cartography, Geodesy), as projections are an advanced topic for beginners.

Projections with MapServer

To set up projections you must define one projection object for the output image (in the MAP object) and one
projection object for each layer (in the LAYER objects) to be projected. MapServer relies on the Proj.4 library for
projections. Projection objects therefore consist of a series of PROJ.4 keywords, which are either specified within
the object directly or referred to in an EPSG file. An EPSG file is a lookup file containing projection parameters,
and is part of the PROJ.4 library.

172 Chapter 4. Mapfile

MapServer Documentation, Release 6.4.1

The following two examples both define the same projection (UTM zone 15, NAD83), but use 2 different methods:

Example 1: Inline Projection Parameters

PROJECTION
"proj=utm"
"ellps=GRS80"
"datum=NAD83"
"zone=15"
"units=m"
"north"
"no_defs"

END

Note: For a list of all of the possible PROJ.4 projection parameters, see the PROJ.4 parameters page.

Example 2: EPSG Projection Use

PROJECTION
"init=epsg:26915"

END

Note: This refers to an EPSG lookup file that contains a ‘26915’ code with the full projection parameters. “epsg”
in this instance is case-sensitive because it is referring to a file name. If your file system is case-sensitive, this
must be lower case, or MapServer (Proj.4 actually) will complain about not being able to find this file.

Note: See http://spatialreference.org/ref/epsg/26915/ for more information on this coordinate system.

The next two examples both display how to possibly define unprojected lat/long (“geographic”):

Example 3: Inline Projection Parameters

PROJECTION
"proj=latlong"
"ellps=WGS84"
"datum=WGS84"

END

Example 4: epsg Projection Use

PROJECTION
"init=epsg:4326"

END

“Web Mercator” or “Google Mercator”

The EPSG code for the commonly used “Web” or “Google” mercator projection is ‘3857’. See
http://spatialreference.org/ref/sr-org/7483/ for more information on this coordinate system. This code was also
unofficially referred to as EPSG:900913; you are recommended to use the official EPSG:3857 code instead, such
as:

PROJECTION
"init=epsg:3857"

END

PROJECTION AUTO

The following syntax may be used in LAYERs that are OGR connections, shapefile layers or raster layers :

4.1. Mapfile 173

http://trac.osgeo.org/proj/wiki/GenParms
http://spatialreference.org/ref/epsg/26915/
http://spatialreference.org/ref/sr-org/7483/

MapServer Documentation, Release 6.4.1

PROJECTION
AUTO

END

• In case of a OGR connection, the projection will be retrieved from the OGR layer.

• In case of a shapefile layer, the projection will be retrived from the associated .prj file.

• In case of raster layers refereing to single raster (DATA keyword), the projection will be retrived from the
GDAL datasource. If the raster layer refers to a tile index (OGR layer or shapefile tileindex), the projection
will be retrieved according to the above describe rules.

Note: For other layer types, this syntax is invalid.

Important Notes

• If all of your data in the mapfile is in the same projection, you DO NOT have to specify any projection
objects. MapServer will assume that all of the data is in the same projection.

• Think of the MAP-level projection object as your output projection. The EXTENT and UNITS values at the
MAP-level must be in the output projection units. Also, if you have layers in other projections (other than
the MAP-level projection) then you must define PROJECTION objects for those layers, to tell MapServer
what projections they are in.

• If you specify a MAP-level projection, and then only one other LAYER projection object, MapServer will
assume that all of the other layers are in the specified MAP-level projection.

• Always refer to the EPSG file in lowercase, because it is a lowercase filename and on Linux/Unix systems
this parameter is case sensitive.

For More Information

• If you get projection errors, refer to the Errors to check if your exact error has been discussed.

• Search the MapServer-users email list archives, odds are that someone has faced your exact issue before.

• See the PROJ.4 user guides for complete descriptions of supported projections and coordinate systems.

• Refer to the Cartographical Map Projections page for background information on projections.

• A respected author on map projections is John P. Snyder, if you are wishing for printed material to review.

4.1.19 QUERYMAP

COLOR [r] [g] [b] Color in which features are highlighted. Default is yellow.

SIZE [x][y] Size of the map in pixels. Defaults to the size defined in the map object.

STATUS [on|off] Is the query map to be drawn?

STYLE [normal|hilite|selected] Sets how selected features are to be handled. Layers not queried are drawn as
usual.

• Normal: Draws all features according to the settings for that layer.

• Hilite: Draws selected features using COLOR. Non-selected features are drawn normally.

• Selected: draws only the selected features normally.

174 Chapter 4. Mapfile

http://lists.osgeo.org/pipermail/mapserver-users/
http://trac.osgeo.org/proj/
http://www.progonos.com/furuti/MapProj/Normal/TOC/cartTOC.html

MapServer Documentation, Release 6.4.1

4.1.20 REFERENCE

Three types of reference maps are supported. The most common would be one showing the extent of a map in an
interactive interface. It is also possible to request reference maps as part of a query. Point queries will generate an
image with a marker (see below) placed at the query point. Region based queries will depict the extent of the area
of interest. Finally, feature based queries will display the selection feature(s) used.

COLOR [r] [g] [b] Color in which the reference box is drawn. Set any component to -1 for no fill. Default is
red.

EXTENT [minx][miny][maxx][maxy] The spatial extent of the base reference image.

IMAGE [filename] Full filename of the base reference image. Must be a GIF image.

MARKER [integer|string] Defines a symbol (from the symbol file) to use when the box becomes too small (see
MINBOXSIZE and MAXBOXSIZE below). Uses a crosshair by default.

MARKERSIZE [integer] Defines the size of the symbol to use instead of a box (see MARKER above).

MINBOXSIZE [integer] If box is smaller than MINBOXSIZE (use box width or height) then use the symbol
defined by MARKER and MARKERSIZE.

MAXBOXSIZE [integer] If box is greater than MAXBOXSIZE (use box width or height) then draw nothing
(Often the whole map gets covered when zoomed way out and it’s perfectly obvious where you are).

OUTLINECOLOR [r] [g] [b] Color to use for outlining the reference box. Set any component to -1 for no
outline.

SIZE [x][y] Size, in pixels, of the base reference image.

STATUS [on|off] Is the reference map to be created? Default it off.

4.1.21 SCALEBAR

Scalebars currently do not make use of TrueType fonts. The size of the scalebar image is NOT known prior to
rendering, so be careful not to hard-code width and height in the tag in the template file. Future versions
will make the image size available.

ALIGN [left|center|right] Defines how the scalebar is aligned within the scalebar image. Default is center.
Available in versions 5.2 and higher. New in version 5.2.

BACKGROUNDCOLOR [r] [g] [b] Color to use for scalebar background, not the image background.

COLOR [r] [g] [b] Color to use for drawing all features if attribute tables are not used.

IMAGECOLOR [r] [g] [b] Color to initialize the scalebar with (i.e. background).

INTERLACE [true|false] Should output images be interlaced? Default is [on]. This keyword is now deprecated
in favour of using the FORMATOPTION “INTERLACE=ON” line in the OUTPUTFORMAT declaration.
Deprecated since version 4.6.

INTERVALS [integer] Number of intervals to break the scalebar into. Default is 4.

LABEL Signals the start of a LABEL object.

OUTLINECOLOR [r] [g] [b] Color to use for outlining individual intervals. Set any component to -1 for no
outline which is the default.

POSITION [ul|uc|ur|ll|lc|lr] Where to place an embedded scalebar in the image. Default is lr.

POSTLABELCACHE [true|false] For use with embedded scalebars only. Tells the MapServer to embed the
scalebar after all labels in the cache have been drawn. Default is false.

SIZE [x][y] Size in pixels of the scalebar. Labeling is not taken into account.

STATUS [on|off|embed] Is the scalebar image to be created, and if so should it be embedded into the image?
Default is off. (Please note that embedding scalebars require that you define a markerset. In essence the
scalebar becomes a custom marker that is handled just like any other annotation.)

4.1. Mapfile 175

MapServer Documentation, Release 6.4.1

STYLE [integer] Chooses the scalebar style. Valid styles are 0 and 1.

TRANSPARENT [on|off] Should the background color for the scalebar be transparent. This flag is now depre-
cated in favor of declaring transparency within OUTPUTFORMAT declarations. Default is off. Deprecated
since version 4.6.

UNITS [feet|inches|kilometers|meters|miles|nauticalmiles] Output scalebar units, default is miles. Used in
conjunction with the map’s units to develop the actual graphic. Note that decimal degrees are not valid
scalebar units. Nauticalmiles was added in MapServer 5.6.

4.1.22 STYLE

Style holds parameters for symbolization and styling. Multiple styles may be applied within a CLASS or LABEL.

This object appeared in 4.0 and the intention is to separate logic from looks. The final intent is to have named
styles (Not yet supported) that will be re-usable through the mapfile. This is the way of defining the appearance
of an object (a CLASS or a LABEL).

ANGLE [double|attribute|AUTO] Angle, given in degrees, to rotate the symbol (counter clockwise). Default is
0 (no rotation). If you have an attribute that specifies angles in a clockwise direction (compass direction),
you have to adjust the angle attribute values before they reach MapServer (360-ANGLE), as it is not possible
to use a mathematical expression for ANGLE.

• For points, it specifies the rotation of the symbol around its center.

• For decorated lines, the behaviour depends on the value of the GAP element.

– For negative GAP values it specifies the rotation of the decoration symbol relative to the direction
of the line. An angle of 0 means that the symbol’s x-axis is oriented along the direction of the
line.

– For non-negativ (or absent) GAP values it specifies the rotation of the decoration symbol around
its center. An angle of 0 means that the symbol is not rotated.

• For polygons, it specifies the angle of the lines in a HATCH symbol (0 - horizontal lines), or it specifies
the rotation of the symbol used to generate the pattern in a polygon fill (it does not specify the rotation
of the fill as a whole). For its use with hatched lines, see Example #7 in the symbology examples.

• [attribute] was introduced in version 5.0, to specify the attribute to use for angle values. The hard
brackets [] are required. For example, if your data source has an attribute named “MYROTATE” that
holds angle values for each feature, your STYLE object for hatched lines might contain:

STYLE
SYMBOL ’hatch-test’
COLOR 255 0 0
ANGLE [MYROTATE]
SIZE 4.0
WIDTH 3.0

END

The associated RFC document for this feature is RFC19.

• The AUTO keyword was added in version 5.4, and currently only applies when coupled with the
GEOMTRANSFORM keyword.

Note: Rotation using ANGLE is not supported for SYMBOLs of TYPE ellipse with the GD renderer (gif).

ANGLEITEM [string] ANGLE[attribute] must now be used instead. Deprecated since version 5.0.

ANTIALIAS [true|false] Should TrueType fonts be antialiased. Only useful for GD (gif) rendering. Default is
false. Has no effect for the other renderers (where anti-aliasing can not be turned off).

BACKGROUNDCOLOR [r] [g] [b] - deprecated Color to use for non-transparent symbols.

176 Chapter 4. Mapfile

MapServer Documentation, Release 6.4.1

Note: Multiple STYLEs can be used instead:

STYLE
BACKGROUNDCOLOR 0 0 0
SYMBOL "foo"
COLOR 255 0 0

END

can be replaced with:

STYLE
COLOR 0 0 0

END
STYLE
SYMBOL "foo"
COLOR 255 0 0

END

Deprecated since version 6.2.

COLOR [r] [g] [b] | [hex string] | [attribute] Color to use for drawing features.

• r, g and b shall be integers [0..255]. To specify green, the following is used:

COLOR 0 255 0

• hex string can be

– RGB value - “#rrggbb”. To specify magenta, the following is used:

COLOR "#FF00FF"

– RGBA value (adding translucence) - “#rrggbbaa”. To specify a semi-translucent magenta, the
following is used:

COLOR "#FF00FFCC"

• [attribute] was introduced in version 5.0, to specify the attribute to use for color values. The hard
brackets [] are required. For example, if your data set has an attribute named “MYPAINT” that holds
color values for each record, use: object for might contain:

COLOR [MYPAINT]

If COLOR is not specified, and it is not a SYMBOL of TYPE pixmap, then the symbol will not be
rendered.

The associated RFC document for this feature is RFC19.

GAP [double] GAP specifies the distance between SYMBOLs (center to center) for decorated lines and polygon
fills in layer SIZEUNITS. For polygon fills, GAP specifies the distance between SYMBOLs in both the X
and the Y direction. For lines, the centers of the SYMBOLs are placed on the line. As of MapServer 5.0 this
also applies to PixMap symbols.

When scaling of symbols is in effect (SYMBOLSCALEDENOM is specified for the LAYER), GAP specifies
the distance in layer SIZEUNITS at the map scale 1:SYMBOLSCALEDENOM.

• For lines, if INITIALGAP is not specified, the first symbol will be placed GAP/2 from the start of the
line.

• For lines, a negative GAP value will cause the symbols’ X axis to be aligned relative to the tangent of
the line.

• For lines, a positive GAP value aligns the symbols’ X axis relative to the X axis of the output device.

• For lines, a GAP of 0 (the default value) will cause the symbols to be rendered edge to edge

4.1. Mapfile 177

MapServer Documentation, Release 6.4.1

• For polygons, a missing GAP or a GAP of less than or equal to the size of the symbol will cause the
symbols to be rendered edge to edge.

Symbols can be rotated using ANGLE. New in version 6.0: moved from SYMBOL

Note: The behaviour of GAP has not been stable over time. It has specified the amount of space between
the symbols, and also something in between the amount of space between the symbols and the center to
center distance. Since 6.2 GAP specifies the center to center distance between the symbols.

GEOMTRANSFORM [bbox|centroid|end|labelpnt|labelpoly|start|vertices|<expression>] Used to indicate
that the current feature will be transformed before the actual style is applied. Introduced in version 5.4.

• bbox: produces the bounding box of the current feature geometry.

• centroid: produces the centroid of the current feature geometry.

• end: produces the last point of the current feature geometry. When used with ANGLE AUTO, it can
for instance be used to render arrowheads on line segments.

• labelpnt: used for LABEL styles. Draws a marker on the geographic position the label is attached to.
This corresponds to the center of the label text only if the label is in position CC.

• labelpoly: used for LABEL styles. Produces a polygon that covers the label plus a 1 pixel padding.

• start: produces the first point of the current feature geometry. When used with ANGLE AUTO, it can
for instance be used to render arrow tails on line segments.

• vertices: produces all the intermediate vertices (points) of the current feature geometry (the start and
end are excluded). When used with ANGLE AUTO, the marker is oriented by the half angle formed
by the two adjacent line segments.

• <expression>: Applies the given expression to the geometry. Supported expressions:

– (buffer([shape],dist)): Buffer the geometry ([shape]) using dist pixels as buffer distance. For
polygons, a negative dist will produce a setback.

– (generalize([shape],tolerance)): simplifies a geometry ([shape]) in way comparable to FME’s
ThinNoPoint algorithm. See http://trac.osgeo.org/gdal/ticket/966 for more information.

Note: Depends on GEOS.

– (simplify([shape],tolerance)): simplifies a geometry ([shape]) using the standard Douglas-
Peucker algorithm.

– (simplifypt([shape],tolerance)): simplifies a geometry ([shape]), ensuring that the result is a valid
geometry having the same dimension and number of components as the input. tolerance must be
non-negative.

– (smoothsia([shape], smoothing_size, smoothing_iteration, preprocessing)): will smooth a geom-
etry ([shape]) using the SIA algorithm

Example (polygon data set) - draw a two pixel wide line 5 pixels inside the boundary of the polygon:

STYLE
OUTLINECOLOR 255 0 0
WIDTH 2
GEOMTRANSFORM (buffer([s h a p e],-5))

END

There is a difference between STYLE and LAYER GEOMTRANSFORM. LAYER-level will receive
ground coordinates (meters, degress, etc) and STYLE-level will receive pixel coordinates. The argument to
methods such as simplify() must be in the same units as the coordinates of the shapes at that point of the
rendering workflow, i.e. pixels at the STYLE-level and in ground units at the LAYER-level.

178 Chapter 4. Mapfile

http://trac.osgeo.org/gdal/ticket/966

MapServer Documentation, Release 6.4.1

LAYER NAME "my_layer"
TYPE LINE
STATUS DEFAULT
DATA "lines.shp"
GEOMTRANSFORM (s i m p l i f y ([s h a p e], 10)) ## 10 ground units
CLASS

STYLE
GEOMTRANSFORM (buffer([s h a p e], 5) ## 5 pixels
WIDTH 2
COLOR 255 0 0

END
END

END

See Also:

Geometry Transformations

INITIALGAP [double] INITIALGAP is useful for styling dashed lines.

If used with GAP, INITIALGAP specifies the distance to the first symbol on a styled line.

If used with PATTERN, INITIALGAP specifies the distance to the first dash on a dashed line.

Example 1 - dashed line styled with circles:

STYLE
COLOR 0 0 0
WIDTH 4
PATTERN 40 10 END

END
STYLE
SYMBOL "circlef"
COLOR 0 0 0
SIZE 8
INITIALGAP 20
GAP 50

END

Example 1 - dashed line styled with dashed line overlay:

STYLE
COLOR 0 0 0
WIDTH 6
PATTERN 40 10 END

END
STYLE
COLOR 255 255 255
WIDTH 4
INITIALGAP 2
PATTERN 36 14 END

END

New in version 6.2.

LINECAP [butt|round|square] Sets the line cap type for lines. Default is round. See Cartographical Symbol
Construction with MapServer for explanation and examples. New in version 6.0: moved from SYMBOL

LINEJOIN [round|miter|bevel] Sets the line join type for lines. Default is round. See Cartographical Symbol
Construction with MapServer for explanation and examples. New in version 6.0: moved from SYMBOL

LINEJOINMAXSIZE [int] Sets the max length of the miter LINEJOIN type. The value represents a coeffi-
cient which multiplies a current symbol size. Default is 3. See Cartographical Symbol Construction with
MapServer for explanation and examples. New in version 6.0: moved from SYMBOL

4.1. Mapfile 179

MapServer Documentation, Release 6.4.1

MAXSCALEDENOM [double] Minimum scale at which this STYLE is drawn. Scale is given as the denomi-
nator of the actual scale fraction, for example for a map at a scale of 1:24,000 use 24000. New in version
5.4.

See Also:

Map Scale

MAXSIZE [double] Maximum size in pixels to draw a symbol. Default is 500. Starting from version 5.4, the
value can also be a decimal value (and not only integer). See LAYER SYMBOLSCALEDENOM.

MAXWIDTH [double] Maximum width in pixels to draw the line work. Default is 32. Starting from version
5.4, the value can also be a decimal value (and not only integer). See LAYER SYMBOLSCALEDENOM.

MINSCALEDENOM [double] Maximum scale at which this STYLE is drawn. Scale is given as the denominator
of the actual scale fraction, for example for a map at a scale of 1:24,000 use 24000. New in version 5.4.

See Also:

Map Scale

MINSIZE [double] Minimum size in pixels to draw a symbol. Default is 0. Starting from version 5.4, the value
can also be a decimal value (and not only integer). See LAYER SYMBOLSCALEDENOM.

MINWIDTH [double] Minimum width in pixels to draw the line work. Default is 0. Starting from version 5.4,
the value can also be a decimal value (and not only integer). See LAYER SYMBOLSCALEDENOM.

OFFSET [x][y] Geometry offset values in layer SIZEUNITS. In the general case, SIZEUNITS will be pixels.

When scaling of symbols is in effect (SYMBOLSCALEDENOM is specified for the LAYER), OFFSET gives
offset values in layer SIZEUNITS at the map scale 1:SYMBOLSCALEDENOM.

An OFFSET of 20 40 will shift the geometry 20 SIZEUNITS to the left and 40 SIZEUNITS down before
rendering.

For lines, an OFFSET of y = -99 will produce a line geometry that is shifted x SIZEUNITS perpendicular
to the original line geometry. A positive x shifts the line to the right when seen along the direction of the
line. A negative x shifts the line to the left when seen along the direction of the line.

For lines, an OFFSET of y = -999 (added in version 6.4) will produce a multiline geometry corresponding
to the borders of a line that is x SIZEUNITS wide. This can be used to render only the outlines of a thick
line.

OPACITY [integer|attribute] Opacity to draw the current style (applies to 5.2+, AGG Rendering Specifics only,
does not apply to pixmap symbols)

• [attribute] was introduced in version 5.6, to specify the attribute to use for opacity values.

OUTLINECOLOR [r] [g] [b] | [attribute] Color to use for outlining polygons and certain marker symbols (el-
lipse, vector polygons and truetype). Has no effect for lines. The width of the outline can be specified using
WIDTH. If no WIDTH is specified, an outline of one pixel will be drawn.

If there is a SYMBOL defined for the STYLE, the OUTLINECOLOR will be used to create an outline for that
SYMBOL (only ellipse, truetype and polygon vector symbols will get an outline). If there is no SYMBOL
defined for the STYLE, the polygon will get an outline.

• r, g and b shall be integers [0..255]. To specify green, the following is used:

OUTLINECOLOR 0 255 0
WIDTH 3.0

• [attribute] was introduced in version 5.0, to specify the attribute to use for color values. The hard
brackets [] are required. For example, if your data set has an attribute named “MYPAINT” that holds
color values for each record, use: object for might contain:

OUTLINECOLOR [MYPAINT]

The associated RFC document for this feature is RFC19.

180 Chapter 4. Mapfile

MapServer Documentation, Release 6.4.1

OUTLINEWIDTH [double|attribute] Width in pixels for the outline. Default is 0.0. The thickness of the
outline will not depend on the scale. New in version 5.4.

PATTERN [double on] [double off] [double on] [double off] ... END Used to define a dash pattern for line
work (lines, polygon outlines, hatch lines, ...). The numbers (doubles) specify the lengths of the dashes
and gaps of the dash pattern in layer SIZEUNITS. When scaling of symbols is in effect (SYMBOLSCALE-
DENOM is specified for the LAYER), the numbers specify the lengths of the dashes and gaps in layer
SIZEUNITS at the map scale 1:SYMBOLSCALEDENOM.

LINECAP, LINEJOIN and LINEJOINMAXSIZE can be used to control the appearance of the dashed lines.

To specify a dashed line that is 5 units wide, with dash lengths of 5 units and gaps of 5 units, the following
style can be used:

STYLE
COLOR 0 0 0
WIDTH 5.0
LINECAP BUTT
PATTERN 5.0 5.0 END

END

Since version 6.2, PATTERN can be used to create dashed lines for SYMBOLs of TYPE hatch. Patterns
for hatches are always drawn with LINECAP butt. The patterns are generated relative to the edges of the
bounding box of the polygon (an illustrated example can be found in the hatch fill section of the symbol
construction document). New in version 6.0: moved from SYMBOL

POLAROFFSET [double|attribute] [double|attribute] Offset given in polar coordinates.

The first parameter is a double value in layer SIZEUNITS (or the name of a layer attribute) that specifies the
radius/distance.

The second parameter is a double value (or the name of a layer attribute) that specifies the angle (counter
clockwise).

When scaling of symbols is in effect (SYMBOLSCALEDENOM is specified for the LAYER), POLAROFF-
SET gives the distance in layer SIZEUNITS at the map scale 1:SYMBOLSCALEDENOM.

A POLAROFFSET of 20 40 will shift the geometry to a position that is 20 SIZEUNITS away along a line
that is at an angle of 40 degrees with a line that goes horizontally to the right.

When POLAROFFSET is used with layers that have CONNECTIONTYPE uvraster (vector field), the special
attributes uv_length, uv_length_2, uv_angle and uv_minus_angle are available, making it convenient to
specify arrow heads and tails. Example:

LAYER
...
TYPE POINT
CONNECTIONTYPE uvraster
...
CLASS

STYLE
SYMBOL "arrowbody"
ANGLE [uv_angle]
SIZE [uv_length]
WIDTH 3
COLOR 100 255 0

END
STYLE
SYMBOL "arrowhead"
ANGLE [uv_angle]
SIZE 10
COLOR 255 0 0
POLAROFFSET [uv_length_2] [uv_angle]

END
STYLE
SYMBOL "arrowtail"

4.1. Mapfile 181

MapServer Documentation, Release 6.4.1

ANGLE [uv_angle]
SIZE 10
COLOR 255 0 0
POLAROFFSET [uv_length_2] [uv_minus_angle]

END
END #class

END #layer

New in version 6.2: (rfc78)

SIZE [double|attribute] Height, in layer SIZEUNITS, of the symbol/pattern to be used. Default value depends
on the SYMBOL TYPE. For pixmap: the hight (in pixels) of the pixmap; for ellipse and vector: the maximum
y value of the SYMBOL POINTS parameter, for hatch: 1.0, for truetype: 1.0.

When scaling of symbols is in effect (SYMBOLSCALEDENOM is specified for the LAYER), SIZE gives the
height, in layer SIZEUNITS, of the symbol/pattern to be used at the map scale 1:SYMBOLSCALEDENOM.

• For symbols of TYPE hatch, the SIZE is the center to center distance between the lines. For its use
with hatched lines, see Example#8 in the symbology examples.

• [attribute] was introduced in version 5.0, to specify the attribute to use for size values. The hard
brackets [] are required. For example, if your data set has an attribute named “MYHIGHT” that holds
size values for each feature, your STYLE object for hatched lines might contain:

STYLE
SYMBOL ’hatch-test’
COLOR 255 0 0
ANGLE 45
SIZE [MYHIGHT]
WIDTH 3.0

END

The associated RFC document for this feature is RFC19.

• Starting from version 5.4, the value can also be a decimal value (and not only integer).

SYMBOL [integer|string|filename|url|attribute] The symbol to use for rendering the features.

• Integer is the index of the symbol in the symbol set, starting at 1 (the 5th symbol is symbol number 5).

• String is the name of the symbol (as defined using the SYMBOL NAME parameter).

• Filename specifies the path to a file containing a symbol. For example a PNG file. Specify the path
relative to the directory containing the mapfile.

• URL specifies the address of a file containing a pixmap symbol. For example a PNG file. A URL must
start with “http”:

SYMBOL "http://myserver.org/path/to/file.png"

New in version 6.0.

• [attribute] allows individual rendering of features by using an attribute in the dataset that specifies the
symbol name (as defined in the SYMBOL NAME parameter). The hard brackets [] are required. New
in version 5.6.

If SYMBOL is not specified, the behaviour depends on the type of feature.

• For points, nothing will be rendered.

• For lines, SYMBOL is only relevant if you want to style the lines using symbols, so the absence
of SYMBOL means that you will get lines as specified using the relevant line rendering parameters
(COLOR, WIDTH, PATTERN, LINECAP, ...).

• For polygons, the interior of the polygons will be rendered using a solid fill of the color specified in
the COLOR parameter.

182 Chapter 4. Mapfile

MapServer Documentation, Release 6.4.1

See Also:

SYMBOL

WIDTH [double|attribute] WIDTH refers to the thickness of line work drawn, in layer SIZEUNITS. Default is
1.0.

When scaling of symbols is in effect (SYMBOLSCALEDENOM is specified for the LAYER), WIDTH refers
to the thickness of the line work in layer SIZEUNITS at the map scale 1:SYMBOLSCALEDENOM.

• If used with SYMBOL and OUTLINECOLOR, WIDTH specifies the width of the symbol outlines. This
applies to SYMBOL TYPE vector (polygons), ellipse and truetype.

• For lines, WIDTH specifies the width of the line.

• For polygons, if used with OUTLINECOLOR, WIDTH specifies the thickness of the polygon outline.

• For a symbol of SYMBOL TYPE hatch, WIDTH specifies the thickness of the hatched lines. For its
use with hatched lines, see Example #7 in the symbology examples.

• [attribute] was added in version 5.4 to specify the attribute to use for the width value. The hard
brackets [] are required.

• Starting from version 5.4, the value can also be a decimal value (and not only integer).

4.1.23 SYMBOL

• Symbol definitions can be included within the main map file or, more commonly, in a separate file. Symbol
definitions in a separate file are designated using the SYMBOLSET keyword, as part of the MAP object.
This recommended setup is ideal for re-using symbol definitions across multiple MapServer applications.

• There are 3 main types of symbols in MapServer: Markers, Lines and Shadesets.

• Symbol 0 is always the degenerate case for a particular class of symbol. For points, symbol 0 is a single
pixel, for shading (i.e. filled polygons) symbol 0 is a solid fill, and for lines, symbol 0 is a single pixel wide
line.

• Symbol definitions contain no color information, colors are set within STYLE objects.

• Line styling was moved to CLASS STYLE in MapServer version 5. The mechanisms are no longer available
in SYMBOL.

• For MapServer versions < 5 there is a maximum of 64 symbols per file. This can be changed by editing
mapsymbol.h and changing the value of MS_MAXSYMBOLS at the top of the file. As of MapServer 5.0
there is no symbol limit.

• More information can be found in the Construction of Cartographic Symbols document.

ANCHORPOINT [x] [y] Used to specify the location (within the symbol) that is to be used as an anchorpoint
when rotating the symbol and placing the symbol on a map. Default is 0.5 0.5 (corresponding to the center
of the symbol).

x: A double in the range [0,1] that specifies the location within the symbol along the x axis. 0
specifies the left edge of the symbol, 1 specifies the right edge of the symbol. 0.5 specifies the
center of the symbol (in the x direction).

y: A double in the range [0,1] that specifies the location within the symbol along the y axis. 0
specifies the top edge of the symbol, 1 specifies the lower edge of the symbol. 0.5 specifies the
center of the symbol (in the y direction).

ANCHORPOINT can be used with SYMBOLs of TYPE ellipse, pixmap, svg, truetype and vector. To ensure
proper behaviour for vector symbols, the left and top edges of the bounding box of the symbol should be at
0. New in version 6.2.

ANTIALIAS [true|false] Should TrueType fonts be antialiased. Only useful for GD (gif) rendering. Default is
false. Has no effect for the other renderers (where anti-aliasing can not be turned off).

4.1. Mapfile 183

MapServer Documentation, Release 6.4.1

CHARACTER [char] Character used to reference a particular TrueType font character. You’ll need to figure out
the mapping from the keyboard character to font character.

FILLED [true|false] If true, the symbol will be filled with a user defined color (using STYLE COLOR). Default
is false.

If true, symbols of TYPE ellipse and vector will be treated as polygons (fill color specified using STYLE
COLOR and outline specified using STYLE OUTLINECOLOR and WIDTH).

If false, symbols of TYPE ellipse and vector will be treated as lines (the lines can be given a color using
STYLE COLOR and a width using STYLE WIDTH).

FONT [string] Name of TrueType font to use as defined in the FONTSET .

IMAGE [string] Image (GIF or PNG) to use as a marker or brush for type pixmap symbols.

NAME [string] Alias for the symbol. To be used in CLASS STYLE objects.

POINTS [x y] [x y] ... END

Signifies the start of a sequence of points that make up a symbol of TYPE vector or that define the x
and y radius of a symbol of TYPE ellipse. The end of this section is signified with the keyword END.
The x and y values can be given using decimal numbers. The maximum x and y values define the
bounding box of the symbol. The size (actually height) of a symbol is defined in the STYLE. You can
create non-contiguous paths by inserting “-99 -99” at the appropriate places.

x values increase to the right, y values increase downwards.

For symbols of TYPE ellipse, a single point is specified that defines the x and y radius of the ellipse.
Circles are created when x and y are equal.

Note: If a STYLE using this symbol doesn’t contain an explicit size, then the default symbol size will
be based on the range of “y” values in the point coordinates. e.g. if the y coordinates of the points in
the symbol range from 0 to 5, then the default size for this symbol will be assumed to be 5.

TRANSPARENT [color index] Sets a transparent color for the input image for pixmap symbols, or determines
whether all shade symbols should have a transparent background. For shade symbols it may be desirable to
have background features “show through” a transparent hatching pattern, creating a more complex map. By
default a symbol’s background is the same as the parent image (i.e. color 0). This is user configurable.

Note: The default (AGG) renderer does not support the TRANSPARENT parameter. It is supported by the
GD renderer (GIF).

TYPE [ellipse|hatch|pixmap|svg|truetype|vector]

• ellipse: radius values in the x and y directions define an ellipse.

• hatch: produces hatched lines throughout the (polygon) shape.

• pixmap: a user supplied image will be used as the symbol.

• svg: scalable vector graphics (SVG) symbol. Requires the libsvg-cairo library.

• truetype: TrueType font to use as defined in the MAP FONTSET .

• vector: a vector drawing is used to define the shape of the symbol.

Note: TYPE cartoline is no longer used. Dashed lines are specified using PATTERN, LINECAP, LINE-
JOIN and LINEJOINMAXSIZE in STYLE. Examples in Construction of Cartographic Symbols.

4.1.24 Symbology Examples

Author Jeff McKenna

184 Chapter 4. Mapfile

MapServer Documentation, Release 6.4.1

Contact jmckenna at gatewaygeomatics.com

Author Håvard Tveite

Contact havard.tveite at nmbu.no

Date $Date$

Revision $Revision$

Last Updated 2011/05/11

Table of Contents

• Symbology Examples
– Example 1. Dashed Line
– Example 2. TrueType font marker symbol
– Example 3. Vector triangle marker symbol
– Example 4. Non-contiguous vector marker symbol (Cross)
– Example 5. Circle vector symbol
– Example 6. Downward diagonal fill
– Example 7. Using the Symbol Type HATCH (new in 4.6)
– Example 8. Styled lines using GAP

Example 1. Dashed Line

This example creates a dashed line that is 5 SIZEUNITS wide, with 10 SIZEUNITS on, 5 off, 5 on, 10 off ...

LAYER
...
CLASS
...
STYLE

COLOR 0 0 0
WIDTH 5
LINECAP butt
PATTERN 10 5 5 10 END

END
END

END

Example 2. TrueType font marker symbol

This example symbol is a star, used to represent the national capital, hence the name. The font name in defined in
the FONTSET file. The code number “114” varies, you can use MS Windows’ character map to figure it out, or
guestimate.

SYMBOL
NAME "natcap"
TYPE TRUETYPE
FONT "geo"
FILLED true
ANTIALIAS true # only necessary for GD rendering
CHARACTER "r"

END

Example 3. Vector triangle marker symbol

This example is fairly straight forward. Note that to have 3 sides you need 4 points, hence the first and last points
are identical. The triangle is not filled.

4.1. Mapfile 185

MapServer Documentation, Release 6.4.1

SYMBOL
NAME "triangle"
TYPE vector
POINTS
0 4
2 0
4 4
0 4

END
END

Example 4. Non-contiguous vector marker symbol (Cross)

This example draws a cross, that is 2 lines (vectors) that are not connected end-to-end (Like the triangle in the
previous example). The negative values separate the two.

SYMBOL
NAME "cross"
TYPE vector
POINTS
2.0 0.0
2.0 4.0
-99 -99
0.0 2.0
4.0 2.0

END
END

Example 5. Circle vector symbol

This example creates a simple filled circle. Using non-equal values for the point will give you an actual ellipse.

SYMBOL
NAME "circle"
TYPE ellipse
FILLED true
POINTS
1 1

END
END

Example 6. Downward diagonal fill

This example creates a symbol that can be used to create a downward diagonal fill for polygons.

SYMBOL
NAME "downwarddiagonalfill"
TYPE vector
TRANSPARENT 0
POINTS
0 1
1 0

END
END

Example 7. Using the Symbol Type HATCH (new in 4.6)

As of MapServer 4.6, you can use the symbol type HATCH to produce hatched lines. The following will display
hatched lines at a 45 degree angle, 10 SIZEUNITS apart (center to center), and 3 SIZEUNITS wide.

186 Chapter 4. Mapfile

MapServer Documentation, Release 6.4.1

Symbol definition:

SYMBOL
NAME ’hatch-test’
TYPE HATCH

END

Layer definition:

LAYER
...
CLASS
...
STYLE

SYMBOL ’hatch-test’
COLOR 255 0 0
ANGLE 45
SIZE 10
WIDTH 3

END
END

END

Other parameters available for HATCH are: MINSIZE, MAXSIZE, MINWIDTH, and MAXWIDTH.

Example 8. Styled lines using GAP

This example shows how to style lines with symbols.

A 5 SIZEUNITS wide black line is decorated with ellipses that are 15 SIZEUNITS long (and 7.5 SIZEUNITS‘wide).
The ellipses are placed 30 ‘SIZEUNITS apart, and the negative GAP value ensures that the ellipses are oriented
relative to the direction of the line. The ellipses are rotated 30 degrees counter clock-wise from their position
along the line.

Symbol definition:

SYMBOL
NAME "ellipse2"
TYPE ellipse
FILLED true
POINTS
1 2

END
END

Layer definition:

LAYER
...
CLASS
...
STYLE

WIDTH 5
COLOR 0 0 0

END
STYLE

SYMBOL ’ellipse2’
COLOR 0 0 0
ANGLE 30
SIZE 15
GAP -30

END
END

END

4.1. Mapfile 187

MapServer Documentation, Release 6.4.1

4.1.25 Templating

Author Frank Koormann

Contact frank.koormann at intevation.de

Author Jeff McKenna

Contact jmckenna at gatewaygeomatics.com

Revision $Revision$

Date $Date$

Table of Contents

• Templating
– Introduction
– Format
– Example Template

Introduction

Templates are used:

• to define the look of a MapServer CGI application interface

• to present the results of a query.

• to create custimised output (see Template-Driven Output)

They guide the presentation of results, either a query or a map, to the user. Templates are almost always HTML
files although they can also be a URL (e.g.. http://www.somewhere.com/[ATTRIBUTE]/info.html). URL tem-
plates can only be used with simple QUERY or ITEMQUERY results so many substitutions defined below are not
available for them. Simple pan/zoom interfaces use a single template file while complicated queries often require
many templates. Templates often use JavaScript to enhance the basic interface.

Notes

• Templates must contain the magic string ‘mapserver template’ in the first line of the template. Often this
takes the form of an HTML, javascript or XML comment. This line is not written to the client. The magic
string is not case sensitive.

• All CGI parameters can be referenced in template substitutions, MapServer specific parameters as well
as user defined ones. In principle parameters are handed through by the MapServer 1:1. This feature is
essential for implementing MapServer applications.

The reference below only lists special template substitution strings which are needed to obtain information
modified by the MapServer, e.g. a new scale, query results, etc.

• Template substitution strings are case sensitive.

• Attribute item substitutions must be the same case as the item names in the dbase file.

• ArcView and ArcInfo generally produce dbase files with item names that are all uppercase. Appropriate
URL encoding (i.e. ‘ ‘ to ‘+’) is applied when templates are URLs.

• Some substitutions are also available in escaped form (i.e. URL encoded).

As an example this is needed when generating links within a template. This might pass the current mapextent to
a new MapServer call. [mapext] is substituted by a space delimited set of lower left and upper right coordinates.
This would break the URL. [mapext_esc] is substituted by a proper encoded set.

188 Chapter 4. Mapfile

http://www.somewhere.com/{[}ATTRIBUTE{]}/info.html

MapServer Documentation, Release 6.4.1

Format

Templates are simply HTML files or URL strings that contains special characters that are replaced by mapserv
each time the template is processed. The simple substitution allows information such as active layers or the spatial
extent to be passed from the user to mapserv and back again. Most often the new values are dumped into form
variables that will be passed on again. The list of special characters and form variables is given below. HTML
templates can include just about anything including JavaScript and Java calls.

In HTML files, the attribute values can be inside quotes(“”). Writing attribute values inside quotes allows you to
set special characters in value that you couldn’t use normaly (ie:],=,” and space). To write a single quote in a
attribute value, just use two quotes (“”).

General

[date] Outputs the date (as per the web server’s clock). The default format is the same as is used by Apache’s
Common Log format, which looks like:

01/Dec/2010:17:34:58 -0800

Available arguments:

• format= A format string as supported by the standard C strftime() function. As an example, the
default format is defined as:

[date format="%d/%b/%Y:%H:%M:%S %z"]

• tz= timezone to use for the date returned. Default is “local”. Valid values are:

– “gmt” Output date will be Greenwich time

– “local” Output the time in the web server’s local time zone.

Additionally or alternatively, the %z and %Z strftime format strings allow the timezone offset or
name to be output.

[version] The MapServer version number.

[id] Unique session id. The id can be passed in via a form but is more commonly generated by the software.
In that case the id is a concatenation of UNIX time (or NT equivalent) and the process id. Unless you’re
getting more requests in a second than the system has process ids the id can be considered unique. ;->

[host] Hostname of the web server.

[port] Port the web server is listening to.

[post or get variable name], [post or get variable name_esc] The contents of any variables passed to the
MapServer, whether they were used or not, can be echoed this way. One use might be to have the user
set a map title or north arrow style in an interactive map composer. The system doesn’t care about the
values, but they might be real important in creating the final output, e.g. if you specified a CGI parameter
like myvalue=.... you can access this in the template file with [myvalue].

Also available as escaped version.

[web_meta data key],[web_meta data key_esc] Web object meta data access (e.g [web_projection]

Also available as escaped version.

[errmsg], [errmsg_esc] Current error stack output. Various error messages are delimited by semi-colons.

Also available as escaped version.

4.1. Mapfile 189

MapServer Documentation, Release 6.4.1

File Reference

[img] Path (relative to document root) of the new image, just the image name if IMAGE_URL is not set in the
mapfile.

In a map interface template, [img] is substituted with the path to the map image. In a query results template,
it is substituted with the path to the querymap image (if a QUERYMAP object is defined in the Mapfile).

[ref] Path (relative to document root) of the new reference image.

[legend] Path (relative to document root) of new legend image rendered by the MapServer.

Since version 3.5.1 a new HTML Legend template is provided by MapServer. If a template is defined in the
Mapfile the [legend] string is replaced by the processed legend as. See the HTML Legends with MapServer
for details.

[scalebar] Path (relative to document root) of new scalebar image.

[queryfile] Path to the query file (if savequery was set as a CGI Parameter).

[map] Path to the map file (if savemap was set as a CGI Parameter).

Image Geometry

[center] Computed image center in pixels. Useful for setting imgxy form variable when map sizes change.

[center_x], [center_y] Computed image center X or Y coordinate in pixels.

[mapsize], [mapsize_esc] Current image size in cols and rows (separated by spaces).

Also available as escaped version.

[mapwidth], [mapheight] Current image width or height.

[scaledenom] Current image scale. The exact value is not appropriate for user information but essential for some
applications. The value can be rounded e.g. using JavaScript or server side post processing.

[scale] - deprecated Since MapServer 5.0 the proper parameter to use is [scaledenom] instead. The deprecated
[scale] is the current image scale. The exact value is not appropriate for user information but essential for
some applications. The value can be rounded e.g. using JavaScript or server side post processing.

[cellsize] Size of an pixel in the current image in map units. Useful for distance measurement tools in user
interfaces.

Map Geometry

[mapx], [mapy] X and Y coordinate of mouse click.

[mapext], [mapext_esc] Full mapextent (separated by spaces).

Also available as escaped version. (mapext_esc is deprecated in MapServer 5.2. You should use the “es-
cape=” argument instead)

The default template [mapext] returns coordinates in the format of: mixx miny maxx maxy

Available arguments:

• escape= Escape the coordinates returned. Default is “none”. Valid values are:

– “url” Use URL escape codes to encode the coordinates returned.

– “none” Do not escape.

• expand= Expand the bounds of the extents by a specific value. Specified in map coordinates. For
example, [mapext] might return:

190 Chapter 4. Mapfile

MapServer Documentation, Release 6.4.1

123456 123456 567890 567890

and [mapext expand=1000] would therefore return:

122456 122456 568890 568890

• format= Format of the coordinates. Default is “$minx $miny $maxx $maxy”. For example, to add
commas to the coordinates you would use:

[mapext format="$minx,$miny,$maxx,$maxy"]

• precision= The number of decimal places to output for coordinates (default is 0).

[minx], [miny], [maxx], [maxy] Minimum / maximum X or Y coordinate of new map extent.

[dx], [dy] The differences of minimum / maximum X or Y coordinate of new map extent.

Useful for creating cachable extents (i.e. 0 0 dx dy) with legends and scalebars

[rawext], [rawext_esc] Raw mapextent, that is the extent before fitting to a window size (separated by spaces).
In cases where input came from imgbox (via Java or whatever) rawext refers to imgbox coordinates trans-
formed to map units. Useful for spatial query building.

Also available as escaped version. (rawext_esc is deprecated in MapServer 5.2. You should use the “es-
cape=” argument instead)

The default template [rawext] returns coordinates in the format of: mixx miny maxx maxy

Available arguments:

• escape= Escape the coordinates returned. Default is “none”. Valid values are:

– “url” Use URL escape codes to encode the coordinates returned.

– “none” Do not escape.

• expand= Expand the bounds of the extents by a specific value. Specified in map coordinates. For
example, [rawext] might return:

123456 123456 567890 567890

and [rawext expand=1000] would therefore return:

122456 122456 568890 568890

• format= Format of the coordinates. Default is “$minx $miny $maxx $maxy”. For example, to add
commas to the coordinates you would use:

[rawext format="$minx,$miny,$maxx,$maxy"]

• precision= The number of decimal places to output for coordinates (default is 0).

[rawminx], [rawminy], [rawmaxx], [rawmaxy] Minimum / maximum X or Y coordinate of a raw map/search
extent.

The following substitutions are only available if the MapServer was compiled with PROJ support and a PROJEC-
TION is defined in the Mapfile.

[maplon], [maplat] Longitude / latitude value of mouse click. Available only when projection enabled.

[mapext_latlon], [mapext_latlon_esc] Full mapextent (separated by spaces). Available only when projection
enabled.

Also available as escaped version. (mapext_latlon_esc is deprecated in MapServer 5.2. You should use the
“escape=” argument instead)

The default template [mapext_latlon] returns coordinates in the format of: mixx miny maxx maxy

4.1. Mapfile 191

MapServer Documentation, Release 6.4.1

Available arguments:

• escape= Escape the coordinates returned. Default is “none”. Valid values are:

– “url” Use URL escape codes to encode the coordinates returned.

– “none” Do not escape.

• expand= Expand the bounds of the extents by a specific value. Specified in map coordinates. For
example, [mapext_latlon] might return:

123456 123456 567890 567890

and [mapext_latlon expand=1000] would therefore return:

122456 122456 568890 568890

• format= Format of the coordinates. Default is “$minx $miny $maxx $maxy”. For example, to add
commas to the coordinates you would use:

[mapext_latlon format="$minx,$miny,$maxx,$maxy"]

• precision= The number of decimal places to output for coordinates (default is 0).

[minlon], [minlat], [maxlon] [maxlat] Minimum / maximum longitude or latitude value of mapextent. Available
only when projection enabled.

[refext], [refext_esc] Reference map extent (separated by spaces).

This template has been added with version 4.6 on behalf of an enhancement request. See the thread in the
MapServer ticket#1102 for potential use cases.

Also available as escaped version. (refext_esc is deprecated in MapServer 5.2. You should use the “escape=”
argument instead)

The default template [refext] returns coordinates in the format of: mixx miny maxx maxy

Available arguments:

• escape= Escape the coordinates returned. Default is “none”. Valid values are:

– “url” Use URL escape codes to encode the coordinates returned.

– “none” Do not escape.

• expand= Expand the bounds of the extents by a specific value. Specified in map coordinates. For
example, [refext] might return:

123456 123456 567890 567890

and [refext expand=1000] would therefore return:

122456 122456 568890 568890

• format= Format of the coordinates. Default is “$minx $miny $maxx $maxy”. For example, to add
commas to the coordinates you would use:

[refwext format="$minx,$miny,$maxx,$maxy"]

• precision= The number of decimal places to output for coordinates (default is 0).

192 Chapter 4. Mapfile

http://trac.osgeo.org/mapserver/ticket/1102

MapServer Documentation, Release 6.4.1

Layer

[layers] | [layers_esc] All active layers space delimited. Used for a “POST” request.

Also available as escaped version.

[toggle_layers] | [toggle_layers_esc] List of all layers that can be toggled, i.e. all layers defined in the Mapfile
which status is currently not default.

Also available as escaped version.

[layername_check | select] Used for making layers persistent across a map creation session. String is replaced
with the keyword “checked”, “selected” or “” if layername is on. Layername is the name of a layer as it
appears in the Mapfile. Does not work for default layers.

[layername_meta data key] Layer meta data access (e.g. [streets_build] the underscore is essential).

Zoom

[zoom_minzoom to maxzoom_check|select] Used for making the zoom factor persistent. Zoom values can
range from -25 to 25 by default. The string is replaced with the HTML keyword “checked”, “selected”
or “” depending on the current zoom value.

E.g. if the zoom is 12, a [zoom_12_select] is replaced with “selected”, while a [zoom_13_select] in the
same HTML template file is not.

[zoomdir_-1|0|1_check|select] Used for making the zoom direction persistent. Use check with a radio control or
select with a selection list. See the demo for an example. The string is replaced with the HTML keyword
“checked”, “selected” or “” depending on the current value of zoomdir.

Query

The following substitutions are only available when the template is processed as a result of a query.

[shpext], [shpext_esc] Extent of current shape plus a 5 percent buffer. Available only when processing query
results.

The default template [shpext] returns coordinates in the format of: mixx miny maxx maxy

Available arguments:

• escape= Escape the coordinates returned. Default is “none”. Valid values are:

– “url”

Use URL escape codes to encode the coordinates returned.

– “none” Do not escape.

• expand= Expand the bounds of the extents by a specific value. Specified in map coordinates. For
example, [shpext] might return:

123456 123456 567890 567890

and [shpext expand=1000] would therefore return:

122456 122456 568890 568890

• format= Format of the coordinates. Default is “$minx $miny $maxx $maxy”. For example, to add
commas to the coordinates you would use:

[shpext format="$minx,$miny,$maxx,$maxy"]

• precision= The number of decimal places to output for coordinates (default is 0).

4.1. Mapfile 193

MapServer Documentation, Release 6.4.1

[shpminx], [shpminy], [shpmaxx], [shpmaxy] Minimum / maximum X or Y coordinate of shape extent. Avail-
able only when processing query results.

[shpmid] Middle of the extent of current shape. Available only when processing query results.

[shpmidx], [shpmidy] X or Y coordinate of middle of the extent of the current shape. Available only when
processing query results.

[shpidx] Index value of the current shape. Available only when processing query results.

[shpclass] Classindex value of the current shape. Available only when processing query results.

[shpxy formatting options] The list of shape coordinates, with list formatting options, especially useful for SVG.

The default template [shpxy] returns a comma separated list of space delimited of coordinates (i.e. x1 y1,
x2 y2, x3 y3).

Available only when processing query results.

Available attributes (h = header, f=footer, s=separator):

• buffer=, Buffer size, currently the only unit available is pixels. Default is 0.

• centroid= Should only the centroid of the shape be used? true or false (case insensitive). Default is
false.

• cs= Coordinate separator. Default is ”,”.

• irh=, irf=, orh=, orf=

Characters to be put before (irh) and after (irf) inner rings, and before (orh) and after (orf)
outer rings of polygons with holes. Defaults are “”.

Note: Within each polygon, the outer ring is always output first, followed by the inner rings.

If neither irh nor orh are set, rings are output as “parts” using ph/pf /ps.

• ph=, pf=, ps= Characters to put before (ph) and after (pf) and separators between (ps) feature parts
(e.g. rings of multigeometries). Defaults are ph=””, pf=”” and ps=” ”.

• precision= The number of decimal places to output for coordinates. Default is 0.

• proj= The output projection definition for the coordinates, a special value of “image” will convert to
image coordinates. Default is none.

• scale=, scale_x=, scale_y= Scaling factor for coordinates: Both axes (scale), x axis (scale_x) and y
axis (scale_y). Defaults are 1.0.

• sh=, sf= Characters to put before (sh) and after (sf) a feature. Defaults are “”.

• xh=, xf= Characters to put before (xh) and after (xf) the x coordinates. Defaults are xh=”” and xf=”,”).

• yh= yf= Characters to put before (yh) and after (yf) the y coordinates. Defaults are “”.

As a simple example:

[shpxy xh="(" yf=")"] will result in: (x1 y1),(x2 y2),(x3 y3)

And a more complicated example of outputting KML for multipolygons which may potentially have holes
(note that the parameters must all be on one line):

<MultiGeometry>
<Point>
<coordinates>[shplabel proj=epsg:4326 precision=10],0</coordinates>

</Point>
[shpxy ph="<Polygon><tessellate>1</tessellate>" pf="</Polygon>" xf=","
xh=" " yh=" " yf=",0 " orh="<outerBoundaryIs><LinearRing><coordinates>"
orf="</coordinates></LinearRing></outerBoundaryIs>"
irh="<innerBoundaryIs><LinearRing><coordinates>"

194 Chapter 4. Mapfile

MapServer Documentation, Release 6.4.1

irf="</coordinates></LinearRing></innerBoundaryIs>" proj=epsg:4326
precision=10]

</MultiGeometry>

[tileindex] Index value of the current tile. If no tiles used for the current shape this is replaced by “-1”. Available
only when processing query results.

[item formatting options] An attribute table “item”, with list formatting options. The “name” attribute is re-
quired.

Available only when processing query results.

Available attributes:

• name = The name of an attribute, case insenstive. (required)

• precision = The number of decimal places to use for numeric data. Use of this will force display as a
number and will lead to unpredicable results with non-numeric data.

• pattern = Regular expression to compare the value of an item against. The tag is output only if there
is a match.

• uc = Set this attribute to “true” to convert the attribute value to upper case.

• lc = Set this attribute to “true” to convert the attribute value to lower case.

• commify = Set this attribute to “true” to add commas to a numeric value. Again, only useful with
numeric data.

• escape = Default escaping is for HTML, but you can escape for inclusion in a URL (=url), or not
escape at all (=none).

• format = A format string used to output the attribute value. The token “$value” is used to place the
value in a more complex presentation. Default is to output only the value.

• nullformat = String to output if the attribute value is NULL, empty or doesn’t match the pattern (if
defined). If not set and any of these conditions occur the item tag is replaced with an empty string.

As a simple example:

[item name="area" precision="2" commify="2" format="Area is $value"]

[attribute name],[attrribute name_esc],[attribute item name_raw] Attribute name from the data table of a
queried layer. Only attributes for the active query layers are accessible. Case must be the same as what
is stored in the data file. ArcView, for example, uses all caps for shapefile field names. Available only when
processing query results.

By default the attributes are encoded especially for HTML representation. In addition the escaped version
(for use in URLs) as well as the raw data is available.

[Join name_attribute name],[Join name_attribute name_esc], [Join name_attribute name_raw]

One-to-one joins: First the join name (as specified in the Mapfile has to be given, second the tables
fields can be accessed similar to the layers attribute data. Available only when processing query
results.

By default the attributes are encoded especially for HTML representation. In addition the escaped
version (for use in URLs) as well as the raw data is available.

[join_Join name] One-to-many joins: The more complex variant. If the join type is multiple (one-to-many) the
template is replaced by the set of header, template file and footer specified in the Mapfile.

[metadata_meta data key], [metadata_meta data key_esc] Queried layer meta data access (e.g [meta-
data_projection]

Also available as escaped version.

4.1. Mapfile 195

MapServer Documentation, Release 6.4.1

For query modes that allow for multiple result sets, the following string substitutions are available. For FEA-
TURESELECT and FEATURENSELECT modes the totals a re adjusted so as not to include the selection layer.
The selection layer results ARE available for display to the user.

[nr] Total number of results. Useful in web header and footers. Available only when processing query results.

[nl] Number of layers returning results. Useful in web header and footers. Available only when processing query
results.

[nlr] Total number of results within the current layer. Useful in web header and footers. Available only when
processing query results.

[rn] Result number within all layers. Starts at 1. Useful in web header and footers. Available only when process-
ing query results.

[lrn] Result number within the current layer. Starts at 1. Useful in query templates. Available only when pro-
cessing query results.

[cl] Current layer name. Useful in layer headers and footers. Available only when processing query results.

Example Template

A small example to give an idea how to work with templates. Note that it covers MapServer specific templates
(e.g. the [map], [mapext]) and user defined templates (e.g. [htmlroot] or [program]) used to store application
settings.

1 <!-- MapServer Template -->
2 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
3 "http://www.w3.org/TR/html4/transitional.dtd">
4 <html>
5 <head>
6 <title>MapServer Template Sample</title>
7 </head>
8

9 <body>
10 MapServer Template Sample

11

12 <!-- The central form the application is based on. -->
13 <form method="GET" action="[program]">
14

15 <!-- CGI MapServer applications are server stateless in principle,
16 all information must be "stored" in the client. This includes
17 some basic settings as below.
18 The example is based on the pan and zoom test suite:
19 http://maps.dnr.state.mn.us/mapserver_demos/tests36/ -->
20 <input type="hidden" name="map" value="[map]">
21 <input type="hidden" name="imgext" value="[mapext]">
22 <input type="hidden" name="imgxy" value="149.5 199.5">
23 <input type="hidden" name="program" value="[program]">
24 <input type="hidden" name="htmlroot" value="[htmlroot]">
25 <input type="hidden" name="map_web" value="[map_web]">
26

27 <!-- A table for minimal page formatting. -->
28 <table border=0 cellpadding=5>
29 <tr>
30 <!-- First column: Map and scale bar -->
31 <td align=center>
32 <!-- The map -->
33 <input type="image" name="img" src="[img]"
34 style="border:0;width:300;height:400">
35

36 <!-- The scale bar-->
37
38 </td>

196 Chapter 4. Mapfile

MapServer Documentation, Release 6.4.1

39

40 <!-- Second column: Zoom direction, Legend and Reference -->
41 <td valign=top>
42 <!-- Zoom direction -->
43 Map Controls

44 Set your zoom option:

45 <select name="zoom" size="1">
46 <option value="2" [z o o m _ 2 _ s e l e c t] > Zoom in 2 times

47 <option value="1" [z o o m _ 1 _ s e l e c t] > Recenter Map

48 <option value="-2" [z o o m _ - 2 _ s e l e c t] > Zoom out 2 times
49 </select>
50

51

52 <!-- Legend -->
53 Legend

54

55

56 <!-- Reference map -->
57 <input type="image" name="ref" src="[ref]"
58 style="border:0;width:150;height:150">
59 </td>
60 </tr>
61 </table>
62

63 </form>
64

65 </body>
66 </html>

4.1.26 Union Layer

Author Tamas Szekeres

Contact szekerest at gmail.com

Author Jeff McKenna

Contact jmckenna at gatewaygeomatics.com

Last Updated 2011-04-11

Table of Contents

• Union Layer
– Description
– Requirements
– Mapfile Configuration
– Feature attributes
– Classes and Styles
– Projections
– Supported Processing Options
– Examples

* Mapfile Example
* PHP MapScript Example

Description

Since version 6.0, MapServer has the ability to display features from multiple layers (called ‘source layers’) in a
single mapfile layer. This feature was added through rfc68.

4.1. Mapfile 197

MapServer Documentation, Release 6.4.1

Requirements

This is a native MapServer option that doesn’t use any external libraries to support it.

Mapfile Configuration

• The CONNECTIONTYPE parameter must be set to UNION.

• The CONNECTION parameter must contain a comma separated list of the source layer names.

• All of the source layers and the union layer must be the same TYPE (e.g. all must be TYPE POINT, or all
TYPE POLYGON etc.)

Note: You may wish to disable the visibility (change their STATUS) of the source layers to avoid displaying the
features twice.

For example:

LAYER
NAME "union-layer"
TYPE POINT
STATUS DEFAULT
CONNECTIONTYPE UNION
CONNECTION "layer1,layer2,layer3" # reference to the source layers
PROCESSING "ITEMS=itemname1,itemname2,itemname3"
...

END
LAYER

NAME "layer1"
TYPE POINT
STATUS OFF
CONNECTIONTYPE OGR
CONNECTION ...
...

END
LAYER

NAME "layer2"
TYPE POINT
STATUS OFF
CONNECTIONTYPE OGR
CONNECTION ...
...

END
LAYER

NAME "layer3"
TYPE POINT
STATUS OFF
CONNECTIONTYPE OGR
CONNECTION ...
...

END

Feature attributes

In the LAYER definition you may refer to any attributes supported by each of the source layers. In addition to the
source layer attributes the union layer provides the following additional attributes:

1. Combine:SourceLayerName - The name of the source layer the feature belongs to

2. Combine:SourceLayerGroup - The group of the source layer the feature belongs to

198 Chapter 4. Mapfile

MapServer Documentation, Release 6.4.1

During the selection / feature query operations only the ‘Combine:SourceLayerName’ and ‘Com-
bine:SourceLayerGroup’ attributes are provided by default. The set of the provided attributes can manually be
overridden (and further attributes can be exposed) by using the ITEMS processing option (refer to the example
above).

Classes and Styles

We can define the symbology and labelling for the union layers in the same way as for any other layer by specifying
the classes and styles. In addition the STYLEITEM AUTO option is also supported for the union layer, which
provides to display the features as specified at the source layers. The source layers may also use the STYLEITEM
AUTO setting if the underlying data source provides that.

Projections

For speed, it is recommended to always use the same projection for the union layer and source layers. However
MapServer will reproject the source layers to the union layer if requested. (for more information on projections in
MapServer refer to PROJECTION)

Supported Processing Options

The following processing options can be used with the union layers:

UNION_STATUS_CHECK (TRUE or FALSE) Controls whether the status of the source layes should be
checked and the invisible layers (STATUS=OFF) should be skipped. Default value is FALSE.

UNION_SCALE_CHECK (TRUE or FALSE) Controls whether the scale range of the source layes should be
checked and the invisible layers (falling outside of the scale range and zoom range) should be skipped.
Default value is TRUE.

UNION_SRCLAYER_CLOSE_CONNECTION Override the connection pool setting of the source layers. By
introducing this setting we alter the current behaviour which is equivalent to:

UNION_SRCLAYER_CLOSE_CONNECTION=ALWAYS

Examples

Mapfile Example

The follow example contains 3 source layers in different formats, and one layer (yellow) in a different projection.
The union layer uses the STYLEITEM “AUTO” parameter to draw the styles from the source layers. (in this
case MapServer will reproject the yellow features, in EPSG:4326, for the union layer, which is in EPSG:3978).

4.1. Mapfile 199

MapServer Documentation, Release 6.4.1

MAP
...
PROJECTION

"init=epsg:3978"
END
...
LAYER

NAME ’unioned’
TYPE POLYGON
STATUS DEFAULT
CONNECTIONTYPE UNION
CONNECTION "red,green,yellow"
STYLEITEM "AUTO"
Define an empty class that will be filled at runtime from the color and
styles read from each source layer.
CLASS
END
PROJECTION
"init=epsg:3978"

END
END

LAYER
NAME ’red’
TYPE POLYGON
STATUS OFF
DATA ’nb.shp’
CLASS

NAME ’red’
STYLE

OUTLINECOLOR 0 0 0
COLOR 255 85 0

END
END

END

200 Chapter 4. Mapfile

MapServer Documentation, Release 6.4.1

LAYER
NAME ’green’
TYPE POLYGON
STATUS OFF
CONNECTIONTYPE OGR
CONNECTION ’ns.mif’
CLASS

NAME ’green’
STYLE

OUTLINECOLOR 0 0 0
COLOR 90 218 71

END
END

END

LAYER
NAME ’yellow’
TYPE POLYGON
STATUS OFF
CONNECTIONTYPE OGR
CONNECTION ’pei.gml’
CLASS

NAME ’yellow’
STYLE

OUTLINECOLOR 0 0 0
COLOR 255 255 0

END
END
PROJECTION
"init=epsg:4326"

END
END

END # Map

PHP MapScript Example

<?php

// open map
$oMap = ms_newMapObj("D:/ms4w/apps/osm/map/osm.map");

// create union layer
$oLayer = ms_newLayerObj($oMap);
$oLayer->set("name", "unioned");
$oLayer->set("type", MS_LAYER_POLYGON);
$oLayer->set("status", MS_ON);
$oLayer->setConnectionType(MS_UNION);
$oLayer->set("connection", "red,green,yellow");
$oLayer->set("styleitem", "AUTO");
$oLayer->setProjection("init=epsg:3978");
// create empty class
$oClass = ms_newClassObj($oLayer);
...

?>

4.1. Mapfile 201

MapServer Documentation, Release 6.4.1

4.1.27 WEB

BROWSEFORMAT [mime-type] Format of the interface output, using MapServer CGI. (added to MapServer
4.8.0) The default value is “text/html”. Example:

BROWSEFORMAT "image/svg+xml"

EMPTY [url] URL to forward users to if a query fails. If not defined the value for ERROR is used.

ERROR [url] URL to forward users to if an error occurs. Ugly old MapServer error messages will appear if this
is not defined

FOOTER [filename] Template to use AFTER anything else is sent. Multiresult query modes only.

HEADER [filename] Template to use BEFORE everything else has been sent. Multiresult query modes only.

IMAGEPATH [path] Path to the temporary directory fro writing temporary files and images. Must be writable
by the user the web server is running as. Must end with a / or depending on your platform.

IMAGEURL [path] Base URL for IMAGEPATH. This is the URL that will take the web browser to IM-
AGEPATH to get the images.

LEGENDFORMAT [mime-type] Format of the legend output, using MapServer CGI. (added to MapServer
4.8.0) The default value is “text/html”. Example:

LEGENDFORMAT "image/svg+xml"

LOG [filename] Since MapServer 5.0 the recommeded parameters to use for debugging are the MAP object’s
CONFIG and DEBUG parameters instead (see the Debugging MapServer document).

File to log MapServer activity in. Must be writable by the user the web server is running as. Deprecated
since version 5.0.

MAXSCALEDENOM [double] Minimum scale at which this interface is valid. When a user requests a map at
a smaller scale, MapServer automatically returns the map at this scale. This effectively prevents user from
zooming too far out. Scale is given as the denominator of the actual scale fraction, for example for a map
at a scale of 1:24,000 use 24000. Implemented in MapServer 5.0, to replace the deprecated MAXSCALE
parameter.

See Also:

Map scale

MAXSCALE [double] - deprecated Since MapServer 5.0 the proper parameter to use is MAXSCALEDENOM
instead. The deprecated MAXSCALE is the minimum scale at which this interface is valid. When a user
requests a map at a smaller scale, MapServer automatically returns the map at this scale. This effectively
prevents user from zooming too far out. Scale is given as the denominator of the actual scale fraction, for
example for a map at a scale of 1:24,000 use 24000. Deprecated since version 5.0.

MAXTEMPLATE [file|url] Template to be used if below the minimum scale for the app (the denominator of
the requested scale is larger than MAXSCALEDENOM), useful for nesting apps.

METADATA This keyword allows for arbitrary data to be stored as name value pairs.

• Used with OGC services (WMS Server, WFS Server, WCS Server, SOS Server, ...) to define things
such as layer title.

• It can also allow more flexibility in creating templates, as anything you put in here will be accessible
via template tags.

• If you have XMP support enabled, you can also embed xmp_metadata in your output images by
specifying XMP tag information here. Example:

METADATA
title "My layer title"
author "Me!"
x m p _ d c _ Title "My Map Title"

END

202 Chapter 4. Mapfile

MapServer Documentation, Release 6.4.1

• labelcache_map_edge_buffer

For tiling, the amount of gutter around an image where no labels are to be placed is controlled by the
parameter labelcache_map_edge_buffer. The unit is pixels. The value had to be a negative value for
6.0 and earlier versions. From 6.2 the absolute value is taken, so the sign does not matter.

METADATA
"labelcache_map_edge_buffer" "10"

END

• ms_enable_modes

Enable / disable modes (see rfc90).

Use the asterisk “*” to specify all modes and a preceding exclamation sign ”!” to negate the given
condition

To disable all CGI modes:

METADATA
"ms_enable_modes" "!*"

END

To disable everything but MAP and LEGEND:

METADATA
"ms_enable_modes" "!* MAP LEGEND"

END

MINSCALEDENOM [double] Maximum scale at which this interface is valid. When a user reqests a map at a
larger scale, MapServer automatically returns the map at this scale. This effectively prevents the user from
zooming in too far. Scale is given as the denominator of the actual scale fraction, for example for a map
at a scale of 1:24,000 use 24000. Implemented in MapServer 5.0, to replace the deprecated MINSCALE
parameter.

See Also:

Map scale

MINSCALE [double] - deprecated Since MapServer 5.0 the proper parameter to use is MINSCALEDENOM
instead. The deprecated MINSCALE is the maximum scale at which this interface is valid. When a user
reqests a map at a larger scale, MapServer automatically returns the map at this scale. This effectively
prevents the user from zooming in too far. Scale is given as the denominator of the actual scale fraction, for
example for a map at a scale of 1:24,000 use 24000. Deprecated since version 5.0.

MINTEMPLATE Template to be used if above the maximum scale for the app (the denominator of the requested
scale is smaller than MINSCALEDENOM), useful for nesting apps.

QUERYFORMAT [mime-type] Format of the query output. (added to MapServer 4.8.0) This works for
mode=query (using query templates in CGI mode), but not for mode=browse. The default value is
“text/html”. Example:

QUERYFORMAT "image/svg+xml"

TEMPLATE [filename|url]

Template file or URL to use in presenting the results to the user in an interactive mode (i.e. map
generates map and so on ...).

URL is not a remote file, rather a template. For example:

TEMPLATE ’http://someurl/somescript.cgi?mapext=[mapext]’

TEMPPATH Path for storing temporary files. If not set, the standard system temporary file path will be used
(e.g. tmp for unix). TEMPPATH can also be set using the environment variable MS_TEMPPATH.

TEMPPATH is used in many contexts (see rfc66).

4.1. Mapfile 203

MapServer Documentation, Release 6.4.1

Make sure that that MapServer has sufficient rights to read and write files at the specified location. New in
version 6.0.

VALIDATION Signals the start of a VALIDATION block.

As of MapServer 5.4.0, VALIDATION blocks are the preferred mechanism for specifying validation patterns
for CGI param runtime substitutions. See Run-time Substitution.

4.1.28 XML Mapfile support

MapServer is able to load XML mapfiles automatically, without user XSLT tranformations. Basicly, MapServer
will simply do an XSLT transformation when the mapfile passed to it is an XML one, convert it to a text mapfile
in a temporary file on disk, then process the mapfile normally.

New Dependencies

• libxslt

• libexslt

Enabling the support

You can enable the XML mapfile support by adding the following option: –with-xml-mapfile. This configure
option will enable the libxslt and libexslt check up. If your libxslt/libexslt are not installed in /usr, you’ll have to
add the following options:

--with-xslt=/path/to/xslt/installation
--with-exslt=/path/to/exslt/installation

Usage:

In order to enable this feature, set the MS_XMLMAPFILE_XSLT environment variable to point to the location of
the XSLT to use for the XML->text mapfile conversion. e.g. in Apache:

SetEnv MS_XMLMAPFILE_XSLT /path/to/mapfile.xsl
PassEnv MS_XMLMAPFILE_XSLT

With this enabled, passing an .xml filename to the CGI map parameter will automatically trigger the conversion.

Note: This is a first step to XML mapfile loading support. Obviously, there is a cost to parse and translate the
XML mapfile, but this allows easier use of XML mapfiles.

4.1.29 Notes

• The Mapfile is NOT case-sensitive.

• The Mapfile is read from top to bottom by MapServer; this means that LAYERs near
the top of your Mapfile will be drawn before those near the bottom. Therefore users commonly place
background imagery and other background layer types near the top of their mapfile, and lines and points
near the bottom of their mapfile.

• Strings containing non-alphanumeric characters or a MapServer keyword MUST be quoted. It is recom-
mended to put ALL strings in double-quotes.

• For MapServer versions < 5, there was a default maximum of 200 layers per mapfile (there is no layer
limit with MapServer >= 5). This can be changed by editing the map.h file to change the value of
MS_MAXLAYERS to the desired number and recompiling. Here are other important default limits when
using a MapServer version < 5:

204 Chapter 4. Mapfile

MapServer Documentation, Release 6.4.1

– MAXCLASSES 250 (set in map.h)

– MAXSTYLES 5 (set in map.h)

– MAXSYMBOLS 64 (set in mapsymbol.h)

MapServer versions >= 5 have no limits for classes, styles, symbols, or layers.

• File paths may be given as absolute paths, or as paths relative to the location of the mapfile. In addition,
data files may be specified relative to the SHAPEPATH.

• The mapfile has a hierarchical structure, with the MAP object being the “root”. All other objects fall under
this one.

• Comments are designated with a #.

• Attributes are named using the following syntax: [ATTRIBUTENAME].

Note: that the name of the attribute included between the square brackets IS CASE SENSITIVE. Generally
ESRI generated shape data sets have their attributes (.dbf column names) all in upper-case for instance, and
for PostGIS, ALWAYS use lower-case.

• MapServer Regular Expressions are used through the operating system’s C Library. For information on
how to use and write Regular Expressions on your system, you should read the documentation provided
with your C Library. On Linux, this is GLibC, and you can read “man 7 regex” ... This man page is also
available on most UNIX’s. Since these RegEx’s are POSIX compliant, they should be the same on Windows
as well, so windows users can try searching the web for “man 7 regex” since man pages are available all
over the web.

4.1. Mapfile 205

MapServer Documentation, Release 6.4.1

206 Chapter 4. Mapfile

CHAPTER

FIVE

MAPSCRIPT

5.1 MapScript

Release 6.4.1

5.1.1 Introduction

This is language agnostic documentation for the MapScript interface to MapServer generated by SWIG. This
document is intended for developers and to serve as a reference for writers of more extensive, language specific
documentation located at Mapfile

Appendices

Language-specific extensions are described in the following appendices

Python Appendix

Documentation Elements

Classes will be documented in alphabetical order in the manner outlined below. Attributes and methods will be
formatted as definition lists with the attribute or method as item, the type or return type as classifier, and a concise
description. To make the document as agnostic as possible, we refer to the following types: int, float, and string.
There are yet no mapscript methods that return arrays or sequences or accept array or sequence arguments.

We will use the SWIG term immutable to indicate that an attribute’s value is read-only.

fooObj

A paragraph or two about class fooObj.

fooObj Attributes

attribute [type [access]] Concise description of the attribute.

Attribute name are completely lower case. Multiple words are packed together like outlinecolor.

Note that because of the way that mapscript is generated many confusing, meaningless, and even dangerous
attributes are creeping into objects. See outputFormatObj.refcount for example. Until we get a grip on the structure
members we are exposing to SWIG this problem will continue to grow.

207

MapServer Documentation, Release 6.4.1

fooObj Methods

method(type mandatory_parameter [, type optional_parameter=default]) [type] Description of the method
including elaboration on the method arguments, the method’s actions, and returned values. Optional param-
eters and their default values are enclosed in brackets.

Class method names are camel case with a leading lower case character like getExpressionString.

Additional Documentation

There’s no point in duplicating the MapServer Mapfile Reference, which remains the primary reference for map-
script class attributes.

5.1.2 SWIG MapScript API Reference

Author Sean Gillies

Author Steve Lime

Contact steve.lime at dnr.state.mn.us

Author Frank Warmerdam

Contact warmerdam at pobox.com

Author Umberto Nicoletti

Contact umberto.nicoletti at gmail.com

Author Tamas Szekeres

Contact szekerest at gmail.com

Author Daniel Morissette

Contact dmorisette at mapgears.com

Revision $Revision$

Date $Date$

208 Chapter 5. MapScript

MapServer Documentation, Release 6.4.1

Contents

• SWIG MapScript API Reference
– Introduction

* Appendices
* Documentation Elements
* fooObj
* Additional Documentation

– MapScript Constants
* Version
* Logical Control - Boolean Values
* Logical Control - Status Values
* Map Units
* Layer Types
* Font Types
* Label Positions
* Label Size (Bitmap only)
* Shape Types
* Measured Shape Types
* Shapefile Types
* Query Types
* File Types
* Querymap Styles
* Connection Types
* DB Connection Types
* Join Types
* Line Join Types (for rendering)
* Image Types
* Image Modes
* Symbol Types
* Return Codes
* Limiters
* Error Return Codes

– MapScript Functions
– MapScript Classes

* classObj
* colorObj
* errorObj
* fontSetObj
* hashTableObj
* imageObj
* intarray
* labelCacheMemberObj
* labelCacheObj
* labelObj
* layerObj
* legendObj
* lineObj
* mapObj
* markerCacheMemberObj
* outputFormatObj
* OWSRequest
* pointObj
* projectionObj
* rectObj
* referenceMapObj
* resultCacheMemberObj
* resultCacheObj
* scalebarObj
* shapefileObj
* shapeObj
* styleObj
* symbolObj
* symbolSetObj
* webObj

5.1. MapScript 209

MapServer Documentation, Release 6.4.1

Introduction

This is language agnostic documentation for the mapscript interface to MapServer generated by SWIG. This
document is intended for developers and to serve as a reference for writers of more extensive, language specific
documentation in DocBook format for the MDP.

Appendices

Language-specific extensions are described in the following appendices

Python MapScript Appendix

Documentation Elements

Classes will be documented in alphabetical order in the manner outlined below. Attributes and methods will be
formatted as definition lists with the attribute or method as item, the type or return type as classifier, and a concise
description. To make the document as agnostic as possible, we refer to the following types: int, float, and string.
There are yet no mapscript methods that return arrays or sequences or accept array or sequence arguments.

We will use the SWIG term immutable to indicate that an attribute’s value is read-only.

fooObj

A paragraph or two about class fooObj.

fooObj Attributes

attribute [type [access]] Concise description of the attribute.

Attribute name are completely lower case. Multiple words are packed together like outlinecolor.

Note that because of the way that mapscript is generated many confusing, meaningless, and even dangerous
attributes might be exposed by objects.

fooObj Methods

method(type mandatory_parameter [, type optional_parameter=default]) [type] Description of the method
including elaboration on the method arguments, the method’s actions, and returned values. Optional param-
eters and their default values are enclosed in brackets.

might be exposed byClass method names are camel case with a leading lower case character like getExpression-
String.

Additional Documentation

There’s no point in duplicating the MapServer Mapfile Reference, which remains the primary reference for map-
script class attributes.

MapScript Constants

The constants are ordered alphabetically within each group.

210 Chapter 5. MapScript

MapServer Documentation, Release 6.4.1

Version

Name Type
MS_VERSION character

Logical Control - Boolean Values

Name Type
MS_FALSE integer
MS_NO integer
MS_OFF integer
MS_ON integer
MS_TRUE integer
MS_YES integer

Logical Control - Status Values

Name Type
MS_DEFAULT integer
MS_DELETE integer
MS_EMBED integer

Map Units

Name Type
MS_DD integer
MS_FEET integer
MS_INCHES integer
MS_METERS integer
MS_MILES integer
MS_NAUTICALMILES integer
MS_PIXELS integer

Layer Types

Name Type
MS_LAYER_ANNOTATION (deprecated since 6.2) integer
MS_LAYER_CIRCLE integer
MS_LAYER_LINE integer
MS_LAYER_POINT integer
MS_LAYER_POLYGON integer
MS_LAYER_QUERY integer
MS_LAYER_RASTER integer
MS_LAYER_TILEINDEX integer

Font Types

Name Type
MS_BITMAP integer
MS_TRUETYPE integer

5.1. MapScript 211

MapServer Documentation, Release 6.4.1

Label Positions

Name Type
MS_AUTO integer
MS_CC integer
MS_CL integer
MS_CR integer
MS_LC integer
MS_LL integer
MS_LR integer
MS_UC integer
MS_UL integer
MS_UR integer

Label Size (Bitmap only)

Name Type
MS_GIANT integer
MS_LARGE integer
MS_MEDIUM integer
MS_SMALL integer
MS_TINY integer

Shape Types

Name Type
MS_SHAPE_LINE integer
MS_SHAPE_NULL integer
MS_SHAPE_POINT integer
MS_SHAPE_POLYGON integer

Measured Shape Types

Name Type
MS_SHP_ARCM integer
MS_SHP_MULTIPOINTM integer
MS_SHP_POINTM integer
MS_SHP_POLYGONM integer

Shapefile Types

Name Type
MS_SHAPEFILE_ARC integer
MS_SHAPEFILE_MULTIPOINT integer
MS_SHAPEFILE_POINT integer
MS_SHAPEFILE_POLYGON integer

212 Chapter 5. MapScript

MapServer Documentation, Release 6.4.1

Query Types

Name Type
MS_MULTIPLE integer
MS_SINGLE integer

File Types

Name Type
MS_FILE_MAP integer
MS_FILE_SYMBOL integer

Querymap Styles

Name Type
MS_HILITE integer
MS_NORMAL integer
MS_SELECTED integer

Connection Types

Name Typ
MS_GRATICULE integer
MS_INLINE integer
MS_MYGIS integer
MS_OGR integer
MS_ORACLESPATIAL integer
MS_POSTGIS integer
MS_RASTER integer
MS_SDE integer
MS_SHAPEFILE integer
MS_TILED_SHAPEFILE integer
MS_WFS integer
MS_WMS integer

DB Connection Types

Name Type
MS_DB_CSV integer
MS_DB_MYSQL integer
MS_DB_ORACLE integer
MS_DB_POSTGRES integer
MS_DB_XBASE integer

Join Types

Name Type
MS_JOIN_ONE_TO_MANY integer
MS_JOIN_ONE_TO_ONE integer

5.1. MapScript 213

MapServer Documentation, Release 6.4.1

Line Join Types (for rendering)

Name Type
MS_CJC_BEVEL integer
MS_CJC_BUTT integer
MS_CJC_MITER integer
MS_CJC_NONE integer
MS_CJC_ROUND integer
MS_CJC_SQUARE integer
MS_CJC_TRIANGLE integer

Image Types

Name Type
GD/GIF integer
GD/JPEG integer
GD/PNG integer
GD/PNG24 integer
GD/WBMP integer
GDAL/GTiff integer
imagemap integer
pdf integer
swf integer

Image Modes

Name Type
MS_GD_ALPHA integer
MS_IMAGEMODE_BYTE integer
MS_IMAGEMODE_FLOAT32 integer
MS_IMAGEMODE_INT16 integer
MS_IMAGEMODE_NULL integer
MS_IMAGEMODE_PC256 integer
MS_IMAGEMODE_RGB integer
MS_IMAGEMODE_RGBA integer
MS_NOOVERRIDE integer

Symbol Types

Name Type
MS_SYMBOL_ELLIPSE integer
MS_SYMBOL_PIXMAP integer
MS_SYMBOL_SIMPLE integer
MS_SYMBOL_TRUETYPE integer
MS_SYMBOL_VECTOR integer

Return Codes

Name Type
MS_DONE integer
MS_FAILURE integer
MS_SUCCESS integer

214 Chapter 5. MapScript

MapServer Documentation, Release 6.4.1

Limiters

Name Type
MS_IMAGECACHESIZE long
MS_MAXSTYLELENGTH long
MS_MAXSYMBOLS long
MS_MAXVECTORPOINTS long

Error Return Codes

Name Type
MESSAGELENGTH long
MS_CGIERR long
MS_CHILDERR long
MS_DBFERR long
MS_EOFERR long
MS_GDERR long
MS_HASHERR long
MS_HTTPERR long
MS_IDENTERR long
MS_IMGERR long
MS_IOERR long
MS_JOINERR long
MS_MAPCONTEXTERR long
MS_MEMERR long
MS_MISCERR long
MS_NOERR long
MS_NOTFOUND long
MS_NUMERRORCODES long
MS_OGRERR long
MS_ORACLESPATIALERR long
MS_PARSEERR long
MS_PROJERR long
MS_QUERYERR long
MS_REGEXERR long
MS_SDEERR long
MS_SHPERR long
MS_SYMERR long
MS_TTFERR long
MS_TYPEERR long
MS_WCSERR long
MS_WEBERR long
MS_WFSCONNERR long
MS_WFSERR long
MS_WMSCONNERR long
MS_WMSERR long
ROUTINELENGTH long

MapScript Functions

msCleanup() [void] msCleanup() attempts to recover all dynamically allocated resources allocated by MapServer
code and dependent libraries. It it used primarily for final cleanup in scripts that need to do memory leak
testing to get rid of “noise” one-time allocations. It should not normally be used by production code.

5.1. MapScript 215

MapServer Documentation, Release 6.4.1

msGetVersion() [string] Returns a string containing MapServer version information, and details on what optional
components are built in. The same report as produced by “mapserv -v”.

msGetVersionInt() [int] Returns the MapServer version number (x.y.z) as an integer (x*10000 + y*100 + z).
(New in v5.0) e.g. V5.4.3 would return 50403.

msIO_getStdoutBufferBytes() [binary data] Fetch the current stdout buffer contents as a binary buffer. The
exact form of this buffer will vary by mapscript language (eg. string in Python, byte[] array in Java and C#,
unhandled in perl)

msIO_getStdoutBufferString() [string] Fetch the current stdout buffer contents as a string. This method does
not clear the buffer.

msIO_installStdinFromBuffer() [void] Installs a mapserver IO handler directing future stdin reading (ie. post
request capture) to come from a buffer.

msIO_installStdoutToBuffer() [void] Installs a mapserver IO handler directing future stdout output to a memory
buffer.

msIO_resetHandlers() [void] Resets the default stdin and stdout handlers in place of “buffer” based handlers.

msIO_stripStdoutBufferContentHeaders(): void Strip all Content-* headers off the stdout buffer if it has ones.

msIO_stripStdoutBufferContentType() [string] Strip the Content-type header off the stdout buffer if it has one,
and if a content type is found it is return (otherwise NULL/None/etc).

msResetErrorList() [void] Clears the current error stack.

MapScript Classes

classObj

An instance of classObj is associated with with one instance of layerObj:

+-------+ 0..* 1 +-------+
| Class | <--------> | Layer |
+-------+ +-------+

The other important associations for classObj are with styleObj, labelObj, and hashTableObj:

+-------+ 1 0..* +-------+
| Class | ---------> | Style |
+-------+ +-------+

+-------+ 1 0..* +-------+
| Class | ---------> | Label |
+-------+ +-------+

+-------+ 1 1 +-----------+
| Class | ---------> | HashTable |
+-------+ | -- |

| metadata |
+-----------+

Multiple class styles have been supported since 4.1, and multiple class labels since 6.2. See the styleObj section
for details on use of multiple class styles.

classObj Attributes

debug [int] MS_TRUE or MS_FALSE

keyimage [string] TODO Not sure what this attribute is for

label [labelObj immutable] Definition of class labeling. Removed (6.2) - use addLabel, getLabel and removeLa-
bel instead.

216 Chapter 5. MapScript

MapServer Documentation, Release 6.4.1

layer [layerObj immutable] Reference to the parent layer

maxscaledenom [float] The minimum scale at which class is drawn

metadata [hashTableObj immutable] class metadata hash table.

minscaledenom [float] The maximum scale at which class is drawn

name [string] Unique within a layer

numlabels [int] Number of labels for class. New in version 6.2.

numstyles [int] Number of styles for class. In the future, probably the 4.4 release, this attribute will be made
immutable.

status [int] MS_ON or MS_OFF. Draw features of this class or do not.

template [string] Template for queries

title [string] Text used for legend labeling

type [int] The layer type of its parent layer

classObj Methods

new classObj([layerObj parent_layer=NULL]) [classObj] Create a new child classObj instance at the tail
(highest index) of the class array of the parent_layer. A class can be created outside the context of a parent
layer by omitting the single constructor argument.

addLabel(labelObj) [int] Add a labelObj to the classObj and return its index in the labels array. New in version
6.2.

clone() [classObj] Return an independent copy of the class without a parent layer.

convertToString() [string] Saves the object to a string. Provides the inverse option for updateFromString.

createLegendIcon(mapObj map, layerObj layer, int width, int height) [imageObj] Draw and return a new
legend icon.

drawLegendIcon(mapObj map, layerObj layer, int width, int height, imageObj image, int dstx, int dsty)
[int] Draw the legend icon onto image at dstx, dsty. Returns MS_SUCCESS or MS_FAILURE.

getExpressionString() [string] Return a string representation of the expression enclosed in the quote characters
appropriate to the expression type.

getFirstMetaDataKey() [string] Returns the first key in the metadata hash table. With getNextMetaDataKey(),
provides an opaque iterator over keys.

Note: getFirstMetaDataKey(), getMetaData(), and getNextMetaDataKey() are deprecated and will be re-
moved in a future version. Replaced by direct metadata access, see hashTableObj.

getLabel(int index) [labelObj] Return a reference to the labelObj at index in the labels array.

See the labelObj section for more details on multiple class labels. New in version 6.2.

getMetaData(string key) [string] Return the value of the classObj metadata at key.

Note: getFirstMetaDataKey(), getMetaData(), and getNextMetaDataKey() are deprecated and will be re-
moved in a future version. Replaced by direct metadata access, see hashTableObj.

getNextMetaDataKey(string lastkey) [string] Returns the next key in the metadata hash table or NULL if
lastkey is the last valid key. If lastkey is NULL, returns the first key of the metadata hash table.

Note: getFirstMetaDataKey(), getMetaData(), and getNextMetaDataKey() are deprecated and will be re-
moved in a future version. Replaced by direct metadata access, see hashTableObj.

5.1. MapScript 217

MapServer Documentation, Release 6.4.1

getStyle(int index) [styleObj] Return a reference to the styleObj at index in the styles array.

See the styleObj section for more details on multiple class styles.

getTextString() [string] Return a string representation of the text enclosed in the quote characters appropriate to
the text expression type (logical or simple string).

insertStyle(styleObj style [, int index=-1]) [int] Insert a copy of style into the styles array at index index. De-
fault is -1, or the end of the array. Returns the index at which the style was inserted.

moveStyleDown(int index) [int] Swap the styleObj at index with the styleObj index + 1.

moveStyleUp(int index) [int] Swap the styleObj at index with the styleObj index - 1.

removeLabel(int index) [labelObj] Remove the labelObj at index from the labels array and return a reference
to the labelObj. numlabels is decremented, and the array is updated. New in version 6.2.

removeStyle(int index) [styleObj] Remove the styleObj at index from the styles array and return a copy.

setExpression(string expression) [int] Set expression string where expression is a MapServer regular, logical
or string expression. Returns MS_SUCCESS or MS_FAILUIRE.

setMetaData(string key, string value) [int] Insert value into the classObj metadata at key. Returns
MS_SUCCESS or MS_FAILURE.

Note: setMetaData() is deprecated and will be removed in a future version. Replaced by direct metadata
access, see hashTableObj.

setText(string text) [int] Set text string where text is a MapServer text expression. Returns MS_SUCCESS or
MS_FAILUIRE.

Note: Older versions of MapScript (pre-4.8) featured the an undocumented setText() method that required
a layerObj be passed as the first argument. That argument was completely bogus and has been removed.

colorObj

Since the 4.0 release, MapServer colors are instances of colorObj. A colorObj may be a lone object or an attribute
of other objects and have no other associations.

colorObj Attributes

blue [int] Blue component of color in range [0-255]

green [int] Green component of color in range [0-255]

pen [int] Don’t mess with this unless you know what you are doing!

Note: Because of the issue with pen, setting colors by individual components is unreliable. Best practice
is to use setRGB(), setHex(), or assign to a new instance of colorObj().

red [int] Red component of color in range [0-255]

colorObj Methods

new colorObj([int red=0, int green=0, int blue=0, int pens=-4]) [colorObj] Create a new instance. The color
arguments are optional.

setHex(string hexcolor) [int] Set the color to values specified in case-independent hexadecimal notation.
Calling setHex(‘#ffffff’) assigns values of 255 to each color component. Returns MS_SUCCESS or
MS_FAILURE.

218 Chapter 5. MapScript

MapServer Documentation, Release 6.4.1

setRGB(int red, int green, int blue) [int] Set all three RGB components. Returns MS_SUCCESS or
MS_FAILURE.

toHex() [string] Complement to setHex, returning a hexadecimal representation of the color components.

errorObj

This class allows inspection of the MapServer error stack. Only needed for the Perl module as the other language
modules expose the error stack through exceptions.

errorObj Attributes

code [int] MapServer error code such as MS_IMGERR (1).

message [string] Context-dependent error message.

routine [string] MapServer function in which the error was set.

errorObj Methods

next [errorObj] Returns the next error in the stack or NULL if the end has been reached.

fontSetObj

A fontSetObj is always a ‘fontset’ attribute of a mapObj.

fontSetObj Attributes

filename [string immutable] Path to the fontset file on disk.

fonts [hashTableObj immutable] Mapping of fonts.

numfonts [int immutable] Number of fonts in set.

fontSetObj Methods None

hashTableObj

A hashTableObj is a very simple mapping of case-insensitive string keys to single string values. Map, Layer, and
Class metadata have always been hash hables and now these are exposed directly. This is a limited hash that can
contain no more than 41 values.

hashTableObj Attributes

numitems [int immutable] Number of hash items.

hashTableObj Methods

clear() [void] Empties the table of all items.

get(string key [, string default=NULL]) [string] Returns the value of the item by its key, or default if the key
does not exist.

nextKey([string key=NULL]) [string] Returns the name of the next key or NULL if there is no valid next key.
If the input key is NULL, returns the first key.

remove(string key) [int] Removes the hash item by its key. Returns MS_SUCCESS or MS_FAILURE.

set(string key, string value) [int] Sets a hash item. Returns MS_SUCCESS or MS_FAILURE.

5.1. MapScript 219

MapServer Documentation, Release 6.4.1

imageObj

An image object is a wrapper for GD and GDAL images.

imageObj Attributes

format [outputFormatObj immutable] Image format.

height [int immutable] Image height in pixels.

imagepath [string immutable] If image is drawn by mapObj.draw(), this is the mapObj’s web.imagepath.

imageurl [string immutable] If image is drawn by mapObj.draw(), this is the mapObj’s web.imageurl.

renderer [int] MS_RENDER_WITH_GD, MS_RENDER_WITH_SWF, MS_RENDER_WITH_RAWDATA,
MS_RENDER_WITH_PDF, or MS_RENDER_WITH_IMAGEMAP. Don’t mess with this!

size [int immutable] To access this attribute use the getSize method.

Note: the getSize method is inefficient as it does a call to getBytes and then computes the size of the
byte array. The bytearray is then immediately discarded. In most cases it is more efficient to call getBytes
directly.

width [int immutable] Image width in pixels.

imageObj Methods

new imageObj(int width, int height [, outputFormatObj format=NULL [, string filename=NULL]])
[imageObj] Create new instance of imageObj. If filename is specified, an imageObj is created from the
file and any specified width, height, and format parameters will be overridden by values of the image
in filename. Otherwise, if format is specified an imageObj is created using that format. See the format
attribute above for details. If filename is not specified, then width and height should be specified.

getBytes() [binary data] Returns the image contents as a binary buffer. The exact form of this buffer will vary by
mapscript language (eg. string in Python, byte[] array in Java and C#, unhandled in perl)

getSize() [int] Resturns the size of the binary buffer representing the image buffer.

Note: the getSize method is inefficient as it does a call to getBytes and then computes the size of the
byte array. The byte array is then immediately discarded. In most cases it is more efficient to call getBytes
directly.

save(string filename [, mapObj parent_map=NULL]) [int] Save image to filename. The optional par-
ent_map parameter must be specified if saving GeoTIFF images.

write([FILE file=NULL]) [int] Write image data to an open file descriptor or, by default, to stdout. Returns
MS_SUCCESS or MS_FAILURE.

Note: This method is current enabled for Python and C# only. C# supports writing onto a Stream object.
User-contributed typemaps are needed for Perl, Ruby, and Java.

Note: The free() method of imageObj has been deprecated. In MapServer revisions 4+ all instances of imageObj
will be properly disposed of by the interpreter’s garabage collector. If the application can’t wait for garabage
collection, then the instance can simply be deleted or undef’d.

220 Chapter 5. MapScript

MapServer Documentation, Release 6.4.1

intarray

An intarray is a utility class generated by SWIG useful for manipulating map layer draw-
ing order. See mapObj::getLayersDrawingOrder for discussion of mapscript use and see
http://www.swig.org/Doc1.3/Library.html#Library_nn5 for a complete reference.

intarray Attributes None

intarray Methods

new intarray(int numitems) [intarray] Returns a new instance of the specified length.

labelCacheMemberObj

An individual feature label. The labelCacheMemberObj class is associated with labelCacheObj:

+------------------+ 0..* 1 +------------+
| LabelCacheMember | <--------- | LabelCache |
+------------------+ +------------+

labelCacheMemberObj Attributes

classindex [int immutable] Index of the class of the labeled feature.

featuresize [float immutable] TODO

label [labelObj immutable] Copied from the class of the labeled feature.

layerindex [int immutable] The index of the layer of the labeled feature.

numstyles [int immutable] Number of styles as for the class of the labeled feature.

point [pointObj immutable] Label point.

poly [shapeObj immutable] Label bounding box.

shapeindex [int immutable] Index within shapefile of the labeled feature.

status [int immutable] Has the label been drawn or not?

styles [styleObj immutable] TODO this should be protected from SWIG.

text [string immutable] Label text.

tileindex [int immutable] Tileindex of the layer of the labeled feature.

labelCacheMemberObj Methods None.

Note: No real scripting control over labeling currently, but there may be some interesting new possibilities if
users have control over labeling text, position, and status.

labelCacheObj

Set of a map’s cached labels. Has no other existence other than as a ‘labelcache’ attribute of a mapObj. Associated
with labelCacheMemberObj and markerCacheMemberObj:

5.1. MapScript 221

MapServer Documentation, Release 6.4.1

+------------+ 1 0..* +-------------------+
| LabelCache | ---------> | LabelCacheMember |
+------------+ + ----------------- +

| MarkerCacheMember |
+-------------------+

labelCacheObj Attributes

cachesize [int immutable] TODO

markercachesize [int immutable] TODO

numlabels [int immutable] Number of label members.

nummarkers [int immutable] Number of marker members.

labelCacheObj Methods

freeCache() [void] Free the labelcache.

labelObj

A labelObj is associated with a classObj, a scalebarObj, or a legendObj:

+-------+ 0..1 1 +----------+
| Label | <--------- | Scalebar |
+-------+ | -------- |

| Legend |
+----------+

+-------+ 0..* 1 +-------+
| Label | <--------- | Class |
+-------+ +-------+

An instance of labelObj can exist outside of a classObj container and be explicitly inserted into the classObj:

new_label = new labelObj()
the_class.addLabel(new_label)

labelObj Attributes

angle [float] TODO

antialias [int] MS_TRUE or MS_FALSE

autoangle [int] MS_TRUE or MS_FALSE

autofollow [int] MS_TRUE or MS_FALSE. Tells mapserver to compute a curved label for appropriate linear
features (see rfc11 for specifics).

autominfeaturesize: int MS_TRUE or MS_FALSE

backgroundcolor [colorObj] Color of background rectangle or billboard. Deprecated since version 6.0: Use
styleObj and geomtransform.

backgroundshadowcolor [colorObj] Color of background rectangle or billboard shadow. Deprecated since ver-
sion 6.0: Use styleObj and geomtransform.

backgroundshadowsizex [int] Horizontal offset of drop shadow in pixels. Deprecated since version 6.0: Use
styleObj and geomtransform.

backgroundshadowsizey [int] Vertical offset of drop shadow in pixels. Deprecated since version 6.0: Use
styleObj and geomtransform.

222 Chapter 5. MapScript

MapServer Documentation, Release 6.4.1

buffer [int] Maybe this should’ve been named ‘padding’ since that’s what it is: padding in pixels around a label.

color [colorObj] Foreground color.

encoding [string] Supported encoding format to be used for labels. If the format is not supported, the label
will not be drawn. Requires the iconv library (present on most systems). The library is always detected if
present on the system, but if not the label will not be drawn. Required for displaying international characters
in MapServer. More information can be found at: http://www.foss4g.org/FOSS4G/MAPSERVER/mpsnf-
i18n-en.html.

font [string] Name of TrueType font.

force [int] MS_TRUE or MS_FALSE.

maxsize [int] Maximum height in pixels for scaled labels. See symbolscale attribute of layerObj.

mindistance [int] Minimum distance in pixels between duplicate labels.

minfeaturesize [int] Features of this size of greater will be labeled.

minsize [int] Minimum height in pixels.

numstyles [int] Number of label styles

offsetx [int] Horizontal offset of label.

offsety [int] Vertical offset of label.

outlinecolor [colorObj] Color of one point outline.

partials [int] MS_TRUE (default) or MS_FALSE. Whether or not labels can flow past the map edges.

position [int] MS_UL, MS_UC, MS_UR, MS_CL, MS_CC, MS_CR, MS_LL, MS_LC, MS_LR, or MS_AUTO.

shadowcolor [colorObj] Color of drop shadow.

shadowsizex [int] Horizontal offset of drop shadow in pixels.

shadowsizey [int] Vertical offset of drop shadow in pixels.

size [int] Annotation height in pixels.

type [int] MS_BITMAP or MS_TRUETYPE.

wrap [string] Character on which legend text will be broken to make multi-line legends.

labelObj Methods

convertToString() [string] Saves the object to a string. Provides the inverse option for updateFromString.

getBinding(int binding) [string] Get the attribute binding for a specified label property. Returns NULL if there
is no binding for this property.

getExpressionString() [string] Returns the label expression string.

getStyle(int index) [styleObj] Return a reference to the styleObj at index in the styles array.

getTextString() [string] Returns the label text string.

insertStyle(styleObj style [, int index=-1]) [int] Insert a copy of style into the styles array at index index. De-
fault is -1, or the end of the array. Returns the index at which the style was inserted.

moveStyleDown(int index) [int] Swap the styleObj at index with the styleObj index + 1.

moveStyleUp(int index) [int] Swap the styleObj at index with the styleObj index - 1.

removeBinding(int binding) [int] Remove the attribute binding for a specfiled label property.

removeStyle(int index) [styleObj] Remove the styleObj at index from the styles array and return a copy.

setBinding (int binding, string item) [int] Set the attribute binding for a specified label property. Binding con-
stants look like this: MS_LABEL_BINDING_[attribute name]:

5.1. MapScript 223

http://www.foss4g.org/FOSS4G/MAPSERVER/mpsnf-i18n-en.html
http://www.foss4g.org/FOSS4G/MAPSERVER/mpsnf-i18n-en.html

MapServer Documentation, Release 6.4.1

setBinding(MS_LABEL_BINDING_COLOR, "FIELD_NAME_COLOR");

setExpression(string expression) [int] Set the label expression.

setText(string text) [int] Set the label text.

updateFromString (string snippet) [int] Update a label from a string snippet. Returns
MS_SUCCESS/MS_FAILURE.

layerObj

A layerObj is associated with mapObj. In the most recent revision, an intance of layerObj can exist outside of a
mapObj:

+-------+ 0..* 0..1 +-----+
| Layer | <--------> | Map |
+-------+ +-----+

The other important association for layerObj is with classObj:

+-------+ 1 0..* +-------+
| Layer | <--------> | Class |
+-------+ +-------+

and hashTableObj:

+-------+ 1 1 +-----------+
| Layer | ---------> | HashTable |
+-------+ | -- |

| metadata |
+-----------+

layerObj Attributes

bandsitem [string] The attribute from the index file used to select the source raster band(s) to be used. Normally
NULL for default bands processing.

classitem [string] The attribute used to classify layer data.

connection [string] Layer connection or DSN.

connectiontype [int] See MS_CONNECTION_TYPE in mapserver.h for possible values. When setting the con-
nection type setConnectionType() should be used in order to initialize the layer vtable properly.

data [string] Layer data definition, values depend upon connectiontype.

debug [int] Enable debugging of layer. MS_ON or MS_OFF (default).

dump [int] Since 6.0, dump is not available anymore. metadata is used instead.

Switch to allow mapserver to return data in GML format. MS_TRUE or MS_FALSE. Default is
MS_FALSE. Deprecated since version 6.0: metadata is used instead.

extent [rectObj] optional limiting extent for layer features.

filteritem [string] Attribute defining filter.

footer [string] TODO

group [string] Name of a group of layers.

header [string] TODO

index [int immutable] Index of layer within parent map’s layers array.

labelangleitem [string] Attribute defining label angle.

labelcache [int] MS_ON or MS_OFF. Default is MS_ON.

224 Chapter 5. MapScript

MapServer Documentation, Release 6.4.1

labelitem [string] Attribute defining feature label text.

labelmaxscaledenom [float] Minimum scale at which layer will be labeled.

labelminscaledenom [float] Maximum scale at which layer will be labeled.

labelrequires [string] Logical expression.

labelsizeitem [string] Attribute defining label size.

map [mapObj immutable] Reference to parent map.

mask [string] Layer name for masking. (rfc79)

maxfeatures [int] Maximum number of layer features that will be drawn. For shapefile data this means the first
N features where N = maxfeatures.

maxscaledenom [float] Minimum scale at which layer will be drawn.

metadata [hashTableObj immutable] Layer metadata.

minscaledenom [float] Maximum scale at which layer will be drawn.

name [string] Unique identifier for layer.

numclasses [int immutable] Number of layer classes.

numitems [int immutable] Number of layer feature attributes (items).

numjoins [int immutable] Number of layer joins.

numprocessing [int immutable] Number of raster processing directives.

offsite [colorObj] transparent pixel value for raster layers.

opacity [int] Layer opacity percentage in range [0, 100]. The special value of MS_GD_ALPHA (1000) indicates
that the alpha transparency of pixmap symbols should be honored, and should be used only for layers that
use RGBA pixmap symbols.

postlabelcache [int] MS_TRUE or MS_FALSE. Default is MS_FALSE.

requires [string] Logical expression.

sizeunits [int] Units of class size values. MS_INCHES, MS_FEET, MS_MILES, MS_NAUTICALMILES,
MS_METERS, MS_KILOMETERS, MS_DD or MS_PIXELS

status [int] MS_ON, MS_OFF, or MS_DEFAULT.

styleitem [string] Attribute defining styles.

symbolscaledenom [float] Scale at which symbols are default size.

template [string] Template file. Note that for historical reasons, the query attribute must be non-NULL for a layer
to be queryable.

tileindex [string] Layer index file for tiling support.

tileitem [string] Attribute defining tile paths.

tolerance [float] Search buffer for point and line queries.

toleranceunits [int] MS_INCHES, MS_FEET, MS_MILES, MS_NAUTICALMILES, MS_METERS,
MS_KILOMETERS, MS_DD or MS_PIXELS

transform [int] Whether or not layer data is to be transformed to image units. MS_TRUE or MS_FALSE. Default
is MS_TRUE. Case of MS_FALSE is for data that are in image coordinates such as annotation points.

type [int] See MS_LAYER_TYPE in mapserver.h.

units [int] Units of the layer. See MS_UNITS in mapserver.h.

5.1. MapScript 225

MapServer Documentation, Release 6.4.1

layerObj Methods

new layerObj([mapObj parent_map=NULL]) [layerObj] Create a new layerObj in parent_map. The layer
index of the new layerObj will be equal to the parent_map numlayers - 1. The parent_map arg is now
optional and Layers can exist outside of a Map.

addFeature(shapeObj shape) [int] Add a new inline feature on a layer. Returns -1 on error. TODO: Is this
similar to inline features in a mapfile? Does it work for any kind of layer or connection type?

addProcessing(string directive) [void] Adds a new processing directive line to a layer, similar to the PRO-
CESSING directive in a map file. Processing directives supported are specific to the layer type and under-
lying renderer.

applySLD(string sld, string stylelayer) [int] Apply the SLD document to the layer object. The matching be-
tween the sld document and the layer will be done using the layer’s name. If a namedlayer argument is
passed (argument is optional), the NamedLayer in the sld that matchs it will be used to style the layer. See
SLD HOWTO for more information on the SLD support.

applySLDURL(string sld, string stylelayer) [int] Apply the SLD document pointed by the URL to the layer
object. The matching between the sld document and the layer will be done using the layer’s name. If a
namedlayer argument is passed (argument is optional), the NamedLayer in the sld that matchs it will be
used to style the layer. See SLD HOWTO for more information on the SLD support.

clearProcessing() [int] Clears the layer’s raster processing directives. Returns the subsequent number of direc-
tives, which will equal MS_SUCCESS if the directives have been cleared.

clone() [layerObj] Return an independent copy of the layer with no parent map.

close() [void] Close the underlying layer.

convertToString() [string] Saves the object to a string. Provides the inverse option for updateFromString.

Note: demote() is removed in MapServer 4.4

draw(mapObj map, imageObj image) [int] Renders this layer into the target image, adding labels to the cache
if required. Returns MS_SUCCESS or MS_FAILURE. TODO: Does the map need to be the map on which
the layer is defined? I suspect so.

drawQuery(mapObj map, imageObj image) : Draw query map for a single layer into the target image. Re-
turns MS_SUCCESS or MS_FAILURE.

executeWFSGetFeature(layer) [string] Executes a GetFeature request on a WFS layer and returns the name of
the temporary GML file created. Returns an empty string on error.

generateSLD() [void] Returns an SLD XML string based on all the classes found in the layer (the layer must
have STATUS on).

getClass(int i) [classObj] Fetch the requested class object. Returns NULL if the class index is out of the legal
range. The numclasses field contains the number of classes available, and the first class is index 0.

getExtent() [rectObj] Fetches the extents of the data in the layer. This normally requires a full read pass through
the features of the layer and does not work for raster layers.

getFeature(int shapeindex [, int tileindex=-1]) [shapeObj] Return the layer feature at shapeindex and tilein-
dex.

Note: getFeature has been removed as of version 6.0 and replaced by getShape

getFilterString() [string] Returns the current filter expression.

getFirstMetaDataKey() [string] Returns the first key in the metadata hash table. With getNextMetaDataKey(),
provides an opaque iterator over keys.

226 Chapter 5. MapScript

MapServer Documentation, Release 6.4.1

Note: getFirstMetaDataKey(), getMetaData(), and getNextMetaDataKey() are deprecated and will be re-
moved in a future version. Replaced by direct metadata access, see hashTableObj.

getItem(int i) [string] Returns the requested item. Items are attribute fields, and this method returns the item
name (field name). The numitems field contains the number of items available, and the first item is index
zero.

getMetaData(string key) [string] Return the value at key from the metadata hash table.

Note: getFirstMetaDataKey(), getMetaData(), and getNextMetaDataKey() are deprecated and will be re-
moved in a future version. Replaced by direct metadata access, see hashTableObj.

getNextMetaDataKey(string lastkey) [string] Returns the next key in the metadata hash table or NULL if
lastkey is the last valid key. If lastkey is NULL, returns the first key of the metadata hash table.

Note: getFirstMetaDataKey(), getMetaData(), and getNextMetaDataKey() are deprecated and will be re-
moved in a future version. Replaced by direct metadata access, see hashTableObj.

getNumFeatures() [int] Returns the number of inline features in a layer. TODO: is this really only online features
or will it return the number of non-inline features on a regular layer?

getNumResults() [int] Returns the number of entries in the query result cache for this layer.

getProcessing(int index) [string] Return the raster processing directive at index.

getProjection() [string] Returns the PROJ.4 definition of the layer’s projection.

getResult(int i) [resultCacheMemberObj] Fetches the requested query result cache entry, or NULL if the index
is outside the range of available results. This method would normally only be used after issuing a query
operation.

getResults() [resultCacheObj] Returns a reference to layer’s result cache. Should be NULL prior to any query,
or after a failed query or query with no results.

getResultsBounds() [rectObj] Returns the bounds of the features in the result cache.

getShape(resultCacheMemberObj result) [int] Get a shape from layer data. Argument is a result cache mem-
ber from layerObj::getResult(i)

getWMSFeatureInfoURL(mapObj map, int click_x, int click_y, int feature_count, string info_format)
[string] Return a WMS GetFeatureInfo URL (works only for WMS layers) clickX, clickY is the location of
to query in pixel coordinates with (0,0) at the top left of the image. featureCount is the number of results
to return. infoFormat is the format the format in which the result should be requested. Depends on remote
server’s capabilities. MapServer WMS servers support only “MIME” (and should support “GML.1” soon).
Returns “” and outputs a warning if layer is not a WMS layer or if it is not queriable.

insertClass(classObj class [, int index=-1]) [int] Insert a copy of the class into the layer at the requested index.
Default index of -1 means insertion at the end of the array of classes. Returns the index at which the class
was inserted.

isVisible() [int] Returns MS_TRUE or MS_FALSE after considering the layer status, minscaledenom, and maxs-
caledenom within the context of the parent map.

moveClassDown(int class) [int] The class specified by the class index will be moved up into the array of layers.
Returns MS_SUCCESS or MS_FAILURE. ex. moveClassDown(1) will have the effect of moving class 1
down to postion 2, and the class at position 2 will be moved to position 1.

moveClassUp(int class) [int] The class specified by the class index will be moved up into the array of layers.
Returns MS_SUCCESS or MS_FAILURE. ex. moveClassUp(1) will have the effect of moving class 1 up
to postion 0, and the class at position 0 will be moved to position 1.

nextShape() [shapeObj] Called after msWhichShapes has been called to actually retrieve shapes within a given
area returns a shape object or MS_FALSE

5.1. MapScript 227

MapServer Documentation, Release 6.4.1

example of usage:

mapObj map = new mapObj("d:/msapps/gmap-ms40/htdocs/gmap75.map");
layerObj layer = map.getLayerByName(’road’);
int status = layer.open();
status = layer.whichShapes(map.extent);
shapeObj shape;
while ((shape = layer.nextShape()) != null)
{
...

}
layer.close();

open() [void] Opens the underlying layer. This is required before operations like getFeature() will work, but is
not required before a draw or query call.

Note: promote() is eliminated in MapServer 4.4.

queryByAttributes(mapObj map, string qitem, string qstring, int mode) [int] Query layer for shapes that
intersect current map extents. qitem is the item (attribute) on which the query is performed, and qstring
is the expression to match. The query is performed on all the shapes that are part of a CLASS that contains
a TEMPLATE value or that match any class in a layer that contains a LAYER TEMPLATE value.

Note that the layer’s FILTER/FILTERITEM are ignored by this function. Mode is MS_SINGLE or
MS_MULTIPLE depending on number of results you want. Returns MS_SUCCESS if shapes were found
or MS_FAILURE if nothing was found or if some other error happened.

queryByFeatures(mapObj map, int slayer) [int] Perform a query set based on a previous set of results from
another layer. At present the results MUST be based on a polygon layer. Returns MS_SUCCESS if shapes
were found or MS_FAILURE if nothing was found or if some other error happened

queryByIndex(mapObj map, int shapeindex, int tileindex [, int bAddToQuery=MS_FALSE]) [int] Pop a
query result member into the layer’s result cache. By default clobbers existing cache. Returns
MS_SUCCESS or MS_FAILURE.

queryByPoint(mapObj map, pointObj point, int mode, float buffer) [int] Query layer at point location spec-
ified in georeferenced map coordinates (i.e. not pixels). The query is performed on all the shapes that are
part of a CLASS that contains a TEMPLATE value or that match any class in a layer that contains a LAYER
TEMPLATE value. Mode is MS_SINGLE or MS_MULTIPLE depending on number of results you want.
Passing buffer <=0 defaults to tolerances set in the map file (in pixels) but you can use a constant buffer
(specified in ground units) instead. Returns MS_SUCCESS if shapes were found or MS_FAILURE if noth-
ing was found or if some other error happened.

queryByRect(mapObj map, rectObj rect) [int] Query layer using a rectangle specified in georeferenced map
coordinates (i.e. not pixels). The query is performed on all the shapes that are part of a CLASS that
contains a TEMPLATE value or that match any class in a layer that contains a LAYER TEMPLATE value.
Returns MS_SUCCESS if shapes were found or MS_FAILURE if nothing was found or if some other error
happened.

queryByShape(mapObj map, shapeObj shape) [int] Query layer based on a single shape, the shape has to be
a polygon at this point. Returns MS_SUCCESS if shapes were found or MS_FAILURE if nothing was
found or if some other error happened

removeClass(int index) [classObj] Removes the class indicated and returns a copy, or NULL in the case of a
failure. Note that subsequent classes will be renumbered by this operation. The numclasses field contains
the number of classes available.

removeMetaData(string key) [int] Delete the metadata hash at key. Returns MS_SUCCESS or MS_FAILURE.

Note: removeMetaData() is deprecated and will be removed in a future version. Replaced by direct
metadata access, see hashTableObj.

228 Chapter 5. MapScript

MapServer Documentation, Release 6.4.1

resultsGetShape(int shapeindex [, int tileindex = -1]) [shapeObj] Retrieve shapeObj from a layer’s resultset by
index. Tileindex is optional and is used only for tiled shapefiles, Simply omit or pass tileindex = -1 for other
data sources. Added in MapServer 5.6.0 due to the one-pass query implementation.

setConnectionType(int connectiontype, string library_str) [int] Changes the connectiontype of the layer and
recreates the vtable according to the new connection type. This method should be used instead of setting the
connectiontype parameter directly. In case when the layer.connectiontype = MS_PLUGIN the library_str
parameter should also be specified so as to select the library to load by mapserver. For the other connection
types this parameter is not used.

setExtent(float minx, float miny, float maxx, float maxy) [int] Sets the extent of a layer. Returns
MS_SUCCESS or MS_FAILURE.

setFilter(string filter) [int] Sets a filter expression similarly to the FILTER expression in a map file. Returns
MS_SUCCESS on success or MS_FAILURE if the expression fails to parse.

setMetaData(string key, string value) [int] Assign value to the metadata hash at key. Return MS_SUCCESS
or MS_FAILURE.

Note: setMetaData() is deprecated and will be removed in a future version. Replaced by direct metadata
access, see hashTableObj.

setProcessingKey(string key, string value) [void] Adds or replaces a processing directive of the form
“key=value”. Unlike the addProcessing() call, this will replace an existing processing directive for the
given key value. Processing directives supported are specific to the layer type and underlying renderer.

setProjection(string proj4) [int] Set the layer projection using a PROJ.4 format projection definition
(ie. “+proj=utm +zone=11 +datum=WGS84” or “init=EPSG:26911”). Returns MS_SUCCESS or
MS_FAILURE.

setWKTProjection(string wkt) [int] Set the layer projection using OpenGIS Well Known Text format. Returns
MS_SUCCESS or MS_FAILURE.

whichShapes(rectObj rect) [int] Performs a spatial, and optionally an attribute based feature search. The func-
tion basically prepares things so that candidate features can be accessed by query or drawing functions (eg
using nextShape function). Returns MS_SUCCESS, MS_FAILURE or MS_DONE. MS_DONE is returned
if the layer extent does not overlap rect.

legendObj

legendObj is associated with mapObj:

+--------+ 0..1 1 +-----+
| Legend | <--------> | Map |
+--------+ +-----+

and with labelObj:

+--------+ 1 1 +-------+
| Legend | ---------> | Label |
+--------+ +-------+

legendObj Attributes

height [int] Legend height.

imagecolor [colorObj] Legend background color.

keysizex [int] Width in pixels of legend keys.

keysizey [int] Pixels.

keyspacingx [int] Horizontal padding around keys in pixels.

5.1. MapScript 229

MapServer Documentation, Release 6.4.1

keyspacingy [int] Vertical padding.

label [labelObj immutable] legend label.

map [mapObj immutable] Reference to parent mapObj.

outlinecolor [colorObj] key outline color.

position [int] MS_UL, MS_UC, MS_UR, MS_LL, MS_LC, or MS_LR.

postlabelcache [int] MS_TRUE or MS_FALSE.

status [int] MS_ON, MS_OFF, or MS_EMBED.

template [string] Path to template file.

width [int] Label width.

legendObj Methods

convertToString() [string] Saves the object to a string. Provides the inverse option for updateFromString.

lineObj

A lineObj is composed of one or more pointObj instances:

+------+ 0..1 1..* +-------+
| Line | ---------> | Point |
+------+ +-------+

lineObj Attributes

numpoints [int immutable] Number of points in the line.

lineObj Methods

new lineObj() [lineObj] Create a new instance.

add(pointObj point) [int] Add point to the line. Returns MS_SUCCESS or MS_FAILURE.

get(int index) [pointObj] Return reference to point at index.

project(projectionObj proj_in, projectionObj proj_out) [int] Transform line in place from proj_in to proj_out.
Returns MS_SUCCESS or MS_FAILURE.

set(int index, pointObj point) [int] Set the point at index to point. Returns MS_SUCCESS or MS_FAILURE.

mapObj

A mapObj is primarily associated with instances of layerObj:

+-----+ 0..1 0..* +-------+
| Map | <--------> | Layer |
+-----+ +-------+

Secondary associations are with legendObj, scalebarObj, referenceMapObj:

+-----+ 1 0..1 +--------------+
| Map | ---------> | Legend |
+-----+ | ------------ |

Scalebar
ReferenceMap
+--------------+

230 Chapter 5. MapScript

MapServer Documentation, Release 6.4.1

outputFormatObj:

+-----+ 1 1..* +--------------+
| Map | ---------> | OutputFormat |
+-----+ +------------- +

mapObj Attributes

cellsize [float] Pixel size in map units.

configoptions [hashObj immutable] A hash table of configuration options from CONFIG keywords in the .map.
Direct access to config options is discouraged. Use the setConfigOption() and getConfigOption() methods
instead.

datapattern [string] TODO not sure this is meaningful for mapscript.

debug [int] MS_TRUE or MS_FALSE.

extent [rectObj] Map’s spatial extent.

fontset [fontSetObj immutable] The map’s defined fonts.

height [int] Map’s output image height in pixels.

Note: direct setting of height is deprecated in MapServer version 4.4. Users should set width and height
simultaneously using setSize().

imagecolor [colorObj] Initial map background color.

imagequality [int] JPEG image quality.

Note: map imagequality is deprecated in MapServer 4.4 and should instead be managed through map
outputformats.

imagetype [string immutable] Name of the current output format.

interlace [int] Output image interlacing.

Note: map interlace is deprecated in MapServer 4.4 and should instead be managed through map output-
formats.

lablecache [labelCacheObj immutable] Map’s labelcache.

legend [legendObj immutable] Reference to map’s legend.

mappath [string] Filesystem path of the map’s mapfile.

maxsize [int] TODO ?

name [string] Unique identifier.

numlayers [int immutable] Number of map layers.

numoutputformats [int] The number of output formats currently configured on the map object. Can be used to
iterate over the list of output formats with the getOutputFormat(idx) method (see below).

outputformat [outputFormatObj] The currently selected output format.

Note: Map outputformat should not be modified directly. Use the selectOutputFormat() method to select
named formats.

5.1. MapScript 231

MapServer Documentation, Release 6.4.1

outputformatlist [outputFormatObj[]] Array of the available output formats.

Note: Currently only available for C#. A proper typemaps should be implemented for the other languages.

Note: As of 6.2 other languages can use the getoutputFormat(idx) and getNumoutputformats() functions
to iterate over the format array.

querymap [queryMapObj immutable] TODO should this be exposed to mapscript?

reference [referenceMapObj immutable] Reference to reference map.

resolution [float] Nominal DPI resolution. Default is 72.

scalebar [scalebarObj immutable] Reference to the scale bar.

scaledenom [float] The nominal map scale. A value of 25000 means 1:25000 scale.

shapepath [string] Base filesystem path to layer data.

status [int] MS_OFF, MS_ON, or MS_DEFAULT.

symbolset [symbolSetObj immutable] The map’s set of symbols.

templatepattern [string] TODO not sure this is meaningful for mapscript.

transparent [int] MS_TRUE or MS_FALSE.

Note: map transparent is deprecated in MapServer 4.4 and should instead be managed through map out-
putformats.

units [int] MS_DD, MS_METERS, etc.

web [webObj immutable] Reference to map’s web definitions.

width [int] Map’s output image width in pixels.

Note: direct setting of width is deprecated in MapServer version 4.4. Users should set width and height
simultaneously using setSize().

mapObj Methods

new mapObj([string filename=”]) [mapObj] Create a new instance of mapObj. Note that the filename is now
optional.

appendOutputFormat(outputFormatObj format) [int] Attach format to the map’s output format list. Returns
the updated number of output formats.

applyConfigOptions() [void] Apply the defined configuration options set by setConfigOption().

applySLD(string sldxml) [int] Parse the SLD XML string sldxml and apply to map layers. Returns
MS_SUCCESS or MS_FAILURE.

applySLDURL(string sldurl) [int] Fetch SLD XML from the URL sldurl and apply to map layers. Returns
MS_SUCCESS or MS_FAILURE.

clone() [mapObj] Returns a independent copy of the map, less any caches.

Note: In the Java module this method is named ‘cloneMap’.

convertToString() [string] Saves the object to a string. Provides the inverse option for updateFromString.

232 Chapter 5. MapScript

MapServer Documentation, Release 6.4.1

draw() [imageObj] Draw the map, processing layers according to their defined order and status. Return an
imageObj.

drawLabelCache(imageObj image) [int] Draw map’s label cache on image. Returns MS_SUCCESS or
MS_FAILURE.

drawLegend() [imageObj] Draw map legend, returning an imageObj.

drawQuery() [imageObj] Draw query map, returning an imageObj.

drawReferenceMap() [imageObj] Draw reference map, returning an imageObj.

drawScalebar() [imageObj] Draw scale bar, returning an imageObj.

embedLegend(imageObj image) [int] Embed map’s legend in image. Returns MS_SUCCESS or
MS_FAILURE.

embedScalebar(imageObj image) [int] Embed map’s scalebar in image. Returns MS_SUCCESS or
MS_FAILURE.

freeQuery([int qlayer=-1]) [void] Clear layer query result caches. Default is -1, or all layers.

generateSLD() [string] Return SLD XML as a string for map layers that have STATUS on.

getConfigOption(string key) [string] Fetches the value of the requested configuration key if set. Returns NULL
if the key is not set.

getFirstMetaDataKey() [string] Returns the first key in the web.metadata hash table. With getNextMeta-
DataKey(), provides an opaque iterator over keys.

getLabel(int labelindex) [labelCacheMemberObj] Return label at specified index from the map’s labelcache.

getLayer(int index) [layerObj] Returns a reference to the layer at index.

getLayerByName(string name) [layerObj] Returns a reference to the named layer.

getLayersDrawingOrder() [int*] Returns an array of layer indexes in drawing order.

Note: Unless the proper typemap is implemented for the module’s language a user is more likely to get
back an unuseable SWIG pointer to the integer array.

getMetaData(string key) [string] Return the value at key from the web.metadata hash table.

getNextMetaDataKey(string lastkey) [string] Returns the next key in the web.metadata hash table or NULL if
lastkey is the last valid key. If lastkey is NULL, returns the first key of the metadata hash table.

getNumSymbols() [int] Return the number of symbols in map.

getOutputFormat(int i): outputFormatObj Returns the output format at the specified i index from the output
formats array or null if i is beyond the array bounds. The number of outpuFormats can be retrieved by
calling getNumoutputformats.

getOutputFormatByName(string imagetype) [outputFormatObj] Return the output format corresponding to
driver name imagetype or to format name imagetype. This works exactly the same as the IMAGETYPE
directive in a mapfile, is case insensitive and allows an output format to be found either by driver (like
‘GD/PNG’) or name (like ‘PNG24’).

getProjection() [string] Returns the PROJ.4 definition of the map’s projection.

getSymbolByName(string name) [int] Return the index of the named symbol in the map’s symbolset.

Note: This method is poorly named and too indirect. It is preferrable to use the getSymbolByName method
of symbolSetObj, which really does return a symbolObj reference, or use the index method of symbolSetObj
to get a symbol’s index number.

5.1. MapScript 233

MapServer Documentation, Release 6.4.1

insertLayer(layerObj layer [, int nIndex=-1]) [int] Insert a copy of layer into the Map at index nIndex. The
default value of nIndex is -1, which means the last possible index. Returns the index of the new Layer, or -1
in the case of a failure.

loadMapContext(string filename [, int useUniqueNames=MS_FALSE]) [int] Load an OGC map context
file to define extents and layers of a map.

loadOWSParameters(OWSRequest request [, string version=‘1.1.1’]) [int] Load OWS request parameters
(BBOX, LAYERS, &c.) into map. Returns MS_SUCCESS or MS_FAILURE.

loadQuery(string filename) [int] Load a saved query. Returns MS_SUCCESS or MS_FAILURE.

moveLayerDown(int layerindex) [int] Move the layer at layerindex down in the drawing order array, meaning
that it is drawn later. Returns MS_SUCCESS or MS_FAILURE.

moveLayerUp(int layerindex) [int] Move the layer at layerindex up in the drawing order array, meaning that it
is drawn earlier. Returns MS_SUCCESS or MS_FAILURE.

nextLabel() [labelCacheMemberObj] Return the next label from the map’s labelcache, allowing iteration over
labels.

Note: nextLabel() is deprecated and will be removed in a future version. Replaced by getLabel().

OWSDispatch(OWSRequest req) [int] Processes and executes the passed OpenGIS Web Services request on
the map. Returns MS_DONE (2) if there is no valid OWS request in the req object, MS_SUCCESS (0) if
an OWS request was successfully processed and MS_FAILURE (1) if an OWS request was not success-
fully processed. OWS requests include WMS, WFS, WCS and SOS requests supported by MapServer.
Results of a dispatched request are written to stdout and can be captured using the msIO services (ie.
msIO_installStdoutToBuffer() and msIO_getStdoutBufferString())

prepareImage() [imageObj] Returns an imageObj initialized to map extents and outputformat.

prepareQuery() [void] TODO this function only calculates the scale or am I missing something?

processLegendTemplate(string names[], string values[], int numitems) [string] Process MapServer legend
template and return HTML.

Note: None of the three template processing methods will be useable unless the proper typemaps are
implemented in the module for the target language. Currently the typemaps are not implemented.

processQueryTemplate(string names[], string values[], int numitems) [string] Process MapServer query
template and return HTML.

Note: None of the three template processing methods will be useable unless the proper typemaps are
implemented in the module for the target language. Currently the typemaps are not implemented.

processTemplate(int generateimages, string names[], string values[], int numitems) [string] Process
MapServer template and return HTML.

Note: None of the three template processing methods will be useable unless the proper typemaps are
implemented in the module for the target language. Currently the typemaps are not implemented.

queryByFeatures(int layerindex) [int] Query map layers, result sets contain features that intersect or are con-
tained within the features in the result set of the MS_LAYER_POLYGON type layer at layerindex. Returns
MS_SUCCESS or MS_FAILURE.

queryByPoint(pointObj point, int mode, float buffer) [int] Query map layers, result sets contain one or more
features, depending on mode, that intersect point within a tolerance buffer. Returns MS_SUCCESS or
MS_FAILURE.

234 Chapter 5. MapScript

MapServer Documentation, Release 6.4.1

queryByRect(rectObj rect) [int] Query map layers, result sets contain features that intersect or are contained
within rect. Returns MS_SUCCESS or MS_FAILURE.

queryByShape(shapeObj shape) [int] Query map layers, result sets contain features that intersect or are con-
tained within shape. Returns MS_SUCCESS or MS_FAILURE.

removeLayer(int index) [int] Remove the layer at index.

removeMetaData(string key) [int] Delete the web.metadata hash at key. Returns MS_SUCCESS or
MS_FAILURE.

removeOutputFormat(string name) [int] Removes the format named name from the map’s output format list.
Returns MS_SUCCESS or MS_FAILURE.

save(string filename) [int] Save map to disk as a new map file. Returns MS_SUCCESS or MS_FAILURE.

saveMapContext(string filename) [int] Save map definition to disk as OGC-compliant XML. Returns
MS_SUCCESS or MS_FAILURE.

saveQuery(string filename) [int] Save query to disk. Returns MS_SUCCESS or MS_FAILURE.

saveQueryAsGML(string filename) [int] Save query to disk. Returns MS_SUCCESS or MS_FAILURE.

selectOutputFormat(string imagetype) [void] Set the map’s active output format to the internal format named
imagetype. Built-in formats are “PNG”, “PNG24”, “JPEG”, “GIF”, “GTIFF”.

setConfigOption(string key, string value) [void] Set the indicated key configuration option to the indicated
value. Equivalent to including a CONFIG keyword in a map file.

setExtent(float minx, float miny, float maxx, float maxy) [int] Set the map extent, returns MS_SUCCESS
or MS_FAILURE. This method will correct the extents (width/height ratio) before setting the
minx,miny,maxx,maxy values. See extent properties to set up a custom extent from rectObj.

offsetExtent(float x, float y) [int] Offset the map extent based on the given distances in map coordinates, returns
MS_SUCCESS or MS_FAILURE.

scaleExtent(float zoomfactor, float minscaledenom, float maxscaledenom) [int] Scale the map extent using
the zoomfactor and ensure the extent within the minscaledenom and maxscaledenom domain. If minscale-
denom and/or maxscaledenom is 0 then the parameter is not taken into account. returns MS_SUCCESS or
MS_FAILURE.

setCenter(pointObj center) [int] Set the map center to the given map point, returns MS_SUCCESS or
MS_FAILURE.

setFontSet(string filename) [int] Load fonts defined in filename into map fontset. The existing fontset is
cleared. Returns MS_SUCCESS or MS_FAILURE.

setImageType(string name) [void] Sets map outputformat to the named format.

Note: setImageType() remains in the module but it’s use is deprecated in favor of selectOutputFormat().

setLayersDrawingOrder(int layerindexes[]) [int] Set map layer drawing order.

Note: Unless the proper typemap is implemented for the module’s language users will not be able to pass
arrays or lists to this method and it will be unusable.

setMetaData(string key, string value) [int] Assign value to the web.metadata hash at key. Return
MS_SUCCESS or MS_FAILURE.

setOutputFormat(outputFormatObj format) [void] Sets map outputformat.

setProjection(string proj4) [int] Set map projection from PROJ.4 definition string proj4.

5.1. MapScript 235

MapServer Documentation, Release 6.4.1

setRotation(float rotation_angle) [int] Set map rotation angle. The map view rectangle (specified in EX-
TENTS) will be rotated by the indicated angle in the counter- clockwise direction. Note that this im-
plies the rendered map will be rotated by the angle in the clockwise direction. Returns MS_SUCCESS or
MS_FAILURE.

setSize(int width, int height) [int] Set map’s image width and height together and carry out the necessary sub-
sequent geotransform computation. Returns MS_SUCCESS or MS_FAILURE.

setSymbolSet(string filename) [int] Load symbols defined in filename into map symbolset. The existing sym-
bolset is cleared. Returns MS_SUCCESS or MS_FAILURE.

setWKTProjection(string wkt) [int] Sets map projection from OGC definition wkt.

zoomPoint(int zoomfactor, pointObj imgpoint, int width, int height, rectObj extent, rectObj maxextent)
[int] Zoom by zoomfactor to imgpoint in pixel units within the image of height and width dimensions and
georeferenced extent. Zooming can be constrained to a maximum maxextent. Returns MS_SUCCESS or
MS_FAILURE.

zoomRectangle(rectObj imgrect, int width, int height, rectObj extent, rectObj maxextent) : int Zoom to a
pixel coordinate rectangle in the image of width and height dimensions and georeferencing extent. Zooming
can be constrained to a maximum maxextent. The imgrect rectangle contains the coordinates of the LL and
UR coordinates in pixel: the maxy in the rect object should be < miny value. Returns MS_SUCCESS or
MS_FAILURE:

------- UR (values in the rect object : maxx, maxy)
| |
| |
LL (values in the rectobject minx, miny)

zoomScale(float scale, pointObj imgpoint, int width, int height, rectObj extent, rectObj maxextent) [int]
Like the previous methods, but zooms to the point at a specified scale.

markerCacheMemberObj

An individual marker. The markerCacheMemberObj class is associated with labelCacheObj:

+------------------+ 0..* 1 +------------+
| MarkerCacheMember | <--------- | LabelCache |
+------------------+ +------------+

markerCacheMemberObj Attributes

id [int immutable] Id of the marker.

poly [shapeObj immutable] Marker bounding box.

markerCacheMemberObj Methods None.

outputFormatObj

An outputFormatObj is associated with a mapObj:

+--------------+ 1..* 1 +-----+
| OutputFormat | <--------- | Map |
+--------------+ +-----+

and can also be an attribute of an imageObj.

236 Chapter 5. MapScript

MapServer Documentation, Release 6.4.1

outputFormatObj Attributes

bands [int] The number of bands in the raster. Only used for the “raw” modes, MS_IMAGEMODE_BYTE,
MS_IMAGEMODE_INT16, and MS_IMAGEMODE_FLOAT32. Normally set via the BAND_COUNT
formatoption ... this field should be considered read-only.

driver [string] A string such as ‘GD/PNG’ or ‘GDAL/GTiff’.

extension [string] Format file extension such as ‘png’.

imagemode [int] MS_IMAGEMODE_PC256, MS_IMAGEMODE_RGB, MS_IMAGEMODE_RGBA,
MS_IMAGEMODE_INT16, MS_IMAGEMODE_FLOAT32, MS_IMAGEMODE_BYTE, or
MS_IMAGEMODE_NULL.

mimetype [string] Format mimetype such as ‘image/png’.

name [string] A unique identifier.

numformatoptions: int The number of option values set on this format. Can be used to iterate over the options
array in conjunction with getOptionAt

renderer [int] MS_RENDER_WITH_GD, MS_RENDER_WITH_SWF, MS_RENDER_WITH_RAWDATA,
MS_RENDER_WITH_PDF, or MS_RENDER_WITH_IMAGEMAP. Normally set internally based on the
driver and some other setting in the constructor.

transparent [int] MS_ON or MS_OFF.

outputFormatObj Methods

new outputFormatObj(string driver [, string name=driver]) [outputFormatObj] Create new instance. If
name is not provided, the value of driver is used as a name.

getOption(string key [, string defaultvalue=””]) [string] Return the format option at key or defaultvalue if key
is not a valid hash index.

getOptionAt(int idx): string Returns the option at idx or null if the index is beyond the array bounds. The option
is returned as the original KEY=VALUE string. The number of available options can be obtained by calling
getNumformatoptions.

setExtension(string extension) [void] Set file extension for output format such as ‘png’ or ‘jpg’. Method could
probably be deprecated since the extension attribute is mutable.

setMimetype(string mimetype) [void] Set mimetype for output format such as ‘image/png’ or ‘image/jpeg’.
Method could probably be deprecated since the mimetype attribute is mutable.

setOption(string key, string value) [void] Set the format option at key to value. Format options are mostly
driver specific.

validate() [int] Checks some internal consistency issues, and returns MS_TRUE if things are OK and MS_FALSE
if there are problems. Some problems are fixed up internally. May produce debug output if issues encoun-
tered.

OWSRequest

Not associated with other mapscript classes. Serves as a message intermediary between an application and
MapServer’s OWS capabilities. Using it permits creation of lightweight WMS services:

wms_map = mapscript.mapObj(’wms.map’)
wms_request = mapscript.OWSRequest()

Convert application request parameters (req.args)
for param, value in req.args.items():

wms_request.setParam(param, value)

Map loads parameters from OWSRequest, adjusting its SRS, extents,

5.1. MapScript 237

MapServer Documentation, Release 6.4.1

active layers accordingly
wms_map.loadWMSRequest(’1.1.0’, wms_request)

Render the Map
img = wms_map.draw()

OWSRequest Attributes

NumParams [int immutable] Number of request parameters. Eventually should be changed to numparams low-
ercase like other attributes.

postrequest [string] TODO

type [int] MS_GET_REQUEST or MS_POST_REQUEST.

OWSRequest Methods

new OWSRequest() [OWSRequest] Create a new instance.

Note: MapServer’s OWSRequest supports only single valued parameters.

addParameter(string name, string value) [void] Add a request parameter, even if the parameter key was pre-
viousely set. This is useful when multiple parameters with the same key are required. For example:

request.addParameter(’SIZE’, ’x(100)’)
request.addParameter(’SIZE’, ’y(100)’)

getName(int index) [string] Return the name of the parameter at index in the request’s array of parameter names.

getValue(int index) [string] Return the value of the parameter at index in the request’s array of parameter values.

getValueByName(string name) [string] Return the value associated with the parameter name.

loadParams() [int] Initializes the OWSRequest object from the cgi environment variables RE-
QUEST_METHOD, QUERY_STRING and HTTP_COOKIE. Returns the number of name/value
pairs collected. Warning: most errors will result in a process exit!

loadParamsFromURL(string url) [int] Initializes the OWSRequest object from the provided URL which is
treated like a QUERY_STRING. Note that REQUEST_METHOD=GET and no post data is assumed in this
case. This method was added in MapServer 6.0.

setParameter(string name, string value) [void] Set a request parameter. For example:

request.setParameter(’REQUEST’, ’GetMap’)
request.setParameter(’BBOX’, ’-107.0,40.0,-106.0,41.0’)

pointObj

A pointObj instance may be associated with a lineObj:

+-------+ 1..* 0..1 +------+
| Point | <--------- | Line |
+-------+ +------+

pointObj Attributes

m [float] Measure. Meaningful only for measured shapefiles. Given value -2e38 if not otherwise assigned to
indicate “nodata”.

x [float] Easting

y [float] Northing

238 Chapter 5. MapScript

MapServer Documentation, Release 6.4.1

z [float] Elevation

pointObj Methods

new pointObj([float x=0.0, float y=0.0, float z=0.0, float m=-2e38]) [pointObj] Create new instance. East-
ing, northing, and measure arguments are optional.

distanceToPoint(pointObj point) [float] Returns the distance to point.

distanceToSegment(pointObj point1, pointObj point2) [float] Returns the minimum distance to a hypotheti-
cal line segment connecting point1 and point2.

distanceToShape(shapeObj shape) [float] Returns the minimum distance to shape.

draw(mapObj map, layerObj layer, imageObj image, int classindex, string text) [int] Draw the point using
the styles defined by the classindex class of layer and labeled with string text. Returns MS_SUCCESS or
MS_FAILURE.

project(projectionObj proj_in, projectionObj proj_out) [int] Reproject point from proj_in to proj_out.
Transformation is done in place. Returns MS_SUCCESS or MS_FAILURE.

setXY(float x, float y [, float m=2e-38]) [int] Set spatial coordinate and, optionally, measure values simultane-
ously. The measure will be set only if the value of m is greater than the ESRI measure no-data value of
1e-38. Returns MS_SUCCESS or MS_FAILURE.

setXYZ(float x, float y, float z [, float m=-2e38]) [int] Set spatial coordinate and, optionally, measure values
simultaneously. The measure will be set only if the value of m is greater than the ESRI measure no-data
value of -1e38. Returns MS_SUCCESS or MS_FAILURE.

setXYZM(float x, float y, float z, float m) [int] Set spatial coordinate and, optionally, measure values simulta-
neously. The measure will be set only if the value of m is greater than the ESRI measure no-data value of
-1e38. Returns MS_SUCCESS or MS_FAILURE.

toShape() [shapeObj] Convience method to quickly turn a point into a shapeObj.

toString() [string] Return a string formatted like:

{ ’x’: %f , ’y’: %f, ’z’: %f }

with the coordinate values substituted appropriately. Python users can get the same effect via the pointObj
__str__ method:

>>> p = mapscript.pointObj(1, 1)
>>> str(p)
{ ’x’: 1.000000 , ’y’: 1.000000, ’z’: 1.000000 }

projectionObj

This class is not really fully implemented yet. MapServer’s Maps and Layers have Projection attributes, and these
are C projectionObj structures, but are not directly exposed by the mapscript module. Currently we have to do
some round-a-bout logic like this:

point.project(projectionObj(mapobj.getProjection(),
projectionObj(layer.getProjection())

to project a point from map to layer reference system.

projectionObj Attributes

numargs [int immutable] Number of PROJ.4 arguments.

5.1. MapScript 239

MapServer Documentation, Release 6.4.1

projectionObj Methods

new projectionObj(string proj4) [projectionObj] Create new instance of projectionObj. Input parameter proj4
is a PROJ.4 definition string such as “init=EPSG:4269”.

getUnits() [int] Returns the units of a projection object. Returns -1 on error.

rectObj

A rectObj may be a lone object or an attribute of another object and has no other associations.

rectObj Attributes

maxx [float] Maximum easting

maxy [float] Maximum northing

minx [float] Minimum easting

miny [float] Minimum northing

rectObj Methods

new rectObj([float minx=-1.0, float miny=-1.0, float maxx=-1.0, float maxy=-1.0, int imageunits=MS_FALSE])
[rectObj] Create new instance. The four easting and northing arguments are optional and default to -1.0.
Note the new optional fifth argument which allows creation of rectangles in image (pixel/line) units which
are also tested for validity.

draw(mapObj map, layerObj layer, imageObj img, int classindex, string text) [int] Draw rectangle into
img using style defined by the classindex class of layer. The rectangle is labeled with the string text.
Returns MS_SUCCESS or MS_FAILURE.

getCenter() [pointObj] Return the center point of the rectagle.

project(projectionObj proj_in, projectionObj proj_out) [int] Reproject rectangle from proj_in to proj_out.
Transformation is done in place. Returns MS_SUCCESS or MS_FAILURE.

toPolygon() [shapeObj] Convert to a polygon of five vertices.

toString() [string] Return a string formatted like:

{ ’minx’: %f , ’miny’: %f , ’maxx’: %f , ’maxy’: %f }

with the bounding values substituted appropriately. Python users can get the same effect via the rectObj
__str__ method:

>>> r = mapscript.rectObj(0, 0, 1, 1)
>>> str(r)
{ ’minx’: 0 , ’miny’: 0 , ’maxx’: 1 , ’maxy’: 1 }

referenceMapObj

A referenceMapObj is associated with mapObj:

+--------------+ 0..1 1 +-----+
| ReferenceMap | <--------> | Map |
+--------------+ +-----+

240 Chapter 5. MapScript

MapServer Documentation, Release 6.4.1

referenceMapObj Attributes

color [colorObj] Color of reference box.

extent [rectObj] Spatial extent of reference in units of parent map.

height [int] Height of reference map in pixels.

image [string] Filename of reference map image.

map [mapObj immutable] Reference to parent mapObj.

marker [int] Index of a symbol in the map symbol set to use for marker.

markername [string] Name of a symbol.

markersize [int] Size of marker.

maxboxsize [int] Pixels.

minboxsize [int] Pixels.

outlinecolor [colorObj] Outline color of reference box.

status [int] MS_ON or MS_OFF.

width [int] In pixels.

referenceMapObj Methods

convertToString() [string] Saves the object to a string. Provides the inverse option for updateFromString.

resultCacheMemberObj

Has no associations with other MapScript classes and has no methods. By using several indexes, a result-
CacheMemberObj refers to a single layer feature.

resultCacheMemberObj Attributes

classindex [int immutable] The index of the layer class into which the feature has been classified.

shapeindex [int immutable] Index of the feature within the layer.

tileindex [int immutable] Meaningful for tiled layers only, index of the shapefile data tile.

resultCacheObj

See querying-HOWTO.txt for extra guidance in using the new 4.4 query API.

resultCacheObj Attributes

bounds [rectObj immutable] Bounding box of query results.

numresults [int immutable] Length of result set.

resultCacheObj Methods

getResult(int i) [resultCacheMemberObj] Returns the result at index i, like layerObj::getResult, or NULL if
index is outside the range of results.

5.1. MapScript 241

MapServer Documentation, Release 6.4.1

scalebarObj

A scalebarObj is associated with mapObj:

+----------+ 0..1 1 +-----+
| Scalebar | <--------- | Map |
+----------+ +-----+

and also with labelObj:

+----------+ 1 1 +-------+
| Scalebar | ---------> | Label |
+----------+ +-------+

scalebarObj Attributes

backgroundcolor [colorObj] Scalebar background color.

color [colorObj] Scalebar foreground color.

height [int] Pixels.

imagecolor [colorObj] Background color of scalebar.

intervals [int] Number of intervals.

label [labelObj] Scalebar label.

outlinecolor [colorObj] Foreground outline color.

position [int] MS_UL, MS_UC, MS_UR, MS_LL, MS_LC, or MS_LR.

postlabelcache [int] MS_TRUE or MS_FALSE.

status [int] MS_ON, MS_OFF, or MS_EMBED.

style [int] 0 or 1.

units [int] See MS_UNITS in mapserver.h.

width [int] Pixels.

scalebarObj Methods

convertToString() [string] Saves the object to a string. Provides the inverse option for updateFromString.

shapefileObj

shapefileObj Attributes

bounds [rectObj] Extent of shapes.

numshapes [int] Number of shapes.

type [int] See mapshape.h for values of type.

shapefileObj Methods

new shapefileObj(string filename [, int type=-1]) [shapefileObj] Create a new instance. Omit the type argu-
ment or use a value of -1 to open an existing shapefile.

add(shapeObj shape) [int] Add shape to the shapefile. Returns MS_SUCCESS or MS_FAILURE.

get(int i, shapeObj shape) [int] Get the shapefile feature from index i and store it in shape. Returns
MS_SUCCESS or MS_FAILURE.

getShape(int i) [shapeObj] Returns the shapefile feature at index i. More effecient than get.

242 Chapter 5. MapScript

MapServer Documentation, Release 6.4.1

TODO

shapeObj

Each feature of a layer’s data is a shapeObj. Each part of the shape is a closed lineObj:

+-------+ 1 1..* +------+
| Shape | --------> | Line |
+-------+ +------+

shapeObj Attributes

bounds [rectObj] Bounding box of shape.

classindex [int] The class index for features of a classified layer.

index [int] Feature index within the layer.

numlines [int immutable] Number of parts.

numvalues [int immutable] Number of shape attributes.

text [string] Shape annotation.

tileindex [int] Index of tiled file for tileindexed layers.

type [int] MS_SHAPE_POINT, MS_SHAPE_LINE, MS_SHAPE_POLYGON, or MS_SHAPE_NULL.

shapeObj Methods

new shapeObj(int type) [shapeObj] Return a new shapeObj of the specified type. See the type attribute above.
No attribute values created by default. initValues should be explicitly called to create the required number
of values.

add(lineObj line) [int] Add line (i.e. a part) to the shape. Returns MS_SUCCESS or MS_FAILURE.

boundary() [shapeObj] Returns the boundary of the existing shape. Requires GEOS support. Returns
NULL/undef on failure.

buffer(int distance) [shapeObj] Returns a new buffered shapeObj based on the supplied distance (given in the
coordinates of the existing shapeObj). Requires GEOS support. Returns NULL/undef on failure.

clone() [shapeObj] Return an independent copy of the shape.

contains(pointObj point) [int] Returns MS_TRUE if the point is inside the shape, MS_FALSE otherwise.

contains(shapeObj shape2) [int] Returns MS_TRUE if shape2 is entirely within the shape. Returns -1 on error
and MS_FALSE otherwise. Requires GEOS support.

convexHull() [shapeObj] Returns the convex hull of the existing shape. Requires GEOS support. Returns
NULL/undef on failure.

copy(shapeObj shape_copy) [int] Copy the shape to shape_copy. Returns MS_SUCCESS or MS_FAILURE.

crosses(shapeObj shape2) [int] Returns MS_TRUE if shape2 crosses the shape. Returns -1 on error and
MS_FALSE otherwise. Requires GEOS support.

difference(shapeObj shape) [shapeObj] Returns the computed difference of the supplied and existing shape.
Requires GEOS support. Returns NULL/undef on failure.

disjoint(shapeObj shape2) [int] Returns MS_TRUE if shape2 and the shape are disjoint. Returns -1 on error
and MS_FALSE otherwise. Requires GEOS support.

distanceToPoint(pointObj point) [float] Return distance to point.

distanceToShape(shapeObj shape) [float] Return the minimum distance to shape.

5.1. MapScript 243

MapServer Documentation, Release 6.4.1

draw(mapObj map, layerObj layer, imageObj img) [int] Draws the individual shape using layer. Returns
MS_SUCCESS or MS_FAILURE.

equals(shapeObj shape2) [int] Returns MS_TRUE if the shape and shape2 are equal (geometry only). Returns
-1 on error and MS_FALSE otherwise. Requires GEOS support.

fromWKT(char *wkt) [shapeObj] Returns a new shapeObj based on a well-known text representation of a
geometry. Requires GEOS support. Returns NULL/undef on failure.

get(int index) [lineObj] Returns a reference to part at index. Reference is valid only during the life of the
shapeObj.

getArea() [double] Returns the area of the shape (if applicable). Requires GEOS support.

getCentroid() [pointObj] Returns the centroid for the existing shape. Requires GEOS support. Returns
NULL/undef on failure.

getLength() [double] Returns the length (or perimeter) of a shape. Requires GEOS support.

getValue(int i) [string] Return the shape attribute at index i.

initValues(int numvalues) [void] Allocates memory for the requested number of values.

intersects(shapeObj shape) [int] Returns MS_TRUE if the two shapes intersect, MS_FALSE otherwise.

Note: Does not require GEOS support but will use GEOS functions if available.

intersection(shapeObj shape) [shapeObj] Returns the computed intersection of the supplied and existing
shape. Requires GEOS support. Returns NULL/undef on failure.

overlaps(shapeObj shape2) [int] Returns MS_TRUE if shape2 overlaps shape. Returns -1 on error and
MS_FALSE otherwise. Requires GEOS support.

project(projectionObj proj_in, projectionObj proj_out) [int] Reproject shape from proj_in to proj_out.
Transformation is done in place. Returns MS_SUCCESS or MS_FAILURE.

setBounds [void] Must be called to calculate new bounding box after new parts have been added.

TODO: should return int and set msSetError.

setValue(int i, string value) [int] Set the shape value at index i to value.

simplify(double tolerance): shapeObj Given a tolerance, returns a simplified shape object or NULL on error.
Requires GEOS support (>=3.0).

symDifference(shapeObj shape) [shapeObj] Returns the computed symmetric difference of the supplied and
existing shape. Requires GEOS support. Returns NULL/undef on failure.

topologySimplifyPreservingSimplify(double tolerance): shapeObj Given a tolerance, returns a simplified
shape object or NULL on error. Requires GEOS support (>=3.0).

touches(shapeObj shape2) [int] Returns MS_TRUE if the shape and shape2 touch. Returns -1 on error and
MS_FALSE otherwise. Requires GEOS support.

toWKT() [string] Returns the well-known text representation of a shapeObj. Requires GEOS support. Returns
NULL/undef on failure.

Union(shapeObj shape) [shapeObj] Returns the union of the existing and supplied shape. Shapes must be of
the same type. Requires GEOS support. Returns NULL/undef on failure.

within(shapeObj shape2) [int] Returns MS_TRUE if the shape is entirely within shape2. Returns -1 on error
and MS_FALSE otherwise. Requires GEOS support.

styleObj

An instance of styleObj is associated with one instance of classObj:

244 Chapter 5. MapScript

MapServer Documentation, Release 6.4.1

+-------+ 0..* 1 +-------+
| Style | <-------- | Class |
+-------+ +-------+

An instance of styleObj can exist outside of a classObj container and be explicitly inserted into the classObj for
use in mapping:

new_style = new styleObj()
the_class.insertStyle(new_style)

It is important to understand that insertStyle inserts a copy of the styleObj instance, not a reference to the instance
itself.

The older use case:

new_style = new styleObj(the_class)

remains supported. These will be the only ways to access the styles of a class. Programmers should no longer
directly access the styles attribute.

styleObj Attributes

angle [double] Angle, given in degrees, to draw the line work. Default is 0. For symbols of Type HATCH, this is
the angle of the hatched lines.

angleitem [string]Deprecated since version 5.0: Use setBinding.

antialias [int] MS_TRUE or MS_FALSE. Should TrueType fonts be antialiased.

backgroundcolor [colorObj] Background pen color.

color [colorObj] Foreground or fill pen color.

mincolor [colorObj] Attribute for Color Range Mapping (rfc6). mincolor, minvalue, maxcolor, maxvalue define
the range for mapping a continuous feature value to a continuous range of colors when rendering the feature
on the map.

minsize [int] Minimum pen or symbol width for scaling styles.

minvalue [double] Attribute for Color Range Mapping (rfc6). mincolor, minvalue, maxcolor, maxvalue define
the range for mapping a continuous feature value to a continuous range of colors when rendering the feature
on the map.

minwidth [int] Minimum width of the symbol.

maxcolor [colorObj] Attribute for Color Range Mapping (rfc6). mincolor, minvalue, maxcolor, maxvalue define
the range for mapping a continuous feature value to a continuous range of colors when rendering the feature
on the map.

maxsize [int] Maximum pen or symbol width for scaling.

maxvalue [double] Attribute for Color Range Mapping (rfc6). mincolor, minvalue, maxcolor, maxvalue define
the range for mapping a continuous feature value to a continuous range of colors when rendering the feature
on the map.

maxwidth [int] Maximum width of the symbol.

offsetx [int] Draw with pen or symbol offset from map data.

offsety [int] Draw with pen or symbol offset from map data.

outlinecolor [colorObj] Outline pen color.

rangeitem [string] Attribute/field that stores the values for the Color Range Mapping (rfc6).

size [int] Pixel width of the style’s pen or symbol.

sizeitem [string]Deprecated since version 5.0: Use setBinding.

5.1. MapScript 245

MapServer Documentation, Release 6.4.1

symbol [int] The index within the map symbolset of the style’s symbol.

symbolname [string immutable] Name of the style’s symbol.

width [int] Width refers to the thickness of line work drawn, in pixels. Default is 1. For symbols of Type HATCH,
the with is how thick the hatched lines are.

styleObj Methods

new styleObj([classObj parent_class]) [styleObj] Returns new default style Obj instance. The parent_class
is optional.

clone [styleObj] Returns an independent copy of the style with no parent class.

convertToString() [string] Saves the object to a string. Provides the inverse option for updateFromString.

getBinding(int binding) [string] Get the attribute binding for a specified style property. Returns NULL if there
is no binding for this property.

removeBinding(int binding) [int] Remove the attribute binding for a specfiled style property.

setBinding (int binding, string item) [int] Set the attribute binding for a specified style property. Binding con-
stants look like this: MS_STYLE_BINDING_[attribute name]:

setBinding(MS_STYLE_BINDING_SIZE, ’mySizeItem’);

setSymbolByName(mapObj map, string symbolname) [int] Setting the symbol of the styleObj given the ref-
erence of the map object and the symbol name.

updateFromString (string snippet) [int] Update a style from a string snippet. Returns
MS_SUCCESS/MS_FAILURE.

symbolObj

A symbolObj is associated with one symbolSetObj:

+--------+ 0..* 1 +-----------+
| Symbol | <-------- | SymbolSet |
+--------+ +-----------+

A styleObj will often refer to a symbolObj by name or index, but this is not really an object association, is it?

symbolObj Attributes

antialias [int] MS_TRUE or MS_FALSE.

character [string] For TrueType symbols.

filled [int] MS_TRUE or MS_FALSE.

font [string] For TrueType symbols.

gap [int] Moved to STYLE

imagepath [string] Path to pixmap file.

inmapfile [int] If set to TRUE, the symbol will be saved inside the mapfile. Added in MapServer 5.6.1

linecap [int] Moved to STYLE

linejoin [int] Moved to STYLE

linejoinmaxsize [float] Moved to STYLE

name [string] Symbol name

numpoints [int immutable] Number of points of a vector symbol.

246 Chapter 5. MapScript

MapServer Documentation, Release 6.4.1

position [int] No more available?

sizex [float] TODO what is this?

sizey [float] TODO what is this?

stylelength [int] Number of intervals

transparent [int] TODO what is this?

transparentcolor [int] TODO is this a derelict attribute?

type [int] MS_SYMBOL_SIMPLE, MS_SYMBOL_VECTOR, MS_SYMBOL_ELLIPSE,
MS_SYMBOL_PIXMAP, or MS_SYMBOL_TRUETYPE.

symbolObj Methods

new symbolObj(string symbolname [, string imagefile]) [symbolObj] Create new default symbol named
name. If imagefile is specified, then the symbol will be of type MS_SYMBOL_PIXMAP.

getImage() [imageObj] Returns a pixmap symbol’s imagery as an imageObj.

getPoints() [lineObj] Returns the symbol points as a lineObj.

setImage(imageObj image) [int] Set a pixmap symbol’s imagery from image.

setPoints(lineObj line) [int] Sets the symbol points from the points of line. Returns the updated number of
points.

setStyle(int index, int value) [int] Set the style at index to value. Returns MS_SUCCESS or MS_FAILURE.

symbolSetObj

A symbolSetObj is an attribute of a mapObj and is associated with instances of symbolObj:

+-----------+ 1 0..* +--------+
| SymbolSet | --------> | Symbol |
+-----------+ +--------+

symbolSetObj Attributes

filename [string] Symbolset filename

numsymbols [int immutable] Number of symbols in the set.

symbolSetObj Methods

new symbolSetObj([string symbolfile]) [symbolSetObj] Create new instance. If symbolfile is specified, sym-
bols will be loaded from the file.

appendSymbol(symbolObj symbol) [int] Add a copy of symbol to the symbolset and return its index.

getSymbol(int index) [symbolObj] Returns a reference to the symbol at index.

getSymbolByName(string name) [symbolObj] Returns a reference to the symbol named name.

index(string name) [int] Return the index of the symbol named name or -1 in the case that no such symbol is
found.

removeSymbol(int index) [symbolObj] Remove the symbol at index and return a copy of the symbol.

save(string filename) [int] Save symbol set to a file. Returns MS_SUCCESS or MS_FAILURE.

5.1. MapScript 247

MapServer Documentation, Release 6.4.1

webObj

Has no other existence than as an attribute of a mapObj. Serves as a container for various run-time web application
definitions like temporary file paths, template paths, etc.

webObj Attributes

empty [string] TODO

error [string] TODO

extent [rectObj] Clipping extent.

footer [string] Path to footer document.

header [string] Path to header document.

imagepath [string] Filesystem path to temporary image location.

imageurl [string] URL to temporary image location.

log [string] TODO

map [mapObj immutable] Reference to parent mapObj.

maxscaledenom [float] Minimum map scale.

maxtemplate [string] TODO

metadata [hashTableObj immutable] metadata hash table.

minscaledenom [float] Maximum map scale.

mintemplate [string] TODO

queryformat [string] TODO

template [string] Path to template document.

webObj Methods

convertToString() [string] Saves the object to a string. Provides the inverse option for updateFromString.

5.1.3 PHP MapScript

Release 6.4.1

Introduction

This is a PHP module that makes MapServer’s MapScript functionalities available in a PHP Dynamically Loadable
Library. In simple terms, this module will allow you to use the powerful PHP scripting language to dynamically
create and modify map images in MapServer.

Versions Supported

PHP 5.2.0 or more recent is required; since MapServer 6.0, support for PHP 4, PHP 5.0 and PHP 5.1 have been
dropped. PHP MapScript was originally developed for PHP 3.0.14, and after MapServer 3.5 support for PHP 3
was dropped.

The module has been tested and used on Linux, Solaris, *BSD, and Windows.

248 Chapter 5. MapScript

http://www.php.net/

MapServer Documentation, Release 6.4.1

Note: If you are using MapServer 5.6 and older, please refer to the PHP MapScript 5.6 documenta-
tion instead.

Note: If you are migrating your existing application that is based on MapServer 5.6 or older, to
MapServer 6.0 or beyond, please read the PHP MapScript Migration Guide for important changes.

How to Get More Information on PHP MapScript

• For installation questions regarding the PHP MapScript module, see PHP MapScript Installation.

• The MapServer Wiki has information on this module, that was contributed by users.

• New PHP MapScript users should read the By Example document.

• The project’s home is the PHP/MapScript page on MapTools.org.

• Also, see the MapScript, and the Mapfile sections of this site.

• Refer to the main PHP site for their official documentation.

Memory Management

Normally, you should not have to worry about the memory management because php has a garbage collector and
will free resources for you. If you write only small scripts that don’t do a lot of processing, it’s not worth to care
about that. Everything will be freed at the end of the script.

However, it may be useful to free resources during the execution if the script executes many tasks. To do so,
you’ll have to call the free() method of the mapscript objects and unset the php variables. The purpose of the free
methods is to break the circular references between an object and its properties to allow the zend engine to free
the resources.

Here’s an example of a script that doesn’t free things during the execution:

$map = new mapObj("mapfile.map");
$of = $map->outputformat;
echo $map->extent->minx." - ".$map->extent->miny." - ".

$map->extent->maxx." - ".$map->extent->maxy."\n";
echo "Outputformat name: $of->name\n";
unset($of);
unset($map); // Even if we unset the php variables, resources

// wont be freed. Resources will be only freed
// at the end of the script

and the same script that frees resources as soon as it can

$map = new mapObj("mapfile.map");
$of = $map->outputformat;
echo $map->extent->minx." - ".$map->extent->miny." - ".

$map->extent->maxx." - ".$map->extent->maxy."\n";
echo "Outputformat name: $of->name\n";
unset($of);
$map->free(); // break the circular references
// at this place, the outputformat ($of) and the rect object
// ($map->extent) resources are freed
unset($map);
// the map object is immediately freed after the unset (before the
// end of the script)

5.1. MapScript 249

http://trac.osgeo.org/mapserver/wiki/PHPMapScript
http://www.maptools.org/php_mapscript/
http://www.php.net

MapServer Documentation, Release 6.4.1

PHP MapScript API

Author Daniel Morissette

Contact dmorissette at mapgears.com

Author Yewondwossen Assefa

Contact yassefa at dmsolutions.ca

Author Alan Boudreault

Contact aboudreault at mapgears.com

Revision $Revision$

Date $Date$

Note: If you are using MapServer 5.6 and older, please refer to the PHP MapScript 5.6 docu-
mentation instead.

Contents

• PHP MapScript API
– Important Note
– Constants
– Functions
– Classes

* classObj
* clusterObj
* colorObj
* errorObj
* gridObj
* hashTableObj
* imageObj
* labelcacheMemberObj
* labelcacheObj
* labelObj
* layerObj
* legendObj
* lineObj
* mapObj
* outputformatObj
* OwsrequestObj
* pointObj
* projectionObj
* querymapObj
* rectObj
* referenceMapObj
* resultObj
* scalebarObj
* shapefileObj
* shapeObj
* styleObj
* symbolObj
* webObj

250 Chapter 5. MapScript

MapServer Documentation, Release 6.4.1

Important Note

• Constant names and class member variable names are case-sensitive in PHP.

Constants

The following MapServer constants are available:

Boolean values MS_TRUE, MS_FALSE, MS_ON, MS_OFF, MS_YES, MS_NO

Map units MS_INCHES, MS_FEET, MS_MILES, MS_METERS, MS_KILOMETERS, MS_DD,
MS_PIXELS, MS_NAUTICALMILES

Layer types MS_LAYER_POINT, MS_LAYER_LINE, MS_LAYER_POLYGON, MS_LAYER_RASTER,
MS_LAYER_ANNOTATION (deprecated since 6.2), MS_LAYER_QUERY, MS_LAYER_CIRCLE,
MS_LAYER_TILEINDEX, MS_LAYER_CHART

Layer/Legend/Scalebar/Class Status MS_ON, MS_OFF, MS_DEFAULT, MS_EMBED, MS_DELETE

Layer alpha transparency allows alpha transparent pixmaps to be used with RGB map images
MS_GD_ALPHA

Font types MS_TRUETYPE, MS_BITMAP

Label positions MS_UL, MS_LR, MS_UR, MS_LL, MS_CR, MS_CL, MS_UC, MS_LC, MS_CC, MS_XY,
MS_AUTO, MS_AUTO2, MS_FOLLOW, MS_NONE

Bitmap font styles MS_TINY , MS_SMALL, MS_MEDIUM, MS_LARGE, MS_GIANT

Shape types MS_SHAPE_POINT, MS_SHAPE_LINE, MS_SHAPE_POLYGON, MS_SHAPE_NULL

Shapefile types MS_SHP_POINT, MS_SHP_ARC, MS_SHP_POLYGON, MS_SHP_MULTIPOINT

Query/join types MS_SINGLE, MS_MULTIPLE

Querymap styles MS_NORMAL, MS_HILITE, MS_SELECTED

Connection Types MS_INLINE, MS_SHAPEFILE, MS_TILED_SHAPEFILE, MS_SDE, MS_OGR,
MS_TILED_OGR, MS_POSTGIS, MS_WMS, MS_ORACLESPATIAL, MS_WFS, MS_GRATICULE,
MS_RASTER, MS_PLUGIN, MS_UNION

Error codes MS_NOERR, MS_IOERR, MS_MEMERR, MS_TYPEERR, MS_SYMERR, MS_REGEXERR,
MS_TTFERR, MS_DBFERR, MS_GDERR, MS_IDENTERR, MS_EOFERR, MS_PROJERR,
MS_MISCERR, MS_CGIERR, MS_WEBERR, MS_IMGERR, MS_HASHERR, MS_JOINERR,
MS_NOTFOUND, MS_SHPERR, MS_PARSEERR, MS_SDEERR, MS_OGRERR, MS_QUERYERR,
MS_WMSERR, MS_WMSCONNERR, MS_ORACLESPATIALERR, MS_WFSERR,
MS_WFSCONNERR, MS_MAPCONTEXTERR, MS_HTTPERR, MS_WCSERR

Symbol types MS_SYMBOL_SIMPLE, MS_SYMBOL_VECTOR, MS_SYMBOL_ELLIPSE,
MS_SYMBOL_PIXMAP, MS_SYMBOL_TRUETYPE

Image Mode types (outputFormatObj) MS_IMAGEMODE_PC256, MS_IMAGEMODE_RGB,
MS_IMAGEMODE_RGBA, MS_IMAGEMODE_INT16, MS_IMAGEMODE_FLOAT32,
MS_IMAGEMODE_BYTE, MS_IMAGEMODE_FEATURE, MS_IMAGEMODE_NULL

Style/Attribue binding MS_STYLE_BINDING_SIZE, MS_STYLE_BINDING_ANGLE,
MS_STYLE_BINDING_COLOR, MS_STYLE_BINDING_OUTLINECOLOR,
MS_STYLE_BINDING_SYMBOL, MS_STYLE_BINDING_WIDTH

Label/Attribute binding MS_LABEL_BINDING_SIZE, MS_LABEL_BINDING_ANGLE,
MS_LABEL_BINDING_COLOR, MS_LABEL_BINDING_OUTLINECOLOR,
MS_LABEL_BINDING_FONT, MS_LABEL_BINDING_PRIORITY, MS_LABEL_BINDING_POSITION,
MS_LABEL_BINDING_SHADOWSIZEX, MS_LABEL_BINDING_SHADOWSIZEY

Alignment MS_ALIGN_LEFT, MS_ALIGN_CENTER, MS_ALIGN_RIGHT

OwsRequest MS_GET_REQUEST, MS_POST_REQUEST

5.1. MapScript 251

MapServer Documentation, Release 6.4.1

Functions

string ms_GetVersion() Returns the MapServer version and options in a string. This string can be parsed to find
out which modules were compiled in, etc.

int ms_GetVersionInt() Returns the MapServer version number (x.y.z) as an integer (x*10000 + y*100 + z).
(New in v5.0) e.g. V5.4.3 would return 50403.

int ms_iogetStdoutBufferBytes() Writes the current buffer to stdout. The PHP header() function should be used
to set the documents’s content-type prior to calling the function. Returns the number of bytes written if
output is sent to stdout. See MapScript Wrappers for WxS Services for more info.

void ms_iogetstdoutbufferstring() Fetch the current stdout buffer contents as a string. This method does not
clear the buffer.

void ms_ioinstallstdinfrombuffer() Installs a mapserver IO handler directing future stdin reading (ie. post re-
quest capture) to come from a buffer.

void ms_ioinstallstdouttobuffer() Installs a mapserver IO handler directing future stdout output to a memory
buffer.

void ms_ioresethandlers() Resets the default stdin and stdout handlers in place of “buffer” based handlers.

string ms_iostripstdoutbuffercontenttype() Strip the Content-type header off the stdout buffer if it has one, and
if a content type is found it is return. Otherwise return false.

void ms_iostripstdoutbuffercontentheaders() Strip all the Content-* headers off the stdout buffer if it has some.

array ms_TokenizeMap(string map_file_name) Preparses a mapfile through the MapServer parser and return
an array with one item for each token from the mapfile. Strings, logical expressions, regex expressions and
comments are returned as individual tokens.

Classes

The following class objects are available through PHP MapScript.

classObj

Constructor Class Objects can be returned by the layerObj class, or can be created using:

new classObj(layerObj layer [, classObj class])

or using the old constructor

classObj ms_newClassObj(layerObj layer [, classObj class])

The second argument class is optional. If given, the new class created will be a copy of this class.

252 Chapter 5. MapScript

MapServer Documentation, Release 6.4.1

Members

Type Name Note
string group
string keyimage
labelObj label Removed (6.2) - use addLabel, getLabel, ...
double maxscaledenom
hashTableObj metadata
double minscaledenom
string name
int numlabels read-only (since 6.2)
int numstyles read-only
int status MS_ON, MS_OFF or MS_DELETE
string template
string title
int type

Methods

int addLabel(labelObj label) Add a labelObj to the classObj and return its index in the labels array. New in
version 6.2.

string convertToString() Saves the object to a string. Provides the inverse option for updateFromString.

imageObj createLegendIcon(int width, int height) Draw the legend icon and return a new imageObj.

int deletestyle(int index) Delete the style specified by the style index. If there are any style that follow the deleted
style, their index will decrease by 1.

int drawLegendIcon(int width, int height, imageObj im, int dstX, int dstY) Draw the legend icon on im ob-
ject at dstX, dstY. Returns MS_SUCCESS/MS_FAILURE.

void free() Free the object properties and break the internal references. Note that you have to unset the php
variable to free totally the resources.

string getExpressionString() Returns the expression string for the class object.

labelObj getLabel(int index) Return a reference to the labelObj at index in the labels array.

See the labelObj section for more details on multiple class labels. New in version 6.2.

int getMetaData(string name) Fetch class metadata entry by name. Returns “” if no entry matches the name.
Note that the search is case sensitive.

Note: getMetaData’s query is case sensitive.

styleObj getStyle(int index) Return the style object using an index. index >= 0 && index < class->numstyles.

string getTextString() Returns the text string for the class object.

int movestyledown(int index) The style specified by the style index will be moved down into the array of classes.
Returns MS_SUCCESS or MS_FAILURE. ex class->movestyledown(0) will have the effect of moving style
0 up to position 1, and the style at position 1 will be moved to position 0.

int movestyleup(int index) The style specified by the style index will be moved up into the array of classes.
Returns MS_SUCCESS or MS_FAILURE. ex class->movestyleup(1) will have the effect of moving style 1
up to position 0, and the style at position 0 will be moved to position 1.

labelObj removeLabel(int index) Remove the labelObj at index from the labels array and return a reference to
the labelObj. numlabels is decremented, and the array is updated. New in version 6.2.

int removeMetaData(string name) Remove a metadata entry for the class. Returns
MS_SUCCESS/MS_FAILURE.

int set(string property_name, new_value) Set object property to a new value.

int setExpression(string expression) Set the expression string for the class object.

5.1. MapScript 253

MapServer Documentation, Release 6.4.1

int setMetaData(string name, string value) Set a metadata entry for the class. Returns
MS_SUCCESS/MS_FAILURE.

int settext(string text) Set the text string for the class object.

int updateFromString(string snippet) Update a class from a string snippet. Returns
MS_SUCCESS/MS_FAILURE.

/*set the color */
$oClass->updateFromString(’CLASS STYLE COLOR 255 0 255 END END’);

clusterObj

Constructor Instance of clusterObj is always embedded inside the layerObj.

Members

Type Name
double buffer
double maxdistance
string region

Methods

string convertToString() Saves the object to a string. Provides the inverse option for updateFromString.

string getFilterString() Returns the expression for this cluster filter or NULL on error.

string getGroupString() Returns the expression for this cluster group or NULL on error.

int setFilter(string expression) Set layer filter expression.

int setGroup(string expression) Set layer group expression.

colorObj

Constructor Instances of colorObj are always embedded inside other classes.

Members

Type Name
int red
int green
int blue

Methods

void setRGB(int red, int green, int blue) Set red, green, blue values.

errorObj Instances of errorObj are created internally by MapServer as errors happen. Errors are managed
as a chained list with the first item being the most recent error. The head of the list can be fetched using
ms_GetErrorObj(), and the list can be cleared using ms_ResetErrorList()

Functions

errorObj ms_GetErrorObj() Returns a reference to the head of the list of errorObj.

void ms_ResetErrorList() Clear the current error list. Note that clearing the list invalidates any errorObj handles
obtained via the $error->next() method.

254 Chapter 5. MapScript

MapServer Documentation, Release 6.4.1

Members

Type Name
int code //See error code constants above
string message
string routine

Method

errorObj next() Returns the next errorObj in the list, or NULL if we reached the end of the list.

Example This example draws a map and reports all errors generated during the draw() call, errors can potentially
come from multiple layers.

ms_ResetErrorList();
$img = $map->draw();
$error = ms_GetErrorObj();
while($error && $error->code != MS_NOERR)
{

printf("Error in %s: %s
\n", $error->routine, $error->message);
$error = $error->next();

}

gridObj

Constructor The grid is always embedded inside a layer object defined as a grid (layer->connectiontype =
MS_GRATICULE) (for more docs : https://github.com/mapserver/mapserver/wiki/MapServerGrid)

A layer can become a grid layer by adding a grid object to it using : ms_newGridObj(layerObj layer)

$oLayer = ms_newlayerobj($oMap);
$oLayer->set("name", "GRID");
ms_newgridobj($oLayer);
$oLayer->grid->set("labelformat", "DDMMSS");

Members

Type Name
string labelformat
double maxacrs
double maxinterval
double maxsubdivide
double minarcs
double mininterval
double minsubdivide

Methods

int set(string property_name, new_value) Set object property to a new value.

hashTableObj

Constructor Instance of hashTableObj is always embedded inside the classObj, layerObj, mapObj and webObj.
It is uses a read only.

$hashTable = $oLayer->metadata;
$key = null;
while ($key = $hashTable->nextkey($key))

echo "Key: ".$key." value: ".$hashTable->get($key)."
";

5.1. MapScript 255

https://github.com/mapserver/mapserver/wiki/MapServerGrid

MapServer Documentation, Release 6.4.1

Methods

void clear() Clear all items in the hashTable (To NULL).

string get(string key) Fetch class metadata entry by name. Returns “” if no entry matches the name. Note that
the search is case sensitive.

string nextkey(string previousKey) Return the next key or first key if previousKey = NULL. Return NULL if
no item is in the hashTable or end of hashTable is reached

int remove(string key) Remove a metadata entry in the hashTable. Returns MS_SUCCESS/MS_FAILURE.

int set(string key, string value) Set a metadata entry in the hashTable. Returns MS_SUCCESS/MS_FAILURE.

imageObj

Constructor Instances of imageObj are always created by the mapObj class methods.

Members

Type Name Note
int width read-only
int height read-only
int resolution read-only
int resolutionfactor read-only
string imagepath
string imageurl

Methods

void pasteImage(imageObj srcImg, int transparentColorHex [[, int dstX, int dstY], int angle]) Copy
srcImg on top of the current imageObj. transparentColorHex is the color (in 0xrrggbb format) from srcImg
that should be considered transparent (i.e. those pixels won’t be copied). Pass -1 if you don’t want any
transparent color. If optional dstx,dsty are provided then it defines the position where the image should be
copied (dstx,dsty = top-left corner position). The optional angle is a value between 0 and 360 degrees to
rotate the source image counterclockwise. Note that if an angle is specified (even if its value is zero) then
the dstx and dsty coordinates specify the CENTER of the destination area. Note: this function works only
with 8 bits GD images (PNG or GIF).

int saveImage([string filename, MapObj oMap]) Writes image object to specified filename. Passing no file-
name or an empty filename sends output to stdout. In this case, the PHP header() function should be used to
set the document’s content-type prior to calling saveImage(). The output format is the one that is currently
selected in the map file. The second argument oMap is not manadatory. It is usful when saving to formats
like GTIFF that needs georeference informations contained in the map file. On success, it returns either
MS_SUCCESS if writing to an external file, or the number of bytes written if output is sent to stdout.

string saveWebImage() Writes image to temp directory. Returns image URL. The output format is the one that
is currently selected in the map file.

labelcacheMemberObj Accessible only through the mapObj (map->getLabel()).

256 Chapter 5. MapScript

MapServer Documentation, Release 6.4.1

Members

Type Name Note
int classindex read-only
int featuresize read-only
int layerindex read-only
int markerid read-only
int numstyles read-only
int shapeindex read-only
int status read-only
string text read-only
int tileindex read-only

Method None

labelcacheObj Accessible only through the mapObj (map->labelcache). This object is only used to give the
possiblity to free the label cache (map->labelcache->freeCache())

Method

boolean freeCache() Free the label cache. Always returns MS_SUCCESS. Ex : map->labelcache->freeCache();

labelObj

Constructor labelObj are always embedded inside other classes.

new labelObj()

Type Name
int align
double angle
int anglemode
int antialias
int autominfeaturesize
colorObj backgroundcolor (deprecated since 6.0)
colorObj backgroundshadowcolor (deprecated since 6.0)
int backgroundshadowsizex (deprecated since 6.0)
int backgroundshadowsizey (deprecated since 6.0)
int buffer
colorObj color
string encoding
string font
int force
int maxlength
int maxsize
int mindistance
int minfeaturesize
int minlength
int minsize
int numstyles
int offsetx
int offsety
colorObj outlinecolor
int outlinewidth

Continued on next page

5.1. MapScript 257

MapServer Documentation, Release 6.4.1

Table 5.2 – continued from previous page
Type Name
int partials
int position
int priority
int repeatdistance
colorObj shadowcolor
int shadowsizex
int shadowsizey
int size
int type
int wrap

Members

Methods

string convertToString() Saves the object to a string. Provides the inverse option for updateFromString.

int deleteStyle(int index) Delete the style specified by the style index. If there are any style that follow the
deleted style, their index will decrease by 1.

void free() Free the object properties and break the internal references. Note that you have to unset the php
variable to free totally the resources.

string getBinding(const labelbinding) Get the attribute binding for a specified label property. Returns NULL if
there is no binding for this property.

Example:

$oLabel->setbinding(MS_LABEL_BINDING_COLOR, "FIELD_NAME_COLOR");
echo $oLabel->getbinding(MS_LABEL_BINDING_COLOR); // FIELD_NAME_COLOR

string getExpressionString() Returns the label expression string.

styleObj getStyle(int index) Return the style object using an index. index >= 0 && index < label->numstyles.

string getTextString() Returns the label text string.

int moveStyleDown(int index) The style specified by the style index will be moved down into the array of
classes. Returns MS_SUCCESS or MS_FAILURE. ex label->movestyledown(0) will have the effect of
moving style 0 up to position 1, and the style at position 1 will be moved to position 0.

int moveStyleUp(int index) The style specified by the style index will be moved up into the array of classes.
Returns MS_SUCCESS or MS_FAILURE. ex label->movestyleup(1) will have the effect of moving style 1
up to position 0, and the style at position 0 will be moved to position 1.

int removeBinding(const labelbinding) Remove the attribute binding for a specfiled style property.

Example:

$oStyle->removebinding(MS_LABEL_BINDING_COLOR);

int set(string property_name, new_value) Set object property to a new value.

int setBinding(const labelbinding, string value) Set the attribute binding for a specified label property.

Example:

$oLabel->setbinding(MS_LABEL_BINDING_COLOR, "FIELD_NAME_COLOR");

This would bind the color parameter with the data (ie will extract the value of the color from the field called
“FIELD_NAME_COLOR”

int setExpression(string expression) Set the label expression.

258 Chapter 5. MapScript

MapServer Documentation, Release 6.4.1

int setText(string text) Set the label text.

int updateFromString(string snippet) Update a label from a string snippet. Returns
MS_SUCCESS/MS_FAILURE.

layerObj

Constructor Layer Objects can be returned by the mapObj class, or can be created using:

layerObj ms_newLayerObj(MapObj map [, layerObj layer])

A second optional argument can be given to ms_newLayerObj() to create the new layer as a copy of an existing
layer. If a layer is given as argument then all members of a this layer will be copied in the new layer created.

Type Name Note
int annotate
hashTableObj bindvals
string classgroup
string classitem
clusterObj cluster
string connection
int connectiontype read-only, use setConnectionType() to set it
string data
int debug
int dump deprecated since 6.0
string filteritem
string footer
gridObj grid only available on a layer defined as grid (MS_GRATICULE)
string group
string header
int index read-only
int labelcache
string labelitem
double labelmaxscaledenom
double labelminscaledenom
string labelrequires
string mask
int maxfeatures
double maxscaledenom
hashTableObj metadata
double minscaledenom
string name
int num_processing
int numclasses read-only
colorObj offsite
int opacity
projectionObj projection
int postlabelcache
string requires
int sizeunits
int startindex
int status MS_ON, MS_OFF, MS_DEFAULT or MS_DELETE
string styleitem
double symbolscaledenom

Continued on next page

5.1. MapScript 259

MapServer Documentation, Release 6.4.1

Table 5.3 – continued from previous page
Type Name Note

string template
string tileindex
string tileitem
double tolerance
int toleranceunits
int transform
int type

Members

Methods

int addFeature(shapeObj shape) Add a new feature in a layer. Returns MS_SUCCESS or MS_FAILURE on
error.

int applySLD(string sldxml, string namedlayer) Apply the SLD document to the layer object. The matching
between the sld document and the layer will be done using the layer’s name. If a namedlayer argument is
passed (argument is optional), the NamedLayer in the sld that matchs it will be used to style the layer. See
SLD HowTo for more information on the SLD support.

int applySLDURL(string sldurl, string namedlayer) Apply the SLD document pointed by the URL to the layer
object. The matching between the sld document and the layer will be done using the layer’s name. If a
namedlayer argument is passed (argument is optional), the NamedLayer in the sld that matchs it will be
used to style the layer. See SLD HowTo for more information on the SLD support.

void clearProcessing() Clears all the processing strings.

void close() Close layer previously opened with open().

string convertToString() Saves the object to a string. Provides the inverse option for updateFromString.

int draw(imageObj image) Draw a single layer, add labels to cache if required. Returns MS_SUCCESS or
MS_FAILURE on error.

int drawQuery(imageObj image) Draw query map for a single layer.

string executeWFSGetfeature() Executes a GetFeature request on a WFS layer and returns the name of the
temporary GML file created. Returns an empty string on error.

void free() Free the object properties and break the internal references. Note that you have to unset the php
variable to free totally the resources.

string generateSLD() Returns an SLD XML string based on all the classes found in the layer (the layer must
have STATUS on).

classObj getClass(int classIndex) Returns a classObj from the layer given an index value (0=first class)

int getClassIndex(shape [, classgroup, numclasses]) Get the class index of a shape for a given scale. Returns
-1 if no class matches. classgroup is an array of class ids to check (Optionnal). numclasses is the number of
classes that the classgroup array contains. By default, all the layer classes will be checked.

rectObj getExtent() Returns the layer’s data extents or NULL on error. If the layer’s EXTENT member is set
then this value is used, otherwise this call opens/closes the layer to read the extents. This is quick on
shapefiles, but can be an expensive operation on some file formats or data sources. This function is safe to
use on both opened or closed layers: it is not necessary to call open()/close() before/after calling it.

string getFilterString() Returns the expression for this layer or NULL on error.

array getGridIntersectionCoordinates() Returns an array containing the grid intersection coordinates. If there
are no coordinates, it returns an empty array.

array getItems() Returns an array containing the items. Must call open function first. If there are no items, it
returns an empty array.

260 Chapter 5. MapScript

MapServer Documentation, Release 6.4.1

int getMetaData(string name) Fetch layer metadata entry by name. Returns “” if no entry matches the name.
Note that the search is case sensitive.

Note: getMetaData’s query is case sensitive.

int getNumResults() Returns the number of results in the last query.

array getProcessing() Returns an array containing the processing strings. If there are no processing strings, it
returns an empty array.

string getProjection() Returns a string representation of the projection. Returns NULL on error or if no projec-
tion is set.

resultObj getResult(int index) Returns a resultObj by index from a layer object with index in the range 0 to
numresults-1. Returns a valid object or FALSE(0) if index is invalid.

rectObj getResultsBounds() Returns the bounding box of the latest result.

shapeObj getShape(resultObj result]) If the resultObj passed has a valid resultindex, retrieve shapeObj from a
layer’s resultset. (You get it from the resultObj returned by getResult() for instance). Otherwise, it will do a
single query on the layer to fetch the shapeindex

$map = new mapObj("gmap75.map");
$l = $map->getLayerByName("popplace");
$l->queryByRect($map->extent);
for ($i=0; $i<$l->getNumResults();$i++){
$s = $l->getShape($l->getResult($i));
echo $s->getValue($l,"Name");
echo "\n";

}

string getWMSFeatureInfoURL(int clickX, int clickY, int featureCount, string infoFormat) Returns a
WMS GetFeatureInfo URL (works only for WMS layers) clickX, clickY is the location of to query in
pixel coordinates with (0,0) at the top left of the image. featureCount is the number of results to return.
infoFormat is the format the format in which the result should be requested. Depends on remote server’s
capabilities. MapServer WMS servers support only “MIME” (and should support “GML.1” soon). Returns
“” and outputs a warning if layer is not a WMS layer or if it is not queriable.

boolean isVisible() Returns MS_TRUE/MS_FALSE depending on whether the layer is currently visible in the
map (i.e. turned on, in scale, etc.).

int moveclassdown(int index) The class specified by the class index will be moved down into the array of layers.
Returns MS_SUCCESS or MS_FAILURE. ex layer->moveclassdown(0) will have the effect of moving
class 0 up to position 1, and the class at position 1 will be moved to position 0.

int moveclassup(int index) The class specified by the class index will be moved up into the array of layers.
Returns MS_SUCCESS or MS_FAILURE. ex layer->moveclassup(1) will have the effect of moving class
1 up to position 0, and the class at position 0 will be moved to position 1.

int open() Open the layer for use with getShape(). Returns MS_SUCCESS/MS_FAILURE.

shapeobj nextShape() Called after msWhichShapes has been called to actually retrieve shapes within a given
area. Returns a shape object or NULL on error.

$map = ms_newmapobj("d:/msapps/gmap-ms40/htdocs/gmap75.map");
$layer = $map->getLayerByName(’road’);
$status = $layer->open();
$status = $layer->whichShapes($map->extent);
while ($shape = $layer->nextShape())
{
echo $shape->index ."
\n";

}
$layer->close();

5.1. MapScript 261

MapServer Documentation, Release 6.4.1

int queryByAttributes(string qitem, string qstring, int mode) Query layer for shapes that intersect current
map extents. qitem is the item (attribute) on which the query is performed, and qstring is the expression
to match. The query is performed on all the shapes that are part of a CLASS that contains a TEMPLATE
value or that match any class in a layer that contains a LAYER TEMPLATE value. Note that the layer’s
FILTER/FILTERITEM are ignored by this function. Mode is MS_SINGLE or MS_MULTIPLE depending
on number of results you want. Returns MS_SUCCESS if shapes were found or MS_FAILURE if nothing
was found or if some other error happened (note that the error message in case nothing was found can be
avoided in PHP using the ‘@’ control operator).

int queryByFeatures(int slayer) Perform a query set based on a previous set of results from another layer. At
present the results MUST be based on a polygon layer. Returns MS_SUCCESS if shapes were found or
MS_FAILURE if nothing was found or if some other error happened (note that the error message in case
nothing was found can be avoided in PHP using the ‘@’ control operator).

int queryByPoint(pointObj point, int mode, double buffer) Query layer at point location specified in georef-
erenced map coordinates (i.e. not pixels). The query is performed on all the shapes that are part of a CLASS
that contains a TEMPLATE value or that match any class in a layer that contains a LAYER TEMPLATE
value. Mode is MS_SINGLE or MS_MULTIPLE depending on number of results you want. Passing buffer
-1 defaults to tolerances set in the map file (in pixels) but you can use a constant buffer (specified in ground
units) instead. Returns MS_SUCCESS if shapes were found or MS_FAILURE if nothing was found or if
some other error happened (note that the error message in case nothing was found can be avoided in PHP
using the ‘@’ control operator).

int queryByRect(rectObj rect) Query layer using a rectangle specified in georeferenced map coordinates (i.e.
not pixels). The query is performed on all the shapes that are part of a CLASS that contains a TEMPLATE
value or that match any class in a layer that contains a LAYER TEMPLATE value. Returns MS_SUCCESS
if shapes were found or MS_FAILURE if nothing was found or if some other error happened (note that the
error message in case nothing was found can be avoided in PHP using the ‘@’ control operator).

int queryByShape(shapeObj shape) Query layer based on a single shape, the shape has to be a polygon at this
point. Returns MS_SUCCESS if shapes were found or MS_FAILURE if nothing was found or if some other
error happened (note that the error message in case nothing was found can be avoided in PHP using the ‘@’
control operator).

classObj removeClass(int index) Removes the class indicated and returns a copy, or NULL in the case of a
failure. Note that subsequent classes will be renumbered by this operation. The numclasses field contains
the number of classes available.

int removeMetaData(string name) Remove a metadata entry for the layer. Returns
MS_SUCCESS/MS_FAILURE.

int set(string property_name, new_value) Set object property to a new value.

int setConnectionType(int connectiontype [,string plugin_library]) Changes the connectiontype of the layer
and recreates the vtable according to the new connection type. This method should be used instead of
setting the connectiontype parameter directly. In the case when the layer.connectiontype = MS_PLUGIN
the plugin_library parameter should also be specified so as to select the library to load by MapServer. For
the other connection types this parameter is not used.

int setFilter(string expression) Set layer filter expression.

int setMetaData(string name, string value) Set a metadata entry for the layer. Returns
MS_SUCCESS/MS_FAILURE.

int setProcessing(string) Add the string to the processing string list for the layer. The layer->num_processing is
incremented by 1. Returns MS_SUCCESS or MS_FAILURE on error.

$oLayer->setprocessing("SCALE_1=AUTO");
$oLayer->setprocessing("SCALE_2=AUTO");

int setProjection(string proj_params) Set layer projection and coordinate system. Parameters are given as a
single string of comma-delimited PROJ.4 parameters. Returns MS_SUCCESS or MS_FAILURE on error.

int setWKTProjection(string proj_params) Same as setProjection(), but takes an OGC WKT projection defi-
nition string as input.

262 Chapter 5. MapScript

MapServer Documentation, Release 6.4.1

Note: setWKTProjection requires GDAL support

int updateFromString(string snippet) Update a layer from a string snippet. Returns
MS_SUCCESS/MS_FAILURE.

/*modify the name */
$oLayer->updateFromString(’LAYER NAME land_fn2 END’);
/*add a new class*/
$oLayer->updateFromString(’LAYER CLASS STYLE COLOR 255 255 0 END END END’);

int whichshapes(rectobj) Performs a spatial, and optionally an attribute based feature search. The function ba-
sically prepares things so that candidate features can be accessed by query or drawing functions (eg using
nextshape function). Returns MS_SUCCESS, MS_FAILURE or MS_DONE. MS_DONE is returned if the
layer extent does not overlap the rectObj.

legendObj

Constructor Instances of legendObj are always are always embedded inside the mapObj.

Members

Type Name Note
int height
colorObj imagecolor
int keysizex
int keysizey
int keyspacingx
int keyspacingy
labelObj label
colorObj outlinecolor Color of outline of box, -1 for no outline
int position for embeded legends, MS_UL, MS_UC, ...
int postlabelcache MS_TRUE, MS_FALSE
int status MS_ON, MS_OFF, MS_EMBED
string template
int width

Methods

string convertToString() Saves the object to a string. Provides the inverse option for updateFromString.

void free() Free the object properties and break the internal references. Note that you have to unset the php
variable to free totally the resources.

int set(string property_name, new_value) Set object property to a new value.

int updateFromString(string snippet) Update a legend from a string snippet. Returns
MS_SUCCESS/MS_FAILURE.

lineObj

Constructor
new lineObj()

or using the old constructor

LineObj ms_newLineObj()

5.1. MapScript 263

MapServer Documentation, Release 6.4.1

Members Type Name Note
int numpoints read-only

Methods

int add(pointObj point) Add a point to the end of line. Returns MS_SUCCESS/MS_FAILURE.

int addXY(double x, double y [, double m]) Add a point to the end of line. Returns
MS_SUCCESS/MS_FAILURE.

Note: the 3rd parameter m is used for measured shape files only. It is not mandatory.

int addXYZ(double x, double y, double z [, double m]) Add a point to the end of line. Returns
MS_SUCCESS/MS_FAILURE.

Note: the 4th parameter m is used for measured shape files only. It is not mandatory.

PointObj point(int i) Returns a reference to point number i.

int project(projectionObj in, projectionObj out) Project the line from “in” projection (1st argument) to “out”
projection (2nd argument). Returns MS_SUCCESS/MS_FAILURE.

mapObj

Constructor
new mapObj(string map_file_name [, string new_map_path])

or using the old constructors

mapObj ms_newMapObj(string map_file_name [, string new_map_path]) Returns a new object to deal with
a MapServer map file.

mapObj ms_newMapObjFromString(string map_file_string [, string new_map_path]) Construct a new
mapObj from a mapfile string. Returns a new object to deal with a MapServer map file.

Note: By default, the SYMBOLSET, FONTSET, and other paths in the mapfile are relative to the mapfile
location. If new_map_path is provided then this directory will be used as the base path for all the rewlative paths
inside the mapfile.

Type Name Note
double cellsize
int debug
double defresolution pixels per inch, defaults to 72
rectObj extent;
string fontsetfilename read-only, set by setFontSet()
int height see setSize()
colorObj imagecolor
int keysizex
int keysizey
int keyspacingx
int keyspacingy
labelcacheObj labelcache no members. Used only to free the label cache (map->labelcache->free()
legendObj legend
string mappath

Continued on next page

264 Chapter 5. MapScript

MapServer Documentation, Release 6.4.1

Table 5.4 – continued from previous page
Type Name Note

int maxsize
hashTableObj metadata
string name
int numlayers read-only
outputformatObj outputformat
int numoutputformats read-only
projectionObj projection
querymapObj querymap
referenceMapObj reference
double resolution pixels per inch, defaults to 72
scalebarObj scalebar
double scaledenom read-only, set by drawMap()
string shapepath
int status
string symbolsetfilename read-only, set by setSymbolSet()
int units map units type
webObj web
int width see setSize()

Members

Methods

int applyconfigoptions() Applies the config options set in the map file. For example setting the PROJ_LIB using
the setconfigoption only modifies the value in the map object. applyconfigoptions will actually change the
PROJ_LIB value that will be used when dealing with projection.

int applySLD(string sldxml) Apply the SLD document to the map file. The matching between the sld document
and the map file will be done using the layer’s name. See SLD HowTo for more information on the SLD
support.

int applySLDURL(string sldurl) Apply the SLD document pointed by the URL to the map file. The matching
between the sld document and the map file will be done using the layer’s name. See SLD HowTo for more
information on the SLD support.

string convertToString() Saves the object to a string. Provides the inverse option for updateFromString.

imageObj draw() Render map and return an image object or NULL on error.

int drawLabelCache(imageObj image) Renders the labels for a map. Returns MS_SUCCESS or
MS_FAILURE on error.

imageObj drawLegend() Render legend and return an image object.

imageObj drawQuery() Render a query map and return an image object or NULL on error.

imageObj drawReferenceMap() Render reference map and return an image object.

imageObj drawScaleBar() Render scale bar and return an image object.

int embedLegend(imageObj image) embeds a legend. Actually the legend is just added to the label cache so
you must invoke drawLabelCache() to actually do the rendering (unless postlabelcache is set in which case
it is drawn right away). Returns MS_SUCCESS or MS_FAILURE on error.

int embedScalebar(imageObj image) embeds a scalebar. Actually the scalebar is just added to the label cache
so you must invoke drawLabelCache() to actually do the rendering (unless postlabelcache is set in which
case it is drawn right away). Returns MS_SUCCESS or MS_FAILURE on error.

void free() Free the object properties and break the internal references. Note that you have to unset the php
variable to free totally the resources.

5.1. MapScript 265

MapServer Documentation, Release 6.4.1

void freeQuery(layerindex) Frees the query result on a specified layer. If the layerindex is -1, all queries on
layers will be freed.

string generateSLD() Returns an SLD XML string based on all the classes found in all the layers that have
STATUS on.

array getAllGroupNames() Return an array containing all the group names used in the layers. If there are no
groups, it returns an empty array.

array getAllLayerNames() Return an array containing all the layer names. If there are no layers, it returns an
empty array.

colorObj getColorbyIndex(int iCloIndex) Returns a colorObj corresponding to the color index in the palette.

string getConfigOption(string key) Returns the config value associated with the key. Returns an empty sting if
key not found.

labelcacheMemberObj getLabel(int index) Returns a labelcacheMemberObj from the map given an index
value (0=first label). Labelcache has to be enabled.

while ($oLabelCacheMember = $oMap->getLabel($i)) {
/* do something with the labelcachemember */
++$i;

}

layerObj getLayer(int index) Returns a layerObj from the map given an index value (0=first layer)

layerObj getLayerByName(string layer_name) Returns a layerObj from the map given a layer name. Returns
NULL if layer doesn’t exist.

array getLayersDrawingOrder() Return an array containing layer’s index in the order which they are drawn. If
there are no layers, it returns an empty array.

array getLayersIndexByGroup(string groupname) Return an array containing all the layer’s indexes given a
group name. If there are no layers, it returns an empty array.

int getMetaData(string name) Fetch metadata entry by name (stored in the WEB object in the map file). Returns
“” if no entry matches the name.

Note: getMetaData’s query is case sensitive.

int getNumSymbols() Return the number of symbols in map.

string getProjection() Returns a string representation of the projection. Returns NULL on error or if no projec-
tion is set.

int getSymbolByName(string symbol_name) Returns the symbol index using the name.

symbol getSymbolObjectById(int symbolid) Returns the symbol object using a symbol id. Refer to the symbol
object reference section for more details.

int insertLayer(layerObj layer [, int nIndex=-1]) Insert a copy of layer into the Map at index nIndex. The
default value of nIndex is -1, which means the last possible index. Returns the index of the new Layer, or -1
in the case of a failure.

int loadMapContext(string filename [, boolean unique_layer_name]) Available only if WMS support is en-
abled. Load a WMS Map Context XML file into the current mapObj. If the map already contains some
layers then the layers defined in the WMS Map context document are added to the current map. The 2nd
argument unique_layer_name is optional and if set to MS_TRUE layers created will have a unique name
(unique prefix added to the name). If set to MS_FALSE the layer name will be the the same name as in the
context. The default value is MS_FALSE. Returns MS_SUCCESS/MS_FAILURE.

int loadOWSParameters(owsrequest request, string version) Load OWS request parameters (BBOX, LAY-
ERS, &c.) into map. Returns MS_SUCCESS or MS_FAILURE. 2nd argument version is not mandatory. If
not given, the version will be set to 1.1.1

266 Chapter 5. MapScript

MapServer Documentation, Release 6.4.1

int loadQuery(filename) Loads a query from a file. Returns MS_SUCESS or MS_FAILURE. To be used with
savequery.

int moveLayerDown(int layerindex) Move layer down in the hierarcy of drawing. Returns MS_SUCCESS or
MS_FAILURE on error.

int moveLayerUp(int layerindex) Move layer up in the hierarcy of drawing. Returns MS_SUCCESS or
MS_FAILURE on error.

int offsetExtent(double x, double y) Offset the map extent based on the given distances in map coordinates.
Returns MS_SUCCESS or MS_FAILURE.

int owsDispatch(owsrequest request) Processes and executes the passed OpenGIS Web Services request on the
map. Returns MS_DONE (2) if there is no valid OWS request in the req object, MS_SUCCESS (0) if
an OWS request was successfully processed and MS_FAILURE (1) if an OWS request was not success-
fully processed. OWS requests include WMS, WFS, WCS and SOS requests supported by MapServer.
Results of a dispatched request are written to stdout and can be captured using the msIO services (ie.
ms_ioinstallstdouttobuffer() and ms_iogetstdoutbufferstring())

imageObj prepareImage() Return a blank image object.

void prepareQuery() Calculate the scale of the map and set map->scaledenom.

string processLegendTemplate(array params) Process legend template files and return the result in a buffer.

See Also:

processtemplate

string processQueryTemplate(array params, boolean generateimages) Process query template files and re-
turn the result in a buffer. Second argument generateimages is not mandatory. If not given it will be set to
TRUE.

See Also:

processtemplate

string processTemplate(array params, boolean generateimages) Process the template file specified in the web
object and return the result in a buffer. The processing consists of opening the template file and replace all the
tags found in it. Only tags that have an equivalent element in the map object are replaced (ex [scaledenom]).
The are two exceptions to the previous statement :

• [img], [scalebar], [ref], [legend] would be replaced with the appropriate url if the parameter gener-
ateimages is set to MS_TRUE. (Note : the images corresponding to the different objects are generated
if the object is set to MS_ON in the map file)

• the user can use the params parameter to specify tags and their values. For example if the user have a
specific tag call [my_tag] and would like it to be replaced by “value_of_my_tag” he would do

$tmparray["my_tag"] = "value_of_my_tag";
$map->processtemplate($tmparray, MS_FALSE);

int queryByFeatures(int slayer) Perform a query based on a previous set of results from a layer. At present the
results MUST be based on a polygon layer. Returns MS_SUCCESS if shapes were found or MS_FAILURE
if nothing was found or if some other error happened (note that the error message in case nothing was found
can be avoided in PHP using the ‘@’ control operator).

int queryByIndex(layerindex, tileindex, shapeindex[, addtoquery]) Add a specific shape on a given layer to
the query result. If addtoquery (which is a non mandatory argument) is set to MS_TRUE, the shape will
be added to the existing query list. Default behavior is to free the existing query list and add only the new
shape.

int queryByPoint(pointObj point, int mode, double buffer) Query all selected layers in map at point location
specified in georeferenced map coordinates (i.e. not pixels). The query is performed on all the shapes
that are part of a CLASS that contains a Templating value or that match any class in a layer that contains
a LAYER TEMPLATE value. Mode is MS_SINGLE or MS_MULTIPLE depending on number of results
you want. Passing buffer -1 defaults to tolerances set in the map file (in pixels) but you can use a constant

5.1. MapScript 267

MapServer Documentation, Release 6.4.1

buffer (specified in ground units) instead. Returns MS_SUCCESS if shapes were found or MS_FAILURE
if nothing was found or if some other error happened (note that the error message in case nothing was found
can be avoided in PHP using the ‘@’ control operator).

int queryByRect(rectObj rect) Query all selected layers in map using a rectangle specified in georeferenced
map coordinates (i.e. not pixels). The query is performed on all the shapes that are part of a CLASS that
contains a Templating value or that match any class in a layer that contains a LAYER TEMPLATE value.
Returns MS_SUCCESS if shapes were found or MS_FAILURE if nothing was found or if some other error
happened (note that the error message in case nothing was found can be avoided in PHP using the ‘@’
control operator).

int queryByShape(shapeObj shape) Query all selected layers in map based on a single shape, the shape has to
be a polygon at this point. Returns MS_SUCCESS if shapes were found or MS_FAILURE if nothing was
found or if some other error happened (note that the error message in case nothing was found can be avoided
in PHP using the ‘@’ control operator).

layerObj removeLayer(int nIndex) Remove a layer from the mapObj. The argument is the index of the layer
to be removed. Returns the removed layerObj on success, else null.

int removeMetaData(string name) Remove a metadata entry for the map (stored in the WEB object in the map
file). Returns MS_SUCCESS/MS_FAILURE.

int save(string filename) Save current map object state to a file. Returns -1 on error. Use absolute path. If a
relative path is used, then it will be relative to the mapfile location.

int saveMapContext(string filename) Available only if WMS support is enabled. Save current map object state
in WMS Map Context format. Only WMS layers are saved in the WMS Map Context XML file. Returns
MS_SUCCESS/MS_FAILURE.

int saveQuery(string filename[, int results]) Save the current query in a file. Results determines the save format
- MS_TRUE (or 1/true) saves the query results (tile index and shape index), MS_FALSE (or 0/false) the
query parameters (and the query will be re-run in loadquery). Returns MS_SUCCESS or MS_FAILURE.
Either save format can be used with loadquery. See RFC 65 and ticket #3647 for details of different save
formats.

int scaleExtent(double zoomfactor, double minscaledenom, double maxscaledenom) Scale the map extent
using the zoomfactor and ensure the extent within the minscaledenom and maxscaledenom domain.
If minscaledenom and/or maxscaledenom is 0 then the parameter is not taken into account. Returns
MS_SUCCESS or MS_FAILURE.

int selectOutputFormat(string type) Selects the output format to be used in the map. Returns
MS_SUCCESS/MS_FAILURE.

Note: the type used should correspond to one of the output formats declared in the map file. The type
argument passed is compared with the mimetype parameter in the output format structure and then to the
name parameter in the structure.

int appendOutputFormat(outputFormatObj outputFormat) Appends outputformat object in the map object.
Returns the new numoutputformats value.

int removeOutputFormat(string name) Remove outputformat from the map. Returns
MS_SUCCESS/MS_FAILURE.

outputFormatObj getOutputFormat(int index) Returns the outputformat at index position.

int set(string property_name, new_value) Set map object property to new value.

int setCenter(pointObj center) Set the map center to the given map point. Returns MS_SUCCESS or
MS_FAILURE.

int setConfigOption(string key, string value) Sets a config parameter using the key and the value passed

void setExtent(double minx, double miny, double maxx, double maxy) Set the map extents using the georef
extents passed in argument. Returns MS_SUCCESS or MS_FAILURE on error.

268 Chapter 5. MapScript

MapServer Documentation, Release 6.4.1

int setFontSet(string fileName) Load and set a new FONTSET .

boolean setLayersDrawingOrder(array layeryindex) Set the layer’s order array. The argument passed must be
a valid array with all the layer’s index. Returns MS_SUCCESS or MS_FAILURE on error.

int setMetaData(string name, string value) Set a metadata entry for the map (stored in the WEB object in the
map file). Returns MS_SUCCESS/MS_FAILURE.

int setProjection(string proj_params, boolean bSetUnitsAndExtents) Set map projection and coordinate sys-
tem. Returns MS_SUCCESS or MS_FAILURE on error.

Parameters are given as a single string of comma-delimited PROJ.4 parameters. The argument : bSetUnit-
sAndExtents is used to automatically update the map units and extents based on the new projection. Possible
values are MS_TRUE and MS_FALSE. By defualt it is set at MS_FALSE.

int setRotation(double rotation_angle) Set map rotation angle. The map view rectangle (specified in EX-
TENTS) will be rotated by the indicated angle in the counter- clockwise direction. Note that this im-
plies the rendered map will be rotated by the angle in the clockwise direction. Returns MS_SUCCESS or
MS_FAILURE.

int setSize(int width, int height) Set the map width and height. This method updates the internal geotransform
and other data structures required for map rotation so it should be used instead of setting the width and
height members directly. Returns MS_SUCCESS or MS_FAILURE.

int setSymbolSet(string fileName) Load and set a symbol file dynamically.

int setWKTProjection(string proj_params, boolean bSetUnitsAndExtents) Same as setProjection(), but
takes an OGC WKT projection definition string as input. Returns MS_SUCCESS or MS_FAILURE on
error.

Note: setWKTProjection requires GDAL support

int zoomPoint(int nZoomFactor, pointObj oPixelPos, int nImageWidth, int nImageHeight, rectObj oGeorefExt)
Zoom to a given XY postion. Returns MS_SUCCESS or MS_FAILURE on error.

Parameters are

• Zoom factor : positive values do zoom in, negative values zoom out. Factor of 1 will recenter.

• Pixel position (pointObj) : x, y coordinates of the click, with (0,0) at the top-left

• Width : width in pixel of the current image.

• Height : Height in pixel of the current image.

• Georef extent (rectObj) : current georef extents.

• MaxGeoref extent (rectObj) : (optional) maximum georef extents. If provided then it will be impossi-
ble to zoom/pan outside of those extents.

int zoomRectangle(rectObj oPixelExt, int nImageWidth, int nImageHeight, rectObj oGeorefExt) Set the
map extents to a given extents. Returns MS_SUCCESS or MS_FAILURE on error.

Parameters are :

• oPixelExt (rect object) : Pixel Extents

• Width : width in pixel of the current image.

• Height : Height in pixel of the current image.

• Georef extent (rectObj) : current georef extents.

int zoomScale(double nScaleDenom, pointObj oPixelPos, int nImageWidth, int nImageHeight, rectObj oGeorefExt [, rectObj oMaxGeorefExt])
Zoom in or out to a given XY position so that the map is displayed at specified scale. Returns
MS_SUCCESS or MS_FAILURE on error.

Parameters are :

5.1. MapScript 269

MapServer Documentation, Release 6.4.1

• ScaleDenom : Scale denominator of the scale at which the map should be displayed.

• Pixel position (pointObj) : x, y coordinates of the click, with (0,0) at the top-left

• Width : width in pixel of the current image.

• Height : Height in pixel of the current image.

• Georef extent (rectObj) : current georef extents.

• MaxGeoref extent (rectObj) : (optional) maximum georef extents. If provided then it will be impossi-
ble to zoom/pan outside of those extents.

outputformatObj

Constructor Instance of outputformatObj is always embedded inside the mapObj. It is uses a read only.

No constructor available (coming soon, see ticket 979)

Members

Type Name Note
string driver
string extension
int imagemode MS_IMAGEMODE_* value.
string mimetype
string name
int renderer
int transparent

Methods

string getOption(string property_name) Returns the associated value for the format option property passed as
argument. Returns an empty string if property not found.

int set(string property_name, new_value) Set object property to a new value.

void setOption(string property_name, string new_value) Add or Modify the format option list. return true on
success.

$oMap->outputformat->setOption("OUTPUT_TYPE", "RASTER");

int validate() Checks some internal consistency issues, Returns MS_SUCCESS or MS_FAILURE. Some prob-
lems are fixed up internally. May produce debug output if issues encountered.

OwsrequestObj

Constructor
new OWSRequestObj()

or using the old constructor

request = ms_newOwsrequestObj();

Create a new ows request object.

Members
Type Name

int numparams (read-only)
int type (read-only): MS_GET_REQUEST or MS_POST_REQUEST

270 Chapter 5. MapScript

MapServer Documentation, Release 6.4.1

Methods

int addParameter(string name, string value) Add a request parameter, even if the parameter key was previ-
ousely set. This is useful when multiple parameters with the same key are required. For example :

$request->addparameter(’SIZE’, ’x(100)’);
$request->addparameter(’SIZE’, ’y(100)’);

string getName(int index) Return the name of the parameter at index in the request’s array of parameter names.

string getValue(int index) Return the value of the parameter at index in the request’s array of parameter values.

string getValueByName(string name) Return the value associated with the parameter name.

int loadParams() Initializes the OWSRequest object from the cgi environment variables REQUEST_METHOD,
QUERY_STRING and HTTP_COOKIE. Returns the number of name/value pairs collected.

int setParameter(string name, string value) Set a request parameter. For example :

$request->setparameter(’REQUEST’, ’GetMap’);

pointObj

Constructor
new pointObj()

or using the old constructor

PointObj ms_newPointObj()

Members

Type Name Note
double x
double y
double z used for 3d shape files. set to 0 for other types
double m used only for measured shape files - set to 0 for other types

Methods

double distanceToLine(pointObject p1, pointObject p2) Calculates distance between a point ad a lined defined
by the two points passed in argument.

double distanceToPoint(pointObj poPoint) Calculates distance between two points.

double distanceToShape(shapeObj shape) Calculates the minimum distance between a point and a shape.

int draw(mapObj map, layerObj layer, imageObj img, int class_index [, string text]) Draws the individual
point using layer. The class_index is used to classify the point based on the classes defined for the layer.
The text string is used to annotate the point. (Optional) Returns MS_SUCCESS/MS_FAILURE.

int project(projectionObj in, projectionObj out) Project the point from “in” projection (1st argument) to “out”
projection (2nd argument). Returns MS_SUCCESS/MS_FAILURE.

int setXY(double x, double y [, double m]) Set X,Y coordinate values.

Note: the 3rd parameter m is used for measured shape files only. It is not mandatory.

int setXYZ(double x, double y , double z, [, double m]) Set X,Y,Z coordinate values.

Note: the 4th parameter m is used for measured shape files only. It is not mandatory.

5.1. MapScript 271

MapServer Documentation, Release 6.4.1

projectionObj

Constructor
new projectionObj(string projectionString)

or using the old constructor

ProjectionObj ms_newProjectionObj(string projectionString)

Creates a projection object based on the projection string passed as argument.

$projInObj = ms_newprojectionobj("proj=latlong")

will create a geographic projection class.

The following example will convert a lat/long point to an LCC projection:

$projInObj = ms_newprojectionobj("proj=latlong");
$projOutObj = ms_newprojectionobj("proj=lcc,ellps=GRS80,lat_0=49,".

"lon_0=-95,lat_1=49,lat_2=77");
$poPoint = ms_newpointobj();
$poPoint->setXY(-92.0, 62.0);
$poPoint->project($projInObj, $projOutObj);

Methods

int getUnits() Returns the units of a projection object. Returns -1 on error.

querymapObj

Constructor Instances of querymapObj are always are always embedded inside the mapObj.

Members

Type Name Note
colorObj color
int height
int width
int style MS_NORMAL, MS_HILITE, MS_SELECTED

Methods

string convertToString() Saves the object to a string. Provides the inverse option for updateFromString.

void free() Free the object properties and break the internal references. Note that you have to unset the php
variable to free totally the resources.

int set(string property_name, new_value) Set object property to a new value.

int updateFromString(string snippet) Update a queryMap object from a string snippet. Returns
MS_SUCCESS/MS_FAILURE.

rectObj

Constructor rectObj are sometimes embedded inside other objects. New ones can also be created with:

new rectObj()

or using the old constructor

272 Chapter 5. MapScript

MapServer Documentation, Release 6.4.1

RectObj ms_newRectObj()

Note: the members (minx, miny, maxx ,maxy) are initialized to -1;

Members:

Type Name
double minx
double miny
double maxx
double maxy

Methods

int draw(mapObj map, layerObj layer, imageObj img, int class_index [, string text]) Draws the individual
rectangle using layer. The class_index is used to classify the rectangle based on the classes defined for the
layer. The text string is used to annotate the rectangle. (Optional) Returns MS_SUCCESS/MS_FAILURE.

double fit(int width, int height) Adjust extents of the rectangle to fit the width/height specified.

int project(projectionObj in, projectionObj out) Project the rectangle from “in” projection (1st argument) to
“out” projection (2nd argument). Returns MS_SUCCESS/MS_FAILURE.

int set(string property_name, new_value) Set object property to a new value.

void setextent(double minx, double miny, double maxx, double maxy) Set the rectangle extents.

referenceMapObj

Constructor Instances of referenceMapObj are always embedded inside the mapObj.

Members

Type Name
ColorObj color
int height
rectObj extent
string image
int marker
string markername
int markersize
int maxboxsize
int minboxsize
ColorObj outlinecolor
int status
int width

Methods

string convertToString() Saves the object to a string. Provides the inverse option for updateFromString.

void free() Free the object properties and break the internal references. Note that you have to unset the php
variable to free totally the resources.

int set(string property_name, new_value) Set object property to a new value.

int updateFromString(string snippet) Update a referenceMap object from a string snippet. Returns
MS_SUCCESS/MS_FAILURE.

resultObj

5.1. MapScript 273

MapServer Documentation, Release 6.4.1

Constructor
new resultObj(int shapeindex)

or using the layerObj‘s getResult() method.

Members

Type Name Note
int classindex read-only
int resultindex read-only
int shapeindex read-only
int tileindex read-only

Method None

scalebarObj

Constructor Instances of scalebarObj are always embedded inside the mapObj.

Members

Type Name Note
int align
colorObj backgroundcolor
colorObj color
int height
colorObj imagecolor
int intervals
labelObj label
colorObj outlinecolor
int position for embeded scalebars, MS_UL, MS_UC, ...
int postlabelcache
int status MS_ON, MS_OFF, MS_EMBED
int style
int units
int width

Methods

string convertToString() Saves the object to a string. Provides the inverse option for updateFromString.

void free() Free the object properties and break the internal references. Note that you have to unset the php
variable to free totally the resources.

int set(string property_name, new_value) Set object property to a new value.

int setImageColor(int red, int green, int blue) Sets the imagecolor propery (baclground) of the object. Returns
MS_SUCCESS or MS_FAILURE on error.

int updateFromString(string snippet) Update a scalebar from a string snippet. Returns
MS_SUCCESS/MS_FAILURE.

shapefileObj

Constructor
new shapeFileObj(string filename, int type)

or using the old constructor

274 Chapter 5. MapScript

MapServer Documentation, Release 6.4.1

shapefileObj ms_newShapefileObj(string filename, int type)

Opens a shapefile and returns a new object to deal with it. Filename should be passed with no extension.
To create a new file (or overwrite an existing one), type should be one of MS_SHP_POINT, MS_SHP_ARC,
MS_SHP_POLYGON or MS_SHP_MULTIPOINT. Pass type as -1 to open an existing file for read-only access,
and type=-2 to open an existing file for update (append).

Members

Type Name Note
rectObj bounds read-only
int numshapes read-only
string source read-only
int type read-only

Methods

int addPoint(pointObj point) Appends a point to an open shapefile.

int addShape(shapeObj shape) Appends a shape to an open shapefile.

void free() Free the object properties and break the internal references. Note that you have to unset the php
variable to free totally the resources.

Note: The shape file is closed (and changes committed) when the object is destroyed. You can explicitly
close and save the changes by calling $shapefile->free(); unset($shapefile), which will also free the php
object.

rectObj getExtent(int i) Retrieve a shape’s bounding box by index.

shapeObj getPoint(int i) Retrieve point by index.

shapeObj getShape(int i) Retrieve shape by index.

shapeObj getTransformed(mapObj map, int i) Retrieve shape by index.

shapeObj

Constructor
new shapeObj(int type)

or using the old constructor

ShapeObj ms_newShapeObj(int type)

‘type’ is one of MS_SHAPE_POINT, MS_SHAPE_LINE, MS_SHAPE_POLYGON or MS_SHAPE_NULL

ShapeObj ms_shapeObjFromWkt(string wkt)

Creates new shape object from WKT string.

5.1. MapScript 275

MapServer Documentation, Release 6.4.1

Members

Type Name Note
rectObj bounds read-only
int classindex
int index
int numlines read-only
int numvalues read-only
int tileindex read-only
string text
int type read-only
array values read-only

The values array is an associative array with the attribute values for this shape. It is set only on shapes obtained
from layer->getShape(). The key to the values in the array is the attribute name, e.g.

$population = $shape->values["Population"];

Methods

int add(lineObj line) Add a line (i.e. a part) to the shape.

shapeobj boundary() Returns the boundary of the shape. Only available if php/mapscript is built with GEOS
library.

shapeobj buffer(width) Returns a new buffered shapeObj based on the supplied distance (given in the coordi-
nates of the existing shapeObj). Only available if php/mapscript is built with GEOS library.

int containsShape(shapeobj shape2) Returns true if shape2 passed as argument is entirely within the shape.
Else return false. Only available if php/mapscript is built with GEOS library.

shapeobj convexhull() Returns a shape object representing the convex hull of shape. Only available if
php/mapscript is built with GEOS library.

boolean contains(pointObj point) Returns MS_TRUE if the point is inside the shape, MS_FALSE otherwise.

int crosses(shapeobj shape) Returns true if the shape passed as argument crosses the shape. Else return false.
Only available if php/mapscript is built with GEOS library.

shapeobj difference(shapeobj shape) Returns a shape object representing the difference of the shape object with
the one passed as parameter. Only available if php/mapscript is built with GEOS library.

int disjoint(shapeobj shape) Returns true if the shape passed as argument is disjoint to the shape. Else return
false. Only available if php/mapscript is built with GEOS library.

int draw(mapObj map, layerObj layer, imageObj img) Draws the individual shape using layer. Returns
MS_SUCCESS/MS_FAILURE.

int equals(shapeobj shape) Returns true if the shape passed as argument is equal to the shape (geometry only).
Else return false. Only available if php/mapscript is built with GEOS library.

void free() Free the object properties and break the internal references. Note that you have to unset the php
variable to free totally the resources.

double getArea() Returns the area of the shape (if applicable). Only available if php/mapscript is built with
GEOS library.

pointObj getCentroid() Returns a point object representing the centroid of the shape. Only available if
php/mapscript is built with GEOS library.

pointObj getLabelPoint() Returns a point object with coordinates suitable for labelling the shape.

double getLength() Returns the length (or perimeter) of the shape. Only available if php/mapscript is built with
GEOS library.

pointObj getMeasureUsingPoint(pointObject point) Apply only on Measured shape files. Given an XY Lo-
cation, find the nearest point on the shape object. Return a point object of this point with the m value
set.

276 Chapter 5. MapScript

MapServer Documentation, Release 6.4.1

pointObj getPointUsingMeasure(double m) Apply only on Measured shape files. Given a measure m, retun
the corresponding XY location on the shapeobject.

string getValue(layerObj layer, string filedname) Returns the value for a given field name.

shapeobj intersection(shapeobj shape) Returns a shape object representing the intersection of the shape object
with the one passed as parameter. Only available if php/mapscript is built with GEOS library.

boolean intersects(shapeObj shape) Returns MS_TRUE if the two shapes intersect, MS_FALSE otherwise.

LineObj line(int i) Returns a reference to line number i.

int overlaps(shapeobj shape) Returns true if the shape passed as argument overlaps the shape. Else returns false.
Only available if php/mapscript is built with GEOS library.

int project(projectionObj in, projectionObj out) Project the shape from “in” projection (1st argument) to “out”
projection (2nd argument). Returns MS_SUCCESS/MS_FAILURE.

int set(string property_name, new_value) Set object property to a new value.

int setBounds() Updates the bounds property of the shape. Must be called to calculate new bounding box after
new parts have been added.

shapeObj simplify(double tolerance) Given a tolerance, returns a simplified shape object or NULL on error.
Only available if php/mapscript is built with GEOS library (>=3.0).

shapeobj symdifference(shapeobj shape) Returns the computed symmetric difference of the supplied and ex-
isting shape. Only available if php/mapscript is built with GEOS library.

shapeObj topologySimplifyPreservingSimplify(double tolerance) Given a tolerance, returns a simplified
shape object or NULL on error. Only available if php/mapscript is built with GEOS library (>=3.0).

int touches(shapeobj shape) Returns true if the shape passed as argument touches the shape. Else return false.
Only available if php/mapscript is built with GEOS library.

string toWkt() Returns WKT representation of the shape’s geometry.

shapeobj union(shapeobj shape) Returns a shape object representing the union of the shape object with the one
passed as parameter. Only available if php/mapscript is built with GEOS library

int within(shapeobj shape2) Returns true if the shape is entirely within the shape2 passed as argument. Else
returns false. Only available if php/mapscript is built with GEOS library.

styleObj

Constructor Instances of styleObj are always embedded inside a classObj or labelObj.

new styleObj(classObj class [, styleObj style])
// or
new styleObj(labelObj label [, styleObj style])

or using the old constructor (do not support a labelObj at first argument)

styleObj ms_newStyleObj(classObj class [, styleObj style])

The second argument ‘style’ is optional. If given, the new style created will be a copy of the style passed as
argument.

5.1. MapScript 277

MapServer Documentation, Release 6.4.1

Members

Type Name Note
double angle
int antialias
colorObj backgroundcolor
colorObj color
double maxsize
double maxvalue
double maxwidth
double minsize
double minvalue
double minwidth
int offsetx
int offsety
int opacity only supported for the AGG driver
colorObj outlinecolor
string rangeitem
double size
int symbol
string symbolname
double width

Methods

string convertToString() Saves the object to a string. Provides the inverse option for updateFromString.

void free() Free the object properties and break the internal references. Note that you have to unset the php
variable to free totally the resources.

string getBinding(const stylebinding) Get the attribute binding for a specfiled style property. Returns NULL if
there is no binding for this property.

$oStyle->setbinding(MS_STYLE_BINDING_COLOR, "FIELD_NAME_COLOR");
echo $oStyle->getbinding(MS_STYLE_BINDING_COLOR); // FIELD_NAME_COLOR

string getGeomTransform()

int removeBinding(const stylebinding) Remove the attribute binding for a specfiled style property. Added in
MapServer 5.0.

$oStyle->removebinding(MS_STYLE_BINDING_COLOR);

int set(string property_name, new_value) Set object property to a new value.

int setBinding(const stylebinding, string value) Set the attribute binding for a specfiled style property. Added
in MapServer 5.0.

$oStyle->setbinding(MS_STYLE_BINDING_COLOR, "FIELD_NAME_COLOR");

This would bind the color parameter with the data (ie will extract the value of the color from the field called
“FIELD_NAME_COLOR”

int setGeomTransform(string value)

int updateFromString(string snippet) Update a style from a string snippet. Returns
MS_SUCCESS/MS_FAILURE.

symbolObj

Constructor
new symbolObj(mapObj map, string symbolname)

278 Chapter 5. MapScript

MapServer Documentation, Release 6.4.1

or using the old constructor

int ms_newSymbolObj(mapObj map, string symbolname)

Creates a new symbol with default values in the symbolist.

Note: Using the new constructor, the symbol is automatically returned. The old constructor returns the id of the
new symbol.

If a symbol with the same name exists, it (or its id) will be returned. To get a symbol object using the old
constructor, you need to use a method on the map object:

$nId = ms_newSymbolObj($map, "symbol-test");
$oSymbol = $map->getSymbolObjectById($nId);

Members

Type Name Note
int antialias
string character
int filled
string font
string imagepath read-only
int inmapfile If set to TRUE, the symbol will be saved inside the mapfile.
int patternlength read-only
int position
string name
int numpoints read-only
double sizex
double sizey
int transparent
int transparentcolor

Methods

void free() Free the object properties and break the internal references. Note that you have to unset the php
variable to free totally the resources.

array getPatternArray() Returns an array containing the pattern. If there is no pattern, it returns an empty array.

array getPointsArray() Returns an array containing the points of the symbol. Refer to setpoints to see how the
array should be interpreted. If there are no points, it returns an empty array.

int set(string property_name, new_value) Set object property to a new value.

int setImagePath(char filename) Loads a pixmap symbol specified by the filename. The file should be of either
Gif or Png format.

int setPattern(array int) Set the pattern of the symbol (used for dash patterns). Returns
MS_SUCCESS/MS_FAILURE.

int setPoints(array double) Set the points of the symbol. Note that the values passed is an array containing the
x and y values of the points. Returns MS_SUCCESS/MS_FAILURE. Example:

$array[0] = 1 # x value of the first point
$array[1] = 0 # y values of the first point
$array[2] = 1 # x value of the 2nd point
....

Example of usage

1. create a symbol to be used as a dash line

5.1. MapScript 279

MapServer Documentation, Release 6.4.1

$nId = ms_newsymbolobj($gpoMap, "mydash");
$oSymbol = $gpoMap->getsymbolobjectbyid($nId);
$oSymbol->set("filled", MS_TRUE);
$oSymbol->set("sizex", 1);
$oSymbol->set("sizey", 1);
$oSymbol->set("inmapfile", MS_TRUE);

$aPoints[0] = 1;
$aPoints[1] = 1;
$oSymbol->setpoints($aPoints);

$aPattern[0] = 10;
$aPattern[1] = 5;
$aPattern[2] = 5;
$aPattern[3] = 10;
$oSymbol->setpattern($aPattern);

$style->set("symbolname", "mydash");

2. Create a TrueType symbol

$nId = ms_newSymbolObj($gpoMap, "ttfSymbol");
$oSymbol = $gpoMap->getSymbolObjectById($nId);
$oSymbol->set("type", MS_SYMBOL_TRUETYPE);
$oSymbol->set("filled", true);
$oSymbol->set("character", "D");

$oSymbol->set("font", "ttfFontName");

webObj

Constructor Instances of webObj are always are always embedded inside the mapObj.

Members

Type Name Note
string browseformat
string empty read-only
string error read-only
rectObj extent read-only
string footer
string header
string imagepath
string imageurl
string legendformat
string log
double maxscaledenom
string maxtemplate
hashTableObj metadata
double minscaledenom
string mintemplate
string queryformat
string template
string temppath

Methods

string convertToString() Saves the object to a string. Provides the inverse option for updateFromString.

void free() Free the object properties and break the internal references. Note that you have to unset the php
variable to free totally the resources.

280 Chapter 5. MapScript

MapServer Documentation, Release 6.4.1

int set(string property_name, new_value) Set object property to a new value.

int updateFromString(string snippet) Update a web object from a string snippet. Returns
MS_SUCCESS/MS_FAILURE.

PHP MapScript Migration Guide

Author Alan Boudreault

Contact aboudreault at mapgears.com

Revision $Revision: 10033 $

Date $Date: 2010-03-30 15:58:30 -0400 (Tue, 30 Mar 2010) $

Table of Contents

• PHP MapScript Migration Guide
– Introduction
– Migrating 5.6 to 6.0

* PHP Version Required
* Error Reporting
* Manipulating Objects
* Class Properties
* Class Methods
* layerObj
* mapObj
* referenceMapObj
* shapeFileObj
* labelCacheObj
* Methods that now return MS_SUCCESS/MS_FAILURE
* Methods that now return NULL on failure
* Methods that now return an empty array

Introduction

This document describes the changes that must be made to PHP MapScript applications when migrating from
one MapServer version to another (i.e. backwards incompatibilities), as well as information on some of the new
features.

Migrating 5.6 to 6.0

PHP Version Required PHP 5.2.0 or more recent is required. The support for earlier versions has been dropped.

Error Reporting PHP MapScript now uses exceptions for error reports. All errors are catchable. There are no
more fatal errors reported via the standard uncatchable PHP system (Only Warnings).

Manipulating Objects

• Object properties can be set like all other PHP objects.

$map->scaledenom = 25000;

Note: The set/setProperty methods are still available.

5.1. MapScript 281

MapServer Documentation, Release 6.4.1

• Objects can be created with the PHP “new” operator.

$myShape = ms_newShapeObj(MS_SHAPE_LINE); // or
$myShape = new shapeObj(MS_SHAPE_LINE);

Note: All object constructors throw an exception on failure.

Note: ms_newSymbolObj() and new symbolObj() are different

• ms_newSymbolObj() returns the id of the new/existing symbol.

• new symbolObj() returns the symbolObj. You don’t need to get it with getSymbolObjectById().

• Cloneable objects should be cloned with the PHP clone keyword. There is no more clone methods.

Class Properties Class properties that have been removed:

• classObj: maxscale, minscale

• layerObj: labelsizeitem, labelangleitem, labelmaxscale, labelminscale, maxscale, minscale, symbolscale,
transparency

• legendObj: interlace, transparent

• mapObj: imagetype, imagequality, interlace, scale, transparent

• scalebarObj: interlace, transparent

• symbolObj: gap, stylelength

• webObj: minscale, maxscale

Class Methods Class methods that have been removed:

• imageObj: free

• layerObj: getFilter, getShape

• lineObj: free

• pointObj: free

• projectionObj: free

• rectObj: free

• shapeObj: union_geos

• symbolObj: getstylearray

• classObj: clone

• styleObj: clone

• mapObj: clone

• outputFormatObj: getformatoption, setformatoption

layerObj layerObj->clearProcessing() method now returns void.

mapObj mapObj->queryByIndex(): default behavior for the addToQuery parameter was not ok, now it is.

referenceMapObj referenceMapObj has new properties: marker, markername, markersize, maxboxsize, min-
boxsize.

282 Chapter 5. MapScript

MapServer Documentation, Release 6.4.1

shapeFileObj shapeFileObj is automatically closed/writed on destroy. (At the end of the script or with an
explicit free(), unset())

labelCacheObj To free the cache, you’ll have to call the method freeCache() rather than free().

Methods that now return MS_SUCCESS/MS_FAILURE

• layerObj: setProcessing, addFeature, draw

• mapObj: moveLayerUp, moveLayerDown, zoomRectangle, zoomScale, setProjection, setWKTProjection,
setLayersDrawingOrder

• outputFormatObj: validate

• scalebarObj: setImageColor

• symbolObj: setPoints, setPattern

Methods that now return NULL on failure

• classObj: clone

• mapObj: clone, draw, drawQuery getLayerByName, getProjection

• layerObj: nextShape, getExtent

• styleObj: clone

Methods that now return an empty array

• layerObj: getItems, getProcessing, getGridIntersectionCoordinates

• mapObj: getLayersIndexByGroup, getAllGroupNames, getLayersDrawingOrder, getAllLayerNames

• symbolObj: getPatternArray

By Example

Author Vinko Vrsalovic

Contact el at vinko.cl

Revision $Revision$

Date $Date$

Last Updated 2005/12/12

Contents

• By Example
– Introduction
– MapScript overview
– Our first application
– Conclusions

5.1. MapScript 283

MapServer Documentation, Release 6.4.1

Introduction

The purpose of this document is to be a step by step explanation of the PHP MapScript API with practical examples
for each of them. It is assumed a basic knowledge of MAP and MapServer, and familiarity with the PHP (scripting)
and HTML (markup) languages . This document was originally created for MapServer v4.0, but the examples still
apply to more recent versions.

Let’s Begin...

Hello, kind reader. I am Tut, thank you for downloading me. I am sorry, but I am just a technical manual so I
cannot answer any questions. The maintainer, a handsome, very nice and lazy guy according to what I saw from
the other side of the screen, maybe will be able to answer your question(s). I am currently here to tell you about
MapScript in its PHP incarnation. At my current age, I will be more useful to beginners than advanced users, even
though I hope that some day I will be sufficiently old to be useful to advanced MapScript programmers.

Let’s hope I live long enough... sigh.

But enough with my personal problems, let myself begin. My duty is to familiarize you with MapScript, and in
particular with PHP MapScript. When I end, you are expected to understand what MapScript is, and to be able to
write applications to display and navigate that is, zooming and panning over shapefiles via a web browser.

What follows are the questions you must answer affirmatively before accompanying me through the rest of this
journey (I apologize for my maintainer’s lack of literary taste).

Do you have running somewhere...

• a web server capable of running PHP as a CGI (Apache will do)?

• the PHP language configured as a CGI, version 4.1.2 or higher? I recommend 4.3 onwards.

• PHP MapScript, version 4.0 or later? PHP MapScript Installation

Can you...

• code PHP or are willing to learn how to?

• write and understand HTML documents? (Note that Javascript is a plus)

• tell somebody what on earth is a shapefile [or a PostGIS table]?

Outline of this Document

• A general overview of MapScript, in a language independent way

• A trivial example

• A simple example

• Conclusion

You can also go to each part directly through my table of contents located at the top, if you wish to skip some
sections.

MapScript overview

Ok, now I’m at last arriving at a point I will enjoy. This overview intends to clear some common misconceptions
beginners encounter when first facing MapScript and to give a general overview about MapScript’s internals. For
now, just look at the following diagram (I apologize again for the maintainer’s lack of graphic design taste).

284 Chapter 5. MapScript

http://www.php.net
http://www.w3.org/MarkUp/
http://php.net/tut.php
http://www.w3.org/MarkUp/
http://shapelib.maptools.org/
http://postgis.refractions.net/

MapServer Documentation, Release 6.4.1

It all starts as everything on the Web. A browser requests a certain URL through HTTP. The request arrives at the
web server, which, in turn, delivers a file or executes a program and then delivers its output back to the browser.
Yes, I know you knew that, but I have been told to be as complete as possible, and I will try to.

In MapScript’s case, the server executes a certain script, which contains standard language functionality, that
is, the same functionality you would have in that language without MapScript, plus access to almost all of the
MapServer C API, the level of completeness of MapServer API support varies a bit with the language you choose,
but I think it is my duty to tell you almost every available flavor of MapScript is usable. This API, exposed now
in your scripting language through the MapScript module, allows you to do many GIS-like operations on spatial
data, including read-write access to shapefiles, reprojection of data, and many others. For more information on
the API, click over the link above. For other flavors, you can check their own documentation, you will see there is
not much difference.

The CGI version of MapServer is not required to run MapScript applications, just as you don’t need a particular
MapScript module to run the CGI. The CGI version has many features out-of-the-box, MapScript is just an API,
so with MapScript you must start from scratch or with some of the examples available. Think of the CGI as of
a MapScript application written directly in C, with direct access to the MapServer C API. Sometimes the out-of-
the-box functionality has some limits which can be surpassed by MapScript, but not embedded within the CGI.
In other words, the CGI is not scriptable, but you can program all the CGI and more with MapScript. This may
seem a strange thing to clarify, but is a common misconception, just check the list archives if you are not inclined
to believe me.

As with MapServer itself, MapScript can be configured using only map files, but, unlike the CGI, also includes
the possibility of dynamically create maps or modify existing ones and to (and here is the key to the flexibility
that MapScript has) mix this information with other sources of non GIS data, such as user input, non spatial and

5.1. MapScript 285

http://lists.osgeo.org/pipermail/mapserver-users/

MapServer Documentation, Release 6.4.1

spatial databases, text files, etc. and that you can use every single module your language provides. The power of
this approach is tremendous, and the most restrictive limit is your imagination. As always, flexibility comes with
a price, performance. It’s generally slower to use a scripting language instead of C, but nowadays this shouldn’t
be a big worry. And you can still program directly in C (there are not much documents about how to do it, though
you might want to check the mapserver-dev list) if you would like to.

The input and output formats MapScript can handle are exactly the same as the ones configured when you build
MapServer/MapScript. But one of the most important things to remember is that, basically, you feed geographic
data and relevant user input (for instance clicks over the map image) to MapScript and as a result get one or more
file(s), typically standard image files such as a PNG or JPEG. So you can apply anything you’ve seen in any server
side scripted web application, DHTML, Java applets, CSS, HTML templates, sessions, you name it.

Our first application

In this first example, I will tell you how to display a shapefile on a web page using a map file.

The Map File Here’s the map file:

1 NAME "Europe in purple"
2 SIZE 400 400
3 STATUS ON
4 SYMBOLSET "/var/www/html/maps/symbols/symbols.sym"
5 EXTENT -5696501 1923039 5696501 11022882
6 UNITS METERS
7 SHAPEPATH "/var/www/html/maps/data"
8

9 WEB
10 IMAGEPATH "/var/www/html/maps/tmp/"
11 IMAGEURL "/tmp/"
12 END
13

14 LAYER
15 NAME "Europe"
16 TYPE POLYGON
17 STATUS ON
18 DATA "europe"
19 CLASS
20 STYLE
21 COLOR 110 50 100
22 OUTLINECOLOR 200 200 200
23 SYMBOL 0
24 END
25 END
26 END
27

28 END

Here I have shown a map with a single layer, where the europe.shp, europe.shx and europe.dbf files must be
located in the subdirectory called data. The symbols are located in the symbols subdirectory. All this locations are
relative from the place the map file is, but better safe than sorry, I guess. The web section is used to define where
will the images be saved and in what URL will they be available.

Displaying the map with MapScript To display a map the following MapScript objects and methods will be
used:

• MapObj object

• imageObj object

MapObj methods:

286 Chapter 5. MapScript

http://lists.osgeo.org/mailman/listinfo/mapserver-dev/

MapServer Documentation, Release 6.4.1

• The constructor method: MapObj ms_newMapObj(string map_file_name[,string new_map_path])

• The draw method: imageObj draw()

imageObj methods:

• The saveWebImage method: string saveWebImage()

The code looks like this:

1 <?php
2

3 dl(’php_mapscript.so’);
4

5 $map_path="/var/www/html/ms/map_files/";
6

7 $map = ms_newMapObj($map_path."europe.map");
8 $image=$map->draw();
9 $image_url=$image->saveWebImage();

10

11 ?>
12

13 <HTML>
14 <HEAD>
15 <TITLE>Example 1: Displaying a map</TITLE>
16 </HEAD>
17 <BODY>
18 <IMG SRC=<?php echo $image_url; ?> >
19 </BODY>
20 </HTML>

The code I will present through the rest of this document will follow the following rule:

• Every non empty line is numbered

This code will render an image corresponding to the shapefile europe and display it on a HTML page.

Code Explanation

• In line 2 it is loaded the MapScript extension (you may not need it if your php.ini file is configured to
automatically load it).

• Line 3 declares a variable that holds the absolute path for the mapfile.

• Line 4 creates an instance of the MapObj object using the constructor. As you can see, the constructor
receives the location of the map file as its only required parameter, and the map file received the europe.map
name.

• Afterwards the draw method of the map object is called to render the image defined by the map file (line 5).
The result (an imageObj) is saved in the $image variable.

• Line 6 calls the saveWebImage method to generate the image file, it returns a string which represents the
URL as defined in the mapfile (in this case, /tmp/filename.png).

• The rest of the lines are pure HTML, except line 13, that defines the source URL of the image will be the
value stored in $image_url.

You should test the application on your system, to check that it really works and to solve the problems that may
arise on your particular configuration before moving on to the more complex examples.

Output The output (using the europe shapefile) should look like this:

5.1. MapScript 287

MapServer Documentation, Release 6.4.1

Zooming and Panning Now I will tell you how to add zoom and pan capabilities to the code.

Here goes the list of new methods and objects called.

New Objects:

• pointObj

• rectObj

New Methods and Members called:

• The zoompoint method of the map object: void zoompoint(int nZoomFactor, pointObj oPixelPos, int nIm-
ageWidth, int nImageHeight, rectObj oGeorefExt).

• The setextent method of the map object: $map->setextent(double minx, double miny, double maxx, double
maxy);.

• The extent, width and height members of the map object.

• The constructors of RectObj and PointObj: $point = ms_newPointObj(); $rect = ms_newRectObj();

• The setXY method of the point object: $point->setXY(double x_coord, double y_coord);

• The setextent method of the rectangle object: $rect->setextent(double minx, double miny, double maxx,
double maxy);

The .map file remains the same as the one presented in the previous example.

288 Chapter 5. MapScript

MapServer Documentation, Release 6.4.1

PHP/MapScript Code Here I present the new code.

1 <?php
2

3 dl(’php_mapscript.so’);
4

5 // Default values and configuration
6

7 $val_zsize=3;
8 $check_pan="CHECKED";
9 $map_path="/var/www/html/ms/map_files/";

10 $map_file="europe.map";
11

12 $map = ms_newMapObj($map_path.$map_file);
13

14

15 if (isset($_POST["mapa_x"]) && isset($_POST["mapa_y"])
16 && !isset($_POST["full"])) {
17

18 $extent_to_set = explode(" ",$_POST["extent"]);
19

20 $map->setextent($extent_to_set[0],$extent_to_set[1],
21 $extent_to_set[2],$extent_to_set[3]);
22

23 $my_point = ms_newpointObj();
24 $my_point->setXY($_POST["mapa_x"],$_POST["mapa_y"]);
25

26 $my_extent = ms_newrectObj();
27

28 $my_extent->setextent($extent_to_set[0],$extent_to_set[1],
29 $extent_to_set[2],$extent_to_set[3]);
30

31 $zoom_factor = $_POST["zoom"]*$_POST["zsize"];
32 if ($zoom_factor == 0) {
33 $zoom_factor = 1;
34 $check_pan = "CHECKED";
35 $check_zout = "";
36 $check_zin = "";
37 } else if ($zoom_factor < 0) {
38 $check_pan = "";
39 $check_zout = "CHECKED";
40 $check_zin = "";
41 } else {
42 $check_pan = "";
43 $check_zout = "";
44 $check_zin = "CHECKED";
45 }
46

47 $val_zsize = abs($zoom_factor);
48

49 $map->zoompoint($zoom_factor,$my_point,$map->width,$map->height,
50 $my_extent);
51

52 }
53

54

55 $image=$map->draw();
56 $image_url=$image->saveWebImage();
57

58 $extent_to_html = $map->extent->minx." ".$map->extent->miny." "
59 .$map->extent->maxx." ".$map->extent->maxy;
60

61 ?>

5.1. MapScript 289

MapServer Documentation, Release 6.4.1

62 <HTML>
63 <HEAD>
64 <TITLE>Map 2</TITLE>
65 </HEAD>
66 <BODY>
67 <CENTER>
68 <FORM METHOD=POST ACTION=<?php echo $HTTP_SERVER_VARS[’PHP_SELF’]?>>
69 <TABLE>
70 <TR>
71 <TD>
72 <INPUT TYPE=IMAGE NAME="mapa" SRC="<?php echo $image_url?>">
73 </TD>
74 </TR>
75 <TR>
76 <TD>
77 Pan
78 </TD>
79 <TD>
80 <INPUT TYPE=RADIO NAME="zoom" VALUE=0 <?php echo $check_pan?>>
81 </TD>
82 </TR>
83 <TR>
84 <TD>
85 Zoom In
86 </TD>
87 <TD>
88 <INPUT TYPE=RADIO NAME="zoom" VALUE=1 <?php echo $check_zin?>>
89 </TD>
90 </TR>
91 <TR>
92 <TD>
93 Zoom Out
94 </TD>
95 <TD>
96 <INPUT TYPE=RADIO NAME="zoom" VALUE=-1 <?php echo $check_zout?>>
97 </TD>
98 </TR>
99 <TR>

100 <TD>
101 Zoom Size
102 </TD>
103 <TD>
104 <INPUT TYPE=TEXT NAME="zsize" VALUE="<?php echo $val_zsize?>"
105 SIZE=2>
106 </TD>
107 </TR>
108 <TR>
109 <TD>
110 Full Extent
111 </TD>
112 <TD>
113 <INPUT TYPE=SUBMIT NAME="full" VALUE="Go"
114 SIZE=2>
115 </TD>
116 </TABLE>
117 <INPUT TYPE=HIDDEN NAME="extent" VALUE="<?php echo $extent_to_html?>">
118 </FORM>
119 </CENTER>
120 </BODY>
121 </HMTL>

This code will zoom out, zoom in, pan, and restore to full extent the image displayed in the previous example.

290 Chapter 5. MapScript

MapServer Documentation, Release 6.4.1

It looks much more complicated than it really is, much of the lines are the HTML code, and much of the remaining
PHP code is just to deal with the forms and such.

You should try it and look at how it works first. Try it in your own server by copying and pasting the code.

Now it’s time for you to play with it a little and look at the source in your browser to check how it changes.

Done?, now let’s start the explanation with the HTML part.

Code Explanation - HTML Line 49 declares a form, and line 53 declares the image generated by MapScript
to be part of that form, so when you click on it, the X and Y coordinates of the click (in pixels) will be sent along
with the other data for the PHP code to process.

If you are familiar with HTML and PHP, the rest of the HTML code should be straightforward for you to under-
stand with the exception of line 98, that will be explained in due time.

Code Explanation - PHP Now look at the PHP code, it’s almost the same code used in example 1, with the
addition of lines 9 to 37. What do these lines do?

Line 9 checks the relevant variables from the form have been setted. ‘mapa_x’ and ‘mapa_y’ represent the X and
Y coordinates of the click over the image, and ‘full’ represents the click on the ‘Full Extent’ button.

The first time the page is displayed the code between the if statement doesn’t get executed, but the rest of the
code does. Lines 40 and 41 set the ‘$extent_to_html’ variable with the values of the extent defined in the map file
separated by spaces; that value will be put in the HTML variable ‘extent’ in line 98.

Now look at line 11 and 12. We are inside the if statement, that means the form has been submitted at least once.
We grab the extent stored in the previous execution (the ‘extent’ HTML variable) of the code and set the extent of
the map to be that last extent. This allows to zoom or pan with respect of the previous extent, not the extent that is
set in the map file.

From that last paragraph you can deduce that all the default values are set in the map file, and anything that you
change through MapScript and would like to remain in your code, must be stored somehow. In this case it is done
through hidden variables in a form. For more advanced applications you could use session variables or a database.

Now you should be able to see why the ‘Full Extent’ button works. If you check line 10, it says that if you haven’t
pressed the button, skip the code in the if statement, so the extent is reset to the value that the map file has. You
should also see that it isn’t necessarily a full extent (in case the extent in the map file is not full extent).

Lines 14 and 15 declare a new point object and initialize it with the values the user clicked on. You should not
forget that those values are in pixels, not in georeferenced coordinates.

Lines 16 through 18 create a new rectangle object and set it with the extent of the previous image, just like it is
done on line 12. In fact this would work too: $my_extent = $map->extent;.

To do all the zooming and panning, the zoompoint function in called on line 35, but first the arguments it receives
must be prepared. You can determine the point the user clicked on, and the extent of the image ($my_point and
$my_extent, respectively), but now you have to determine the zoom factor. That’s what lines 19 to 33 do. If you
wondered why the values of the radio buttons where 0, -1, and 1 for pan, zoom in and zoom out, now you will
know the reason.

A zoom factor of 1 tells zoompoint that the operation is pan, a negative value indicates zoom out and a positive
value indicates zoom in. So, by means of multiplying the value received for the radio buttons (HTML variable
‘zoom’) by the size of the zoom the user entered the zoom factor is calculated. If that value is 0, that means the
user selected the pan operation, so ‘$zoom_factor’ is set to 1, otherwise the result of the multiplication is the zoom
factor zoompoint needs to receive. The other lines are to preserve the button the user clicked on the next time.
Line 34 tries to preserve the value of the zoom size the user entered (It doesn’t do that all the time, when and why
that line fails? That’s for you to find out).

And finally, line 34 calls the zoompoint method with the zoom factor obtained, the point built from the pixel
coordinates (I insist on that issue because zoompoint is almost the only method that receives the coordinates in
pixels, for the other methods you must convert pixels to georeferenced coordinates on your own), the height and
width of the image, and the extent.

5.1. MapScript 291

MapServer Documentation, Release 6.4.1

After calling zoompoint, the extent of the image is changed accordingly to the operation performed (or, better put,
the zoom factor). So then the image is drawn and the current extent saved (after the zooming) for use in the next
iteration.

Conclusions

Well, it’s time for me to go recharge my batteries. So I will use this last energy to share some final words. The
examples I have managed to present here are very basic but you should now be able to devise ways to improve
them and suit things to your needs. Keep in mind that you can preprocess, store, read, write data from any source
you can usually read through PHP, plus all the sources MapServer can handle for GIS data. You can even process
some GIS data with PHP only if the need would arise (SQL sources are a good example of this). You can also do
hybrid approaches where some script prepares data which is then shown through the CGI interface to MapServer,
or create data on the fly based on input from a GPS, etc, etc. The possibilities are just too many to enumerate
completely. As I already said your imagination is the limit. The next version of this document will include
examples that include more than one layer, with different datasources (not just shapefiles) and creation of dynamic
layers and classes. If you have a better idea or would like to see some other thing here first, please drop a note to
my maintainer.

In the meantime, if you need bigger examples you can refer to the GMap demo (you can download the source
here or as an MS4W packaged application), or the MapTools site (MapLab, Chameleon). Goodbye, and thanks
for reading this far.

5.1.4 Python MapScript Appendix

Author Sean Gillies

Revision $Revision$

Date $Date$

Contents

• Python MapScript Appendix
– Introduction
– Classes
– Exception Handling

Introduction

The Python MapScript module contains some class extension methods that have not yet been implemented for
other languages.

Classes

References to sections below will be added here as the documentation grows.

imageObj

The Python Imaging Library, http://www.pythonware.com/products/pil/, is an indispensible tool for image manip-
ulation. The extensions to imageObj are all geared towards better integration of PIL in MapScript applications.

292 Chapter 5. MapScript

http://www.mapsherpa.com/gmap/
http://dl.maptools.org/dl/
http://www.maptools.org/ms4w/index.phtml?page=downloads.html
http://www.maptools.org/
http://www.pythonware.com/products/pil/

MapServer Documentation, Release 6.4.1

imageObj Methods

imageObj(PyObject arg1, PyObject arg2 [, PyObject arg3]) [imageObj] Create a new instance which is ei-
ther empty or read from a Python file-like object that refers to a GD format image.

The constructor has 2 different modes. In the blank image mode, arg1 and arg2 should be the desired width
and height in pixels, and the optional arg3 should be either an instance of outputFormatObj or a GD driver
name as a shortcut to a format. In the image file mode, arg1 should be a filename or a Python file or file-like
object. If the file-like object does not have a “seek” attribute (such as a urllib resource handle), then a GD
driver name must be provided as arg2.

Here’s an example of creating a 320 pixel wide by 240 pixel high JPEG using the constructor’s blank image
mode:

image = mapscript.imageObj(320, 240, ’GD/JPEG’)

In image file mode, interesting values of arg1 to try are instances of StringIO:

s = StringIO()
pil_image.save(s) # Save an image manipulated with PIL
ms_image = imageObj(s)

Or the file-like object returned from urlopen

url = urllib.urlopen(’http://mapserver.gis.umn.edu/bugs/ant.jpg’)
ms_image = imageObj(url, ’GD/JPEG’)

write([PyObject file]) [void] Write image data to a Python file-like object. Default is stdout.

pointObj

pointObj Methods

__str__() [string] Return a string formatted like

{ ’x’: %f , ’y’: %f }

with the coordinate values substituted appropriately. Usage example:

>>> p = mapscript.pointObj(1, 1)
>>> str(p)
{ ’x’: 1.000000 , ’y’: 1.000000 }

Note that the return value can be conveniently eval’d into a Python dictionary:

>>> p_dict = eval(str(p))
>>> p_dict[’x’]
1.000000

rectObj

rectObj Methods

__contains__(pointObj point) [boolean] Returns True if point is inside the rectangle, otherwise returns False.

>>> r = mapscript.rectObj(0, 0, 1, 1)
>>> p = mapscript.pointObj(2, 0) # outside
>>> p in r
False
>>> p not in r
True

__str__() [string] Return a string formatted like

5.1. MapScript 293

MapServer Documentation, Release 6.4.1

{ ’minx’: %f , ’miny’: %f , ’maxx’: %f , ’maxy’: %f }

with the bounding values substituted appropriately. Usage example:

>>> r = mapscript.rectObj(0, 0, 1, 1)
>>> str(r)
{ ’minx’: 0.000000 , ’miny’: 0.000000 , ’maxx’: 1.000000 , ’maxy’: 1.000000 }

Note that the return value can be conveniently eval’d into a Python dictionary:

>>> r_dict = eval(str(r))
>>> r_dict[’minx’]
0.000000

Exception Handling

The Python MapScript module maps a few MapServer errors into Python exceptions. Attempting to load a non-
existent mapfile raises an ‘IOError’, for example

>>> import mapscript
>>> mapfile = ’/no/such/file.map’
>>> m = mapscript.mapObj(mapfile)
Traceback (most recent call last):

File "<stdin>", line 1, in ?
File "/usr/lib/python2.3/site-packages/mapscript.py", line 799, in __init__
newobj = _mapscript.new_mapObj(*args)

IOError: msLoadMap(): Unable to access file. (/no/such/file.map)
>>>

The message of the error is written by ‘msSetError’ and so is the same message that CGI mapserv users see in
error logs.

5.1.5 Python MapScript Image Generation

Author Sean Gillies

Revision $Revision$

Date $Date$

Last Updated 2008/07/15

Table of Contents

• Python MapScript Image Generation
– Introduction
– Imagery Overview
– The imageObj Class
– Image Output
– Images and Symbols

Introduction

The MapScript HOWTO docs are intended to complement the API reference with examples of usage for specific
subjects. All examples in this document refer to the mapfile and testing layers distributed with MapServer 4.2+
and found under mapserver/tests.

294 Chapter 5. MapScript

MapServer Documentation, Release 6.4.1

Pseudocode

All examples will use a pseudocode that is consistent with the language independent API reference. Each line is a
statement. For object attributes and methods we use the dot, ‘.’, operator. Creation and deletion of objects will be
indicated by ‘new’ and ‘del’ keywords. Other than that, the pseudocode looks a lot like Python.

Imagery Overview

The most common use of MapServer and MapScript is to create map imagery using the built-in GD format drivers:
GD/GIF, GD/PNG, GD/PNG24, and GD/JPEG. This imagery might be saved to a file on disk or be streamed
directly to another device.

The imageObj Class

Imagery is represented in MapScript by the imageObj class. Please see the API Reference (MapScript.txt) for
class attribute and method details.

Creating imageObj from a mapObj

The mapObj class has two methods that return instances of imageObj: ‘draw’, and ‘prepareImage’. The first
returns a full-fledged map image just as one would obtain from the mapserv CGI program

test_map = MapScript.mapObj(’tests/test.map’)
map_image = test_map.draw()

A properly sized and formatted blank image, without any layers, symbols, or labels, will be generated by ‘pre-
pareImage’

blank_image = test_map.prepareImage()

Creating a new imageObj

The imageObj class constructor creates new instances without need of a map

format = MapScript.outputFormatObj(’GD/JPEG’)
image = MapScript.imageObj(300, 200, format) # 300 wide, 200 high JPEG

and can even initialize from a file on disk

First three args are overriden by attributes of the disk image file
disk_image = MapScript.imageObj(-1, -1, NULL, ’tests/test.png’)

Image Output

Creating files on disk

Imagery is saved to disk by using the ‘save’ method. By accessing the ‘extension’ attribute of an image’s format,
the proper file extension can be used without making any assumptions

filename = ’test.’ + map_image.format.extension
map_image.save(filename)

If the image is using a GDAL/GTiff-based format, a GeoTIFF file can be created on disk by adding a mapObj as
a second optional argument to ‘save’

5.1. MapScript 295

MapServer Documentation, Release 6.4.1

map_image.save(filename, test_map)

Direct Output

An image can be dumped to an open filehandle using the ‘write’ method. By default, the filehandle is ‘stdout’

Send an image to a web browser
print "Content-type: " + map_image.format.mimetype + "\n\n"
map_image.write()

This method is not fully functional for all SWIG MapScript languages. See the API Reference (MapScript.txt) for
details. The ‘write’ method is new in 4.4.

Images and Symbols

The symbolObj::getImage() method will return an instance of imageObj for pixmap symbols

symbol = test_map.symbolset.getSymbolByName(’home-png’)
image = symbol.getImage()

There is a symmetric ‘setImage’ method which loads imagery into a symbol, allowing pixmap symbols to be
created dynamically

new_symbol = MapScript.symbolObj(’from_image’)
new_symbol.type = MapScript.MS_SYMBOL_PIXMAP
new_symbol.setImage(image)
index = test_map.symbolset.appendSymbol(new_symbol)

The get/setImage methods are new in MapServer 4.4.

5.1.6 Mapfile Manipulation

Author Sean Gillies

Revision $Revision$

Date $Date$

Contents

• Mapfile Manipulation
– Introduction
– Mapfile Overview
– The mapObj Class
– Children of mapObj
– Metadata

Introduction

The MapScript HowTo docs are intended to complement the API reference with examples of usage for specific
subjects. All examples in this document refer to the mapfile and testing layers distributed with MapServer 4.2+
and found under mapserver/tests.

296 Chapter 5. MapScript

MapServer Documentation, Release 6.4.1

Pseudocode

All examples will use a pseudocode that is consistent with the language independent API reference. Each line is a
statement. For object attributes and methods we use the dot, ‘.’, operator. Creation and deletion of objects will be
indicated by ‘new’ and ‘del’ keywords. Other than that, the pseudocode looks a lot like Python.

Mapfile Overview

By “Mapfile” here, I mean all the elements that can occur in (nearly) arbitrary numbers within a MapScript
mapObj: Layers, Classes, and Styles. MapServer 4.4 has greatly improved capability to manipulate these objects.

The mapObj Class

An instance of mapObj is a parent for zero to many layerObj children.

New instances

The mapfile path argument to the mapscript.mapObj constructor is now optional

empty_map = new mapscript.mapObj

generates a default mapObj with no layers. A mapObj is initialized from a mapfile on disk in the usual manner:

test_map = new mapscript.mapObj(’tests/test.map’)

Cloning

An independent copy, less result and label caches, of a mapObj can be produced by the new mapObj.clone()
method:

clone_map = test_map.clone()

Note: the Java MapScript module implements a “cloneMap” method to avoid conflict with the clone method of
Java’s Object class.

Saving

A mapObj can be saved to disk using the save method:

clone_map.save(’clone.map’)

Frankly, the msSaveMap() function which is the foundation for mapObj::save is incomplete. Your mileage may
vary.

Children of mapObj

There is a common parent/child object API for Layers, Classes, and Styles in MapServer 4.4.

5.1. MapScript 297

MapServer Documentation, Release 6.4.1

Referencing a Child

References to Layer, Class, and Style children are obtained by “getChild”-like methods of their parent:

layer_i = test_map.getLayer(i)
class_ij = layer_i.getClass(j)
style_ijk = class_ij.getStyle(k)

These references are for convenience only. MapScript doesn’t have any reference counting, and you are certain to
run into trouble if you try to use these references after the parent mapObj has been deleted and freed from memory.

Cloning a Child

A completely independent Layer, Class, or Style can be created using the clone method of layerObj, classObj, and
styleObj:

clone_layer = layer_i.clone()

This instance has no parent, and is self-owned.

New Children

Uninitialized instances of layerObj, classObj, or styleObj can be created with the new constructors:

new_layer = new mapscript.layerObj
new_class = new mapscript.classObj
new_style = new mapscript.styleObj

and are added to a parent object using “insertChild”-like methods of the parent which returns the index at which
the child was inserted:

li = test_map.insertLayer(new_layer)
ci = test_map.getLayer(li).insertClass(new_class)
si = test_map.getLayer(li).getClass(ci).insertStyle(new_style)

The insert* methods create a completely new copy of the object and store it in the parent with all ownership taken
on by the parent.

see the API reference for more details.

Backwards Compatibility

The old style child object constructors with the parent object as a single argument:

new_layer = new mapscript.layerObj(test_map)
new_class = new mapscript.classObj(new_layer)
new_style = new mapscript.styleObj(new_class)

remain in MapServer 4.4.

Removing Children

Child objects can be removed with “removeChild”-like methods of parents, which return independent copies of
the removed object:

following from the insertion example ...
remove the inserted style, returns a copy of the original new_style
removed_style = test_map.getLayer(li).getClass(ci).removeStyle(si)

298 Chapter 5. MapScript

MapServer Documentation, Release 6.4.1

removed_class = test_map.getLayer(li).removeClass(ci)
removed_layer = test_map.removeLayer(li)

Metadata

Map, Layer, and Class metadata are the other arbitrarily numbered elements (well, up to the built-in limit of 41)
of a mapfile.

New API

In MapServer 4.4, the metadata attributes of mapObj.web, layerObj, and classObj are instances of hashTableObj,
a class which functions like a limited dictionary

layer.metadata.set(’wms_name’, ’foo’)
name = layer.metadata.get(’wms_name’) # returns ’foo’

You can iterate over all keys in a hashTableObj like

key = NULL
while (1):

key = layer.metadata.nextKey(key)
if key == NULL:

break
value = layer.metadata.get(key)
...

See the API Reference (mapscript.txt) for more details.

Backwards Compatibility for Metadata

The old getMetaData and setMetaData methods of mapObj, layerObj, and classObj remain for use by older pro-
grams.

5.1.7 Querying

Author Sean Gillies

Revision $Revision$

Date $Date$

Contents

• Querying
– Introduction
– Querying Overview
– Attribute Queries
– Spatial Queries

Introduction

All examples in this document refer to the mapfile and testing layers distributed with MapServer 4.2+ and found
under mapserver/tests.

5.1. MapScript 299

MapServer Documentation, Release 6.4.1

Pseudocode

All examples will use a pseudocode that is consistent with the language independent API reference. Each line is a
statement. For object attributes and methods we use the dot, ‘.’, operator. Creation and deletion of objects will be
indicated by ‘new’ and ‘del’ keywords. Other than that, the pseudocode looks a lot like Python.

Querying Overview

The Query Result Set

Map layers can be queried to select features using spatial query methods or the attribute query method. Ignoring
for the moment whether we are executing a spatial or attribute query, results are obtained like so:

layer.query() # not an actual method!
results = layer.getResults()

In the case of a failed query or query with zero results, ‘getResults’ returns NULL.

Result Set Members

Individual members of the query results are obtained like:

... # continued

if results:
for i in range(results.numresults): # iterate over results

result = results.getResult(i)

This result object is a handle, of sorts, for a feature of the layer, having ‘shapeindex’ and ‘tileindex’ attributes that
can be used as arguments to ‘getFeature’.

Resulting Features

The previous example code can now be extended to the case of obtaining all queried features:

layer.query()
results = layer.getResults()
if results:

open layer in preparation of reading shapes
layer.open()

for i in range(results.numresults):
result = results.getResult(i)

layer.getFeature(result)

... # do something with this feature

Close when done
layer.close()

Backwards Compatibility

The API changed substantially with version 6.0 and backward compatibility was broken. Scripts will have to be
updated to work with the new API.

300 Chapter 5. MapScript

MapServer Documentation, Release 6.4.1

Attribute Queries

By Attributes

queryByAttributes()

Spatial Queries

By Rectangle

queryByRect()

By Point

queryByRect()

By Shape

queryByShape()

By Selection

queryByFeatures()

5.1. MapScript 301

MapServer Documentation, Release 6.4.1

302 Chapter 5. MapScript

CHAPTER

SIX

MAPCACHE

6.1 MapCache

Author Thomas Bonfort

Contact tbonfort at terriscope.fr

MapCache is a server that implements tile caching to speed up access to WMS layers. The primary objectives are
to be fast and easily deployable, while offering the essential features (and more!) expected from a tile caching
solution.

6.1.1 Compilation & Installation

Author Thomas Bonfort

Contact tbonfort at terriscope.fr

Author Alan Boudreault

Contact aboudreaut at magears.com

Author Jeff McKenna

Contact jmckenna at gatewaygeomatics.com

Author Mathieu Coudert

Contact mathieu.coudert at gmail.com

Table of Contents

• Compilation & Installation
– Getting the Source
– Linux Instructions

* Apache Module Specific Instructions
* Nginx Specific Instructions
* CGI/FastCGI Specific Instructions
* Customizing the build, or if something went wrong

– Windows Instructions
* Dependencies
* Configure Your Makefile
* Compilation
* Move the Module into Apache Directory
* Configure Your Installed Apache
* Test Your MapCache Module

303

MapServer Documentation, Release 6.4.1

Getting the Source

The MapCache project is located at https://github.com/mapserver/mapcache, and can be checked out with either:

readonly
git clone git://github.com/mapserver/mapcache.git
ssh authenticated
git clone git@github.com:mapserver/mapcache.git
tarball
wget https://github.com/mapserver/mapcache/zipball/master

Linux Instructions

These instructions target a debian/ubuntu setup, but should apply with few modifications to any linux installation.

MapCache requires a number of library headers in order to compile correctly:

• apache / apr / apr-util / apx2: these are included in the apache2-prefork-dev or apache2-threaded-dev
packages, depending on what apache mpm you are running. This package will pull in the necessary apr
headers, that you would have to manually install if you are not buidling an apache module (libaprutil1-dev
and libapr1-dev)

• png: libpng12-dev

• jpeg: libjpeg62-dev

• curl: libcurl4-gnutls-dev

The following libraries are not required, but recommended:

• pcre: libpcre3-dev. This will give you more powerfull regular expression syntax when creating validation
expressions for dimensions

• pixman: libpixman-1-dev. The pixel manipulation library is used for scaling and alpha-compositing images.
MapCache ships with some code to perform these tasks, but pixman is generally faster as it includes code
optimized for modern cpus (sse2, mmx, etc...)

The following libraries are not required, but needed to enable additional functionalities:

• fcgi: libfcgi-dev. Needed to build a fastcgi program if you don’t want to run mapcache as an apache module.

• gdal / geos: libgdal1-dev libgeos-dev. Needed to enable advanced seeding options (for only seeding tiles
that intersect a given geographical feature)

• sqlite: libsqlite3-dev. For enabling the sqlite backend storages

• tiff: libtiff4-dev. For enabling the TIFF backend storages

• berkeley db libdb4.8-dev : For enabling the Berkeley DB backend storages

Note: MapCache now builds with cmake.

For unix users where all packages are in the default locations, the compilation process should resume to:

$ cd mapcache
$ mkdir build
$ cd build
$ cmake ..
$ # follow instructions below if missing a dependency
$ make
$ sudo make install

304 Chapter 6. MapCache

https://github.com/mapserver/mapcache

MapServer Documentation, Release 6.4.1

Apache Module Specific Instructions

The make install above installs the apache module, but if you need to specifically need to install only the apache
module you can do the following

$ sudo make install-module
$ sudo ldconfig

The installation script takes care of putting the built module in the apache module directory. The process for
activating a module is usually distro specific, but can be resumed by the following snippet that should be present
in the apache configuration file (e.g. /usr/local/httpd/conf/httpd.conf or /etc/apache2/sites-available/default):

LoadModule mapcache_module modules/mod_mapcache.so

Next, a mapcache configuration is mapped to the server url with the following snippet

For apache < 2.4:

<IfModule mapcache_module>
<Directory /path/to/directory>

Order Allow,Deny
Allow from all

</Directory>
MapCacheAlias /mapcache "/path/to/directory/mapcache.xml"

</IfModule>

For apache >= 2.4:

<IfModule mapcache_module>
<Directory /path/to/directory>

Require all granted
</Directory>
MapCacheAlias /mapcache "/path/to/directory/mapcache.xml"

</IfModule>

Before you restart, copy the example mapcache.xml file to where you want it:

$ cp mapcache.xml /path/to/directory/mapcache.xml

Finally, restart apache to take the modified configuration into account

$ sudo apachectl restart

If you have not disabled the demo service, you should now have access to it on http://myserver/mapcache/demo

Nginx Specific Instructions

Warning: Working with nginx is still somewhat experimental. The following workflow has only been tested
on the development version, i.e. nginx-1.1.x

For nginx support you need to build mapcache’s nginx module against the nginx source. Download the nginx
source code:

$ cd /usr/local/src
$ mkdir nginx
$ cd nginx
$ wget http://nginx.org/download/nginx-1.1.19.tar.gz
$ tar -xzvf nginx-1.1.19.tar.gz
$ cd nginx-1.1.19/

Run the configure command with the flag --add-module. This flag must point to mapcache’s nginx child
directory. Assuming that mapserver source was cloned or un tarred into to /usr/local/src, an example
configure command for nginx would look like this:

6.1. MapCache 305

http://myserver/mapcache/demo

MapServer Documentation, Release 6.4.1

$./configure --add-module=/usr/local/src/mapcache/nginx

Then build nginx:

$ make
$ sudo make install

Due to nginx’s non-blocking architecture, the mapcache nginx module does not perform any operations that may
lead to a worker process being blocked by a long computation (i.e.: requesting a (meta)tile to be rendered if not in
the cache, proxying a request to an upstream wms server, or waiting for a tile to be rendered by another worker),
it will instead issue a 404 error. This behavior is essential so as not to occupy all nginx worker threads, therefore
preventing it from responding to all other incoming requests. While this isn’t an issue for completely seeded
tilesets, this implies that these kinds of requests need to be proxied to another mapcache instance that does not
suffer from these starvation issues (i.e. either a fastcgi mapcache, or an internal proxied apache server). In this
scenario, both the nginx mapcache instance and the apache/fastcgi mapcache instance should be running with the
same mapcache.xml configuration file.

Mapcache supplies a nginx.conf in its nginx child directory. The conf contains an example configuration to
load mapcache. The most relevant part of the configuration is the location directive that points the ^/mapcache
URI to the mapcache.xml path. You will need to change this path to point to your own mapcache.xml in
the mapcache source

The basic configuration without any proxying (which will return 404 errors on unseeded tile requests) is:

location ~ ^/mapcache(?<path_info>/.*|$) {
set $url_prefix "/mapcache";
mapcache /usr/local/src/mapcache/mapcache.xml;

}

If proxying unseeded tile requests to a mapcache instance running on an apache server, we will proxy all 404 map-
cache errors to a mapcache.apache.tld server listening on port 8080, configured to respond to mapcache
requests on the /mapcache location.

location ~ ^/mapcache(?<path_info>/.*|$) {
set $url_prefix "/mapcache";
mapcache /usr/local/src/mapcache/mapcache.xml;
error_page 404 = @apache_mapcache;

}

location @apache_mapcache {
proxy_pass http://mapcache.apache.tld:8080;

}

If using fastcgi instances of mapcache, spawned with e.g. spawn-fcgi or supervisord on port 9001 (make sure to
enable fastcgi when building mapcache, and to set the MAPCACHE_CONFIG_FILE environment variable before
spawning):

location ~ ^/mapcache(?<path_info>/.*|$) {
set $url_prefix "/mapcache";
mapcache /usr/local/src/mapcache/mapcache.xml;
error_page 404 = @fastcgi_mapcache;

}

location @fastcgi_mapcache {
fastcgi_pass localhost:9001;
fastcgi_param QUERY_STRING $query_string;
fastcgi_param REQUEST_METHOD $request_method;
fastcgi_param CONTENT_TYPE $content_type;
fastcgi_param CONTENT_LENGTH $content_length;
fastcgi_param PATH_INFO $path_info;
fastcgi_param SERVER_NAME $server_name;
fastcgi_param SERVER_PORT $server_port;

306 Chapter 6. MapCache

MapServer Documentation, Release 6.4.1

fastcgi_param SCRIPT_NAME "/mapcache";
}

Copy the relevant sections of nginx.conf from mapcache’s nginx directory into nginx’s conf file (in
this case /usr/local/nginx/conf/nginx.conf) , you should now have access to the demo at
http://myserver/mapcache/demo

CGI/FastCGI Specific Instructions

A binary cgi/fastcgi is located in the mapcache/ subfolder, and is named “mapcache”. Activating fastcgi for the
mapcache program on your web server is not part of these instructions, more details may be found on the FastCGI
page or on more general web pages across the web.

The MapCache fastcgi program looks for it’s configuration file in the environment variable called MAP-
CACHE_CONFIG_FILE, which must be set by the web server before spawning the mapcache processes.

See Also:

Configuration File

For apache with mod_cgi:

SetEnv "MAPCACHE_CONFIG_FILE" "/path/to/mapcache/mapcache.xml"

For apache with mod_fcgid:

FcgidInitialEnv "MAPCACHE_CONFIG_FILE" "/path/to/mapcache/mapcache.xml

If you have not disabled the demo service, you should now have access to it on http://myserver/fcgi-
bin/mapcache/demo supposing your fcgi processes are accessed under the fcgi-bin alias.

With a working mod_fcgid apache instance, the full httpd.conf snippet to activate mapcache could be:

<IfModule mod_fcgid.c>
IPCCommTimeout 120
MaxProcessCount 10
FcgidInitialEnv "MAPCACHE_CONFIG_FILE" "/path/to/mapcache/mapcache.xml"
<Location /map.fcgi>

Order Allow,Deny
Allow from all
SetHandler fcgid-script

</Location>
ScriptAlias /map.fcgi "/path/to/mapcache/src/mapcache"

</IfModule>

The mapcache service would then be accessible at http://myserver/map.fcgi[/demo]

Customizing the build, or if something went wrong

Depending on what packages are available in the default locations of your system, the “cmake ..” step will most
probably have failed with messages indicating missing dependencies (by default, MapCache has some of those).
The error message that CMake prints out should give you a rather good idea of what steps you should take next,
depending on wether the failed dependency is a feature you require in your build or not.

mod_mapcache requires apache, libcurl, libjpeg and libpng development headers. The cmake script will try to
locate them in default system locations, that can be overriden or specified with -D switches. For example, if
you get a message such as ‘Could NOT find APR ‘, you can use a command such as (assuming that apr is at
/usr/local/apr) :

$ cmake -DCMAKE_PREFIX_PATH="/usr/local/apr;" ..

6.1. MapCache 307

http://myserver/mapcache/demo
http://myserver/fcgi-bin/mapcache/demo
http://myserver/fcgi-bin/mapcache/demo
http://myserver/map.fcgi{[}/demo

MapServer Documentation, Release 6.4.1

Either if you don’t want fcgi you can disable the dependency by rerunning cmake with -
DWITH_DEPENDENCY=0, e.g.

$ cmake .. -DWITH_FCGI=0

Options supported by the MapCache cmake builder Here is a list of supported options that can be en-
abled/disabled at build.

option(WITH_PIXMAN "Use pixman for SSE optimized image manipulations" ON)
option(WITH_SQLITE "Use sqlite as a cache backend" ON)
option(WITH_BERKELEY_DB "Use Berkeley DB as a cache backend" OFF)
option(WITH_MEMCACHE "Use memcache as a cache backend (requires recent apr-util)" OFF)
option(WITH_TIFF "Use TIFFs as a cache backend" OFF)
option(WITH_TIFF_WRITE_SUPPORT "Enable (experimental) support for writable TIFF cache backends" OFF)
option(WITH_GEOTIFF "Allow GeoTIFF metadata creation for TIFF cache backends" OFF)
option(WITH_PCRE "Use PCRE for regex tests" OFF)
option(WITH_MAPSERVER "Enable (experimental) support for the mapserver library" OFF)
option(WITH_GEOS "Choose if GEOS geometry operations support should be built in" ON)
option(WITH_OGR "Choose if OGR/GDAL input vector support should be built in" ON)
option(WITH_CGI "Choose if CGI executable should be built" ON)
option(WITH_FCGI "Choose if CGI executable should support FastCGI" ON)
option(WITH_VERSION_STRING "Show MapCache in server version string" ON)
option(WITH_APACHE "Build Apache Module" ON)

• Pixman (recommended, from 0.5 onwards)

-DWITH_PIXMAN=[0|1]

Pixman is a pixel manipulation library used to assemble image tiles when responding to non-
tiled wms requests. Pixman support is recommended as it is highly optimized and will take
advantage of recent processor extensions (mms, sse, ...) to speed up blending and resampling
operations. In case the pixman library is not found, Mapcache will fall back to internal pixel
operations that are slower.

• Sqlite (optional, from 0.5 onwards)

-DWITH_SQLITE=[0|1]

Sqlite is used to enable the sqlite and mbtiles cache backend. version 3.5.0 or newer is required.

• GDAL (optional, from 0.4 onwards, also requires geos)

-DWITH_OGR=[0|1]

Gdal (actually ogr) is used by the seeding utility to allow the seeding of tiles only intersecting a
given polygon, e.g. to preseed all the tiles of a given country.

• GEOS (optional, from 0.5 onwards)

-DWITH_GEOS=[0|1]

Along with gdal/ogr, geos is needed by the seeder to test for the intersection of tiles with geo-
graphical features. A sufficiently recent version of geos (with support for prepared geometries)
is required (but not enforced by the configure script, so you’ll end up with compilation errors if
a too old geos version is used)

• PCRE (optional)

-DWITH_PCRE=[0|1]

Pcre (perl compatible regular expressions) can be used instead of posix regular expressions for
validating WMS dimensions. they are more powerfull than posix REs (and might be slower).
You don’t need this if you aren’t planning on using WMS dimension support with regex valida-
tion, or if your validation needs are covered by posix REs.

308 Chapter 6. MapCache

MapServer Documentation, Release 6.4.1

See Also:

Tileset Dimensions

• FastCGI Support (optional)

-DWITH_FCGI=[0|1]

MapCache can run as a fastcgi executable. Note that the overhead of fastcgi is non-negligeable
with respect to the throughput you may obtain with a native apache module. The fastcgi build is
less tested, and may lag behind compared to the apache module version on some minor details,
YMMV.

• TIFF read/write Cache Support (optional)

Use TIFFs as a cache backend (READONLY) :

-DWITH_TIFF=[0|1]

TIFF write support (for creating new TIFF files and adding tiles to existing TIFF files) is still
experimental and disabled by default. There is a risk in ending up with corrupt TIFF files if they
are placed on a filesystem that does not honour file locking, as in that case multiple processes
might end up writing to the same file. File locking across concurrent threads is also problematic,
although MapCache tries to detect this situation and apply sufficient locking workarounds. To
stay on the safe side, write support should for now only be enabled on local filesystems, with a
prefork mpm or fastcgi MapCache install.

-DWITH_TIFF_WRITE_SUPPORT=[0|1]

When writing TIFF files, MapCache can also optionally add georeferencing information if com-
piled with libtiff support. GeoTiff writing does not produce the full tags needed for defining
which preojection the grid is in, but will only produce those defining the pixel scale and the
tiepoints (i.e. the equivalent information found in the accompanying .tfw files)

-DWITH_GEOTIFF=[0|1]

See Also:

(Geo)TIFF Caches

• Memcached Cache Support (optional)

-DWITH_MEMCACHE=[0|1]

The memcached cache backend is disabled by default. You can optionally enable it as it does
not depend on other external libraries (support is obtained through apr-util).

See Also:

Memcache Caches

• Apache Module Options

You can disable the apache module building if you only plan on using the fastcgi executable or
the seeder.

-DWITH_APACHE=[0|1]

MapCache adds itself to the version string reported by the apache server. This can be disabled
with

-DWITH_VERSION_STRING=[0|1]

• Native MapServer Mode (experimental options)

MapCache is by default not linked to MapServer in any way, and communicates through the
WMS protocol only. For performance reasons, there is a possibility to directly use the mapserver

6.1. MapCache 309

MapServer Documentation, Release 6.4.1

C library and avoid an http request and an image compression/decompression. This integration
is still experimental and should be used cautiously

-DWITH_MAPSERVER=[0|1]

This will use the libmapserver.so from mapserver’s install directory. MapServer itself should be
compiled with thread-safety enabled, unless you plan use the prefork mpm or fastcgi, and you
do not plan to use the seeder. For thread safety on the mapserver side, you might want to have a
look at tickets #4041 and #4044.

• Debug Mode (work in progress)

Note: Since the cmake migration, this has to be done.

It enables some extra tests inside the code, and prints out many more debugging messages to
the server logs. you should probably not enable this unless you want to track down a problem
happening inside MapCache.

Windows Instructions

Warning: The following instructions are outdated, Windows builds are now handled identically to the Unix
ones with cmake.

These instructions target a Windows 7 setup with an Apache httpd compiled from source. The Apache MapCache
module has been successfully built with with Microsoft Visual Studio C++ versions 2003, 2008 and 2010.

Dependencies

Required:

• Apache / APR / APR-UTIL: included with apache httpd installation

Those can be installed manually, or using the appropriate Windows SDK from: http://vbkto.dyndns.org/sdk/

• PNG

• JPEG

• CURL

Recommended:

• PCRE: ftp://ftp.gnu.org/pub/gnu/regex/regex-0.12.tar.gz

Optional:

• FCGI: Needed to build a fastcgi program if you don’t want to run mapcache as an apache module.

• GDAL / GEOS: Needed to enable advanced seeding options (for only seeding tiles that intersect a given
geographical feature)

• SQLITE: For enabling the sqlite backend storages

• TIFF: For enabling the TIFF backend storages

Configure Your Makefile

Open nmake.opt and modify the paths to point to the various libraries.

310 Chapter 6. MapCache

http://vbkto.dyndns.org/sdk/
ftp://ftp.gnu.org/pub/gnu/regex/regex-0.12.tar.gz

MapServer Documentation, Release 6.4.1

Compilation

$ nmake /f Makefile.vc

If successful, the resulting libraries and executables will be generated in their associated directories:

apache/ Apache module (mod_mapcache.dll)

cgi/ FastCGI MapCache executable (mapcache.exe)

util/ MapCache utilities (mapcache_seed.exe)

Move the Module into Apache Directory

Copy the mod_mapcache.dll file into one of your Apache subdirectories.

Note: Although other modules are installed into /Apache/modules/, you should place mod_mapcache.dll wher-
ever its required dll files (libcurl.dll, zlib.dll, etc.) live, to avoid any loading issues later on.

Configure Your Installed Apache

• Modify your httpd.conf file to load the module:

LoadModule mapcache_module "D:/ms4w/Apache/cgi-bin/mod_mapcache.dll"

• Next, configure your mapcache directory with the following snippet

<IfModule mapcache_module>
<Directory "D:/ms4w/apps/mapcache/">

Order Allow,Deny
Allow from all

</Directory>
MapCacheAlias /mapcache "D:/ms4w/apps/mapcache/mapcache.xml"

</IfModule>

• Configure your mapcache.xml file (see the Configuration section for help)

Warning: If you receive an error such as “cache disk: host system does not support file symbolic linking”
you should comment the line “<symlink_blank/>” in your mapcache.xml file, such as:

<cache name="disk" type="disk">
<base>D:/ms4w/tmp/ms_tmp/cache</base>
<!--<symlink_blank/>-->

</cache>

• Finally, restart your Apache. You should see a message in Apache’s error.log with a message similar to:

[notice] Apache/2.2.21 (Win32) mod-mapcache/0.5-dev configured -- resuming normal operations

Test Your MapCache Module

• In your web browser, goto the local MapCache demo page: http://127.0.0.1/mapcache/demo/ You should
see a clickable list of demo links:

tms
wmts
gmaps
kml

6.1. MapCache 311

http://127.0.0.1/mapcache/demo/

MapServer Documentation, Release 6.4.1

ve
wms

• Click on one of the demos (such as http://127.0.0.1/mapcache/demo/wmts), a map viewer should load,
similar to the image below.

• Zoom in a few times, and your configured cache location should be generating tiles (in this case inside
D:/ms4w/tmp/ms_tmp/cache/).

6.1.2 Configuration File

Author Thomas Bonfort

Contact tbonfort at terriscope.fr

312 Chapter 6. MapCache

http://127.0.0.1/mapcache/demo/wmts

MapServer Documentation, Release 6.4.1

The configuration files determines what and how mod-mapcache will serve incoming requests. It is an xml file
that comprises a list of entries, as outlined here:

<mapcache>
<grid>....</grid>
<source>....</source>
<cache>...</cache>
<format>...</format>
<tileset>...</tileset>
<services>...</services>

</mapcache>

Source

A source is a service mod-mapcache can query to obtain image data. This is typically a WMS server accessible by
a url (there are currently no other sources than WMS implemented, others may be added later if the need arises)

<source name="vmap0" type="wms">

<!--
extra parameters that will be added to the GetMap request. you can specify any
parameter here, e.g. VERSION if you want to override the version of the WMS
request.
the LAYERS parameter is mandatory.
usual parameters here are FORMAT , or MAP if using mapserver

-->
<getmap>

<params>
<FORMAT>image/png</FORMAT>
<LAYERS>basic</LAYERS>

</params>
</getmap>

<!-- http url and parameters that will be used when making WMS requests -->
<http>

<!-- url of the wms service, without any parameters -->
<url>http://vmap0.tiles.osgeo.org/wms/vmap0</url>

<!--
http headers added to request. make sure you know what you are
doing when adding a header here, as they take precedence over any
default headers curl will be adding to the request.
typical headers that can be added here are User-Agent and Referer.

when adding a <key>value</key> element here, the request to the
wms source will contain the

key: value\r\n

HTTP header.
-->
<headers>

<User-Agent>mod-mapcache/r175</User-Agent>
<Referer>http://www.mysite.com?param=2&par=4</Referer>

</headers>

<!-- timeout in seconds before bailing out from a request -->
<connection_timeout>30</connection_timeout>

</http>
</source>

• The name and type attributes are straightforward: type is “wms”, and name is

6.1. MapCache 313

MapServer Documentation, Release 6.4.1

• the key by which this source will be referenced <url> is the http location

• where the service can be accessed <wmsparams> is a list of parameters that

• will be added to the wms request. You should probably at the very least add

• the FORMAT and LAYERS parameters. By convention(?), WMS parameters are

• uppercase, and you should respect this convention in your configuration file.

• This is where you can also override some default WMS parameters if needed. By

• default, the parameters that will be used are: <REQUEST>GetMap</REQUEST>

• <SERVICE>WMS</SERVICE> <STYLES></STYLES> <VERSION>1.1.0</VERSION>

Cache

A cache is a location where received tiles will be stored.

<cache name="disk" type="disk">

<!-- base

absolute filesystem path where the tile structure will be stored.
this directory needs to be readable and writable by the user running
apache

-->
<base>/tmp</base>

<!-- symlink_blank

enable blank (i.e. uniform color) tile detection. blank tiles will be
detected at creation time and linked to a single blank tile on disk to
preserve disk space.

-->
<symlink_blank/>

</cache>

<cache name="tmpl" type="disk" layout="template">
<!-- template

string template that will be used to map a tile (by tileset, grid name, dimension,
format, x, y, and z) to a filename on the filesystem.
the following replacements are performed:
- {tileset} : the tileset name
- {grid} : the grid name
- {dim} : a string that concatenates the tile’s dimension
- {ext} : the filename extension for the tile’s image format
- {x},{y},{z} : the tile x,y,z values
- {inv_x}, {inv_y}, {inv_z} : inverted x,y,z values (inv_x = level->maxx - x - 1). This

is mainly used to support grids where one axis is inverted (e.g. the google schema)
and you want to create on offline cache.

* note that this type of cache does not support blank-tile detection and symlinking.

* warning: it is up to you to make sure that the template you chose creates a unique
filename for your given tilesets. e.g. do not ommit the {grid} parameter if your
tilesets reference multiple grids. Failure to do so will result in filename
collisions !

-->
<template>/tmp/template-test/{tileset}#{grid}#{dim}/{z}/{x}/{y}.{ext}</template>

</cache>

314 Chapter 6. MapCache

MapServer Documentation, Release 6.4.1

<!-- memcache cache
entry accepts multiple <server> entries
requires a fairly recent apr-util library and headers

-->
<cache name="memcache" type="memcache">

<server>
<host>localhost</host>
<port>11211</port>

</server>
</cache>

<!-- sqlite cache
requires building with "with-sqlite"

-->
<cache name="sqlite" type="sqlite3">

<!-- dbfile

absolute filename path of the sqlite database file to use.
this file needs to be readable and writable by the user running
tha mapcache instance

-->
</cache>

<cache name="mbtiles" type="mbtiles">
<dbfile>/path/to/MapBox/tiles/natural-earth-1.mbtiles</dbfile>

</cache>

Format

A format is an image format that will be used to return tile data to clients, and to store tile data on disk.

<format name="PNGQ_FAST" type ="PNG">

<!-- compression

png compression: best or fast
note that "best" compression is cpu intensive for little gain over the default
default compression is obtained by leving out this tag.

-->
<compression>fast</compression>

<!-- colors

if supplied, this enables png quantization which reduces the number of colors
in an image to atain higher compression. this operation is destructive, and can
cause artifacts in the stored image.
the number of colors can be between 2 and 256

-->
<colors>256</colors>

</format>
<format name="myjpeg" type ="JPEG">

<!-- quality

JPEG compression quality, ranging from 0 to 100
95 produces high quality images with few visual artifacts
values under around 80 produce small images but with visible artifacts.
YMMV

-->
<quality>75</quality>

<!-- photometric

6.1. MapCache 315

MapServer Documentation, Release 6.4.1

photometric interpretation of the bands created in the jpeg image.
default is ycbcr and produces the smallest images. can also be "rgb"
which ususally results in x2 or x3 image sizes.

-->
<photometric>ycbcr</photometric>

</format>
<format name="PNG_BEST" type ="PNG">

<compression>best</compression>
</format>

<format name="mixed" type="MIXED">
<transparent>PNG_BEST</transparent>
<opaque>JPEG</opaque>

</format>

Grid

A grid is the matrix that maps tiles on an area, and consists of a spatial reference, a geographic extent, resolutions,
and tile sizes.

Mandatory Configuration Options

• <size>: The width and height of an individual tile, in pixels. Must be specified as to positive integers
separated by a space character. The most common entry for this is:

<size>256 256</size>

• <extent>: The geographical extent covered by the grid, in ground units (e.g. meters, degrees, feet, ...).
Must be specified as 4 floating point numbers separated be spaces, order like minx, miny, maxx, maxy. The
(minx,miny) point defines the origin of the grid, i.e. the pixel at the bottom left of the bottom- leftmost tile
is always placed on the (minx,miny) geographical point.

The (maxx,maxy) point is used to determine how many tiles there are for each zoom level.

<extent>-180 -90 180 90</extent>

• <srs>: The projection of the grid, usually given by it epsg identifier. The actual meaning of the value put
here isn’t used directly by mapcache to compute reprojections, it is only used to lookup which grid to use
when receiving WMS requests.

<srs>epsg:4326</srs>

Note: This is the value that is passed on to the source when requesting a tile that is not already cached for
the current grid. You must make sure that the source that is queried is capable of returning image data for
this srs.

• <units>: The ground units used by the grid’s projection. This entry is not used directly by mapcache aside
from calculating scales for the WMTS capabilites document. Allowed values are:

– m: meters

– dd: decimal degrees

– ft: feet

<units>dd</units>

• <resolutions>: This is a list of resolutions for each of the zoom levels defined by the grid. This must be
supplied as a list of positive floating point values, separated by a space and ordered from largest to smallest.

316 Chapter 6. MapCache

MapServer Documentation, Release 6.4.1

The largest value will correspond to the grid’s zoom level 0. Resolutions are expressed in “units-per-pixel”,
depending on the unit used by the grid (e.g. resolutions are in meters per pixel for most grids used in
webmapping).

<resolutions>0.703125000000000 0.351562500000000 0.175781250000000 8.78906250000000e-2 4.39453125000000e-2 2.19726562500000e-2 1.09863281250000e-2 5.49316406250000e-3 2.74658203125000e-3 1.37329101562500e-3 6.86645507812500e-4 3.43322753906250e-4 1.71661376953125e-4 8.58306884765625e-5 4.29153442382812e-5 2.14576721191406e-5 1.07288360595703e-5 5.36441802978516e-6</resolutions>

Optional Configuration Options

• <srsalias>: This tag can be specified multiple times, and allows the user to add multiple srs entries for a
given grid. This is especially usefull if the epsg id for a given projection has evolved over time, or to support
other catalogues than the epsg one (which is the only catalog supported by the wms specification).

<srs>EPSG:310024802</srs>
<srsalias>IGNF:GEOPORTALFXX</srsalias>
<srsalias>EPSG:310024001</srsalias>

• <metadata>:

– <title>: The name of the grid, in human readable form. Appears in the capabilities documents.

<title>This grid covers the area blah blah blah</title>

– <WellKnownScaleSet>: see the WMTS keyword. This will add a WellKnownScaleSet entry to the
WMTS capabilites document. It is up to the user to make sure that the supplied resolutions for the grid
actually match the pre-defined WellKnownScaleSet.

<WellKnownScaleSet>urn:ogc:def:wkss:OGC:1.0:GoogleCRS84Quad</WellKnownScaleSet>

Preconfigured Grids

There are three predefined grids you can use without referencing them in the mapcache.xml file:

• the “WGS84” grid corresponds to a grid where the whole world is rendered on 2 times 1 256x256 pixel tiles
at level 0 (i.e. the (-180,-90,180,90) extent fits on a 512x256 image). It goes down to zoom level 17.

<grid name="WGS84">
<metadata>

<title>GoogleCRS84Quad</title>
<WellKnownScaleSet>urn:ogc:def:wkss:OGC:1.0:GoogleCRS84Quad</WellKnownScaleSet>

</metadata>
<extent>-180 -90 180 90</extent>
<srs>EPSG:4326</srs>
<units>dd</units>
<size>256 256</size>
<resolutions>0.703125000000000 0.351562500000000 0.175781250000000 8.78906250000000e-2 4.39453125000000e-2 2.19726562500000e-2 1.09863281250000e-2 5.49316406250000e-3 2.74658203125000e-3 1.37329101562500e-3 6.86645507812500e-4 3.43322753906250e-4 1.71661376953125e-4 8.58306884765625e-5 4.29153442382812e-5 2.14576721191406e-5 1.07288360595703e-5 5.36441802978516e-6</resolutions>

</grid>

• the “g” grid corresponds to the case when you wish to overlay tiles on top of googlemaps, and is the default
tiling scheme used in webmapping applications. This grid goes down to zoom level 18. Level 0 is a single
256x256 tile. This grid’s default srs is EPSG:900913 which is non-standard, but in wider use than than its
official EPSG:3857 entry.

<grid name="g">
<metadata>

<title>GoogleMapsCompatible</title>
<WellKnownScaleSet>urn:ogc:def:wkss:OGC:1.0:GoogleMapsCompatible</WellKnownScaleSet>

</metadata>
<extent>-20037508.3427892480 -20037508.3427892480 20037508.3427892480 20037508.3427892480</extent>
<srs>EPSG:900913</srs>
<srsalias>EPSG:3857</srsalias>
<units>m</units>

6.1. MapCache 317

MapServer Documentation, Release 6.4.1

<size>256 256</size>
<resolutions>156543.0339280410 78271.51696402048 39135.75848201023 19567.87924100512 9783.939620502561 4891.969810251280 2445.984905125640 1222.992452562820 611.4962262814100 305.7481131407048 152.8740565703525 76.43702828517624 38.21851414258813 19.10925707129406 9.554628535647032 4.777314267823516 2.388657133911758 1.194328566955879 0.5971642834779395</resolutions>

</grid>

• the “GoogleMapsCompatible” grid is nearly identical to the “g” grid, except its default srs is EPSG:3857
instead of EPSG:900913.

<grid name="GoogleMapsCompatible">
<metadata>

<title>GoogleMapsCompatible</title>
<WellKnownScaleSet>urn:ogc:def:wkss:OGC:1.0:GoogleMapsCompatible</WellKnownScaleSet>

</metadata>
<extent>-20037508.3427892480 -20037508.3427892480 20037508.3427892480 20037508.3427892480</extent>
<srs>EPSG:3857</srs>
<srsalias>EPSG:900913</srsalias>
<units>m</units>
<size>256 256</size>
<resolutions>156543.0339280410 78271.51696402048 39135.75848201023 19567.87924100512 9783.939620502561 4891.969810251280 2445.984905125640 1222.992452562820 611.4962262814100 305.7481131407048 152.8740565703525 76.43702828517624 38.21851414258813 19.10925707129406 9.554628535647032 4.777314267823516 2.388657133911758 1.194328566955879 0.5971642834779395</resolutions>

</grid>

Tileset

A tileset is the essential configuration item for mod-mapcache, and corresponds to a set of tiles coming from a
source, stored in a cache, and returned to the client in a given format.

<tileset name="test">

<!-- source: the "name" attribute of a preconfigured <source>
If the tileset does not contain a <source> element, then it is
considered read only and the caches will never be updated. In that
sense you would have a slightly different mapcache.xml file for your
seeder than for your webserver.
As for returning blank tiles, you have the <errors> directive that does that (set it to empty_img) -->

<source>vmap0</source>

<!-- cache: the "name" attribute of a preconfigured <cache> -->
<cache>sqlite</cache>

<!-- grid: the "name" attribute of a preconfigured <grid>
you can also use the following notation to limit the area that will be cached and served to clients:
<grid restricted_extent="-10 40 10 50">WGS84</grid>
this way is better than using a grid with a limited extent, as in this way the tiles that are already
cached are not invalidated should you want to modify the restricted extent in the future. When using
the restricted_extent attribute, you should give the corresponding information to the client that will
be using the service.

You can also limit the zoom levels that are cached/accessible by using the minzoom, maxzoom attributes.

NOTE: when adding a <grid> element, you *MUST* make sure that the source you have selected is able to
return images in the grid’s srs.

-->
<grid restricted_extent="-10 40 10 50" minzoom="4" maxzoom="17">WGS84</grid>
<grid>g</grid>

<!-- metadata
optional metadata tags used for responding to GetCapabilities request.
you can put anything in here, although only the title and abstract tags
are currently used to populate the GetCapabilities document.

-->
<metadata>

<title>vmap0 map</title>
<abstract>blabla</abstract>

318 Chapter 6. MapCache

MapServer Documentation, Release 6.4.1

</metadata>

<!-- watermark

optional tag to add a watermark to the tiles *before* storing them to cache
the supplied image MUST be exactly the same size as the size of the tiles
configured in the <grid>
the supplied image is read when the configuration is loaded.
if you make changes to the image, they will NOT be reflected on tiles already
stored in the cache, nor on newly stored tiles until the server is restarted

<watermark>/path/to/static/watermark.png</watermark>
-->

<!-- format
(optional) format to use when storing a tile. this should be a format with high
compression, eg. png with compression "best", as the compression operation is only
done once at creation time.
if left out, no recompression is applied to the image, mod-mapcache will store the
exact image received from the <source>
note that the <format> tag is mandatory if metatile, metabuffer or watermark are
supplied, as in those cases a recompression has to be done.

-->
<format>PNG</format>

<!-- metatile
number of columns and rows to use for metatiling, see http://geowebcache.org/docs/current/concepts/metatiles.html

-->
<metatile>5 5</metatile>

<!-- metabuffer
area around the tile or metatile that will be cut off to prevent some edge artifacts.
if using this, the configured source must be instructed not to put any labels inside
this area, as otherwise this will result in truncated labels (for mapserver, this is
the "labelcache_map_edge_buffer" "-10" metadata entry, along with label PARTIALS FALSE

-->
<metabuffer>10</metabuffer>

<!-- expires
optional expiration value in seconds for a tile. this is expressed in a number of seconds
after the creation date of the tile
This is the value that will be set in the HTTP Expires and Cache-Control headers, and has
no effect on the actual expiration of tiles on the caches. See <auto_expire> for that.

-->
<expires>3600</expires>

<!-- auto_expire
automatically re-request tiles and update the cache once they are older than the given number
of seconds after their creation.
Note that this will only delete tiles form the cache when they are accessed, you cannot
use this configuration to limit the size of the created cache.
Note that if set, this value overrides the value given by <expires>

-->
<auto_expire>86400</auto_expire>

<!-- dimensions
optional dimensions that should be cached
the order of the <dimension> tags inside the <dimensions> is important as it is used
to create the directory structure for the disk cache. i.e. if you change the order of these
values, any tiles that have been previously cached are invalidated (but not removed from the
cache, it’s just they don’t exist anymore for mod-mapcache

-->
<dimensions>

<!-- values dimension

6.1. MapCache 319

MapServer Documentation, Release 6.4.1

the example here creates a DIM1 dimension

* WMS and WMTS clients can now add a &DIM1=value to their request string. If they don’t
specify this key/value, the default will be to use DIM1=foobar

* the allowed values for DIM1= are foobar (it is important to add the default value to the
allowed values entry), foobarbaz, foo and bar.

* the value specified for DIM1 will be forwarded to the WMS source

* the produced tile will be stored in base/gridname/DIM1/value/xx/xx/xx/xx/xx/xx.png
file. i.e. their are as many different caches created as their are values in the
<values> tag.

-->
<dimension type="values" name="DIM1" default="foobar">foobar,foobarbaz,foo,bar</dimension>

<!-- regex dimension
the following creates a MAPFILE dimension, for using the same mod-mapcache tileset with different
mapserver mapfiles. the name of the mapfiles need not be known to mod-mapcache, and can therefore be
created even after mod-mapcache has been started.
when a user passes a MAPFILE=/path/to/mapfile, the string "/path/to/mapfile" is validated against
the supplied (PCRE) regular expression. The one in this example allows a name composed of aphanumeric characters
spearated by slashes (/) and finishing with ".map" ([a-zA-Z0-9\./]*\.map$) , but will faill if there
are two consecutive dots (..) in the path, to prevent filesystem traversal ((?!.*\.\.)).

-->
<dimension type="regex" name="MAPFILE" default="/path/to/mapfile.map">^(?!.*\.\.)[a-zA-Z0-9\./]*\.map$</dimension>

<!-- intervals dimension
the syntax is the same as common-ows, i.e. a comma separated list of "min/max/resolution" entries.
eg:

* 0/5000/1000 allows the values 0,1000,2000,3000,4000 and 5000

* 0/100/0 allows any values between 0 and 100

* both values can be combined: 0/5000/1000,0/100/0
-->
<dimension name="ELEVATION" type="intervals" default="0">0/5000/1000</dimension>

<!-- coming in a future version: support for ISO8601 date/time dimensions -->

</dimensions>
</tileset>

Services

Services are the type of request that mod-mapcache will respond to. You should of course enable at least one.

<service type="wms" enabled="true">
<!-- this service should actually be called "ogc". It is different from the other

services as it does not listen on the /wms endpoint, but directly on /.
It will intercept wms getmap requests that can be treated from configured
tilesets, and can optionally forward all the rest to (an)other server(s)
TODO: this needs way more documenting

<forwarding_rule name="foo rule">
<append_pathinfo>true</append_pathinfo>
<http>

<url>http://localhost/mapcacheproxy</url>
</http>

</forwarding_rule>
-->
<!-- full_wms

configure response to wms requests that are not aligned to a tileset’s grids.
responding to requests that are not in the SRS of a configured grid is not supported, but
this should never happen as only the supported SRSs are publicized in the capabilities
document.

allowed values are:
- error: return a 404 error (default)

320 Chapter 6. MapCache

MapServer Documentation, Release 6.4.1

- assemble: build the full image by assembling the tiles from the cache
- forward: forward the request to the configured source.

-->
<full_wms>assemble</full_wms>
<!-- resample mode
filter applied when resampling tiles for full wms requests.
can be either:
- nearest : fastest, poor quality
- bilinear: slower, higher qulity
-->
<resample_mode>bilinear</resample_mode>

<!-- format
image format to use when assembling tiles

-->
<format>myjpeg</format>

</service>
<service type="wmts" enabled="true"/>
<service type="tms" enabled="true"/>
<service type="kml" enabled="true"/>
<service type="gmaps" enabled="true"/>
<service type="ve" enabled="true"/>
<service type="demo" enabled="true"/>

Miscellaneous

<!-- default_format
format to use when a client asks for an image that is dynamically created from multiple
tiles from the cache.
note that using a png format with "best" compression is not recommended
here as it comes with a very compression overhead in terms of cpu processing. it is
recommended to use a png format with "fast"compression here, unless you have plenty
of server cpu power and or limited bandwidth

-->
<default_format>JPEG</default_format>

<!-- services
services that will be responded to by mod-mapcache
each service is accessible at the url http://host/path/to/mapcache/{service},
eg http://myhost/mapcache/wms for OGC WMS.

-->

<!-- errors
configure how error will be reported back to a client:

- log : no error is reported back, except an http error code.
- report : return the error message to the client in textual format
- empty_img : return an empty image to the client. the actual error code is in the X-Mapcache-Error http header
- report_img : return an image with the error text included inside. not implemented yet.

the default setting is to report the error message back to the user. In production, you might want to set this to "log"
if you’re paranoid, or to "empty_img" if you want to play nice with non-conforming clients.

-->
<errors>report</errors>

<!--
location to put lockfiles (to block other clients while a metatile is being rendered.
defaults to /tmp
this location should be writable by the apache user

-->

6.1. MapCache 321

MapServer Documentation, Release 6.4.1

<lock_dir>/tmp</lock_dir>

<!--
interval in microseconds to sleep before checking that a lockfile is still present.
default is 1/100th of a second (i.e. 10000 microseconds)

-->
<lock_retry>10000</lock_retry>

<!-- log_level
For CGI/FastCGI only - For the apache module use the httpd.conf
LogLevel key.
Defines the verbosity of the what is sent to the logs.

- debug
- info
- notice
- warn (default)
- error
- crit
- alert
- emerg

-->
<log_level>warn</log_level>

<!-- auto_reload
For FastCGI only. If set to true, the configuration will be automatically
reloaded if the configuration file has changed.
default is false.

-->
<auto_reload>true</auto_reload>

6.1.3 Supported Tile Services

Author Thomas Bonfort

Contact tbonfort at terriscope.fr

Author Stephen Woodbridge

MapCache has the ability to serve tiles using a variety of different request protocols and tile naming conventions.
This document is to describe these. The various services must be turned on in the mapcache.xml file for MapCache
to respond to those specific requests.

All services are available on the demo interface, from which you are highly encouraged to copy/paste the javascript
code to get started when creating your own pages accessing the MapCache tiles.

The following notation is used on this page and refer to object names in the mapcache.xml configuration file.

• <tileset_name> - name of a configured tileset

• <grid_name> - name of explicitly or implicitly defined grid

• <quadkey> - specific to the Virtual Earth Tile service

• <z> - Zoom level in zxy naming scheme

• <y> - row number in zxy naming scheme

• <x> - column number in zxy naming scheme

TMS service

The TMS service uses a z/x/y tile naming scheme where:

• z is the zoom level

322 Chapter 6. MapCache

MapServer Documentation, Release 6.4.1

• x is the column number

• y is the row number

To activate the TMS service, add these lines to the mapcache.xml configuration file:

<service type="tms" enabled="true"/>

A “capabilities” document can be fetched via:

http://myhost.com/mapcache/tms/1.0.0/

Tiles are requested using this scheme:

http://myhost.com/mapcache/tms/1.0.0/<tileset_name>@<grid_name>/<z>/<x>/<y>.png

For epsg:3857 or epsg:900913 or GoogleMapsCompatible grids, with cell = [z/x/y]:

z0:

[0/0/0]

z1:

[1/0/0][1/1/0]
[1/0/1][1/1/1]

z2:

[2/0/0][2/1/0][2/2/0][2/3/0]
[2/0/1][2/1/1][2/2/1][2/3/1]
[2/0/2]...
[2/0/3]...

etc...

For epsg:4326 or WGS84 grids:

Note: The OGC WMTS specification rather absurdly requires the GoogleCRS84Quad WellKnownScaleset to
have a level 0 who’s extent is -180,-180,180,180. The default “WGS84” MapCache grid honors this, which may
cause some incompatibilities with software that expects level 0 to be 2x1 tiles with extent -180,-90,180,90

z0:

[0/0/0]

z1:

[1/0/0][1/1/0]

z2:

[2/0/0][2/1/0][2/2/0][2/3/0]
[2/0/1][2/1/1][2/2/1][2/3/1]

etc...

KML Service

The KML service produces Super-Overlays for tilesets that are aligned to the WGS84 / epsg:4326 grids. A Super-
Overlay is a KML file that links to an image url, and to a set of other KML urls corresponding to neighbouring
resoltions. The KML service uses a z/x/y tile naming scheme where:

• z is the zoom level

• x is the column number

6.1. MapCache 323

http://code.google.com/apis/kml/documentation/kml_21tutorial.html#superoverlays

MapServer Documentation, Release 6.4.1

• y is the row number

Note: For the KML service to be functional, the TMS service must also be activated, as the KML super-overlays
link to images using this spec.

To activate the KML service, add these lines to the mapcache.xml configuration file:

<service type="tms" enabled="true"/>
<service type="kml" enabled="true"/>

Tiles are requested using this scheme:

http://myhost.com/mapcache/kml/<tileset_name>@<grid_name>/<z>/<x>/<y>.kml

OGC WMTS Service

To activate the WMTS service, add these lines to the mapcache.xml configuration file:

<service type="wmts" enabled="true"/>

This service follows the standard OGC WMTS requests and supports both the classical OGC style KVP encoded
and REST style requests.

http://myhost.com/mapcache/wmts?SERVICE=WMTS&VERSION=1.0.0&...
http://myhost.com/mapcache/wmts/1.0.0/....

The capabilities are obtained through:

http://myhost.com/mapcache/wmts?service=wmts&request=getcapabilities&version=1.0.0
http://myhost.com/mapcache/wmts/1.0.0/WMTSCapabilities.xml

See Also:

FeatureInfo Requests

See Also:

Tileset Dimensions

OGC WMS Service

MapCache responds to WMS version 1.1.1 requests, and has limited support for version 1.3.0 ones.

<service type="wms" enabled="true"/>

Note: Note that the WMS service is a little different than the other MapCache services, as it listens on the root of
the configured instance instead of on an additional endpoint (i.e. the service replies on http://server/mapcache/?
and not on http://server/mapcache/wms?). This behavior is required in order to enable proxying of unsupported
requests while offering a single endpoint for all OGC services.

Note: MapCache primarily supports version 1.1.1 WMS requests, but has limited support for the newer version
1.3.0 ones. For the 1.3.0 requests, MapCache will determine which grid to use by using the CRS= parameter
instead of the SRS= one, and will correctly honor axis ordering for the epsg reference systems that switch the
usual x/y ordering of the BBOX parameter.

See Also:

FeatureInfo Requests

See Also:

324 Chapter 6. MapCache

http://server/mapcache/
http://server/mapcache/wms

MapServer Documentation, Release 6.4.1

Tileset Dimensions

See Also:

Tile Assembling

WMS requests follow the classical KVP encoded style:

http://myhost.com/mapcache?SERVICE=WMS&VERSION=1.1.1&REQUEST=....

The capabilities document is returned by:

http://myhost.com/mapcache?service=wms&request=getcapabilities

GoogleMaps XYZ Service

<service type="gmaps" enabled="true"/>

Prerequisites: your WMS should be capable of producing images in the EPSG:900913 or EPSG:3857 SRS, i.e. it
should reference the “g” or “GoogleMapsCompatible” grid

This is the minimal html page that should get you going.The important bits are in the urlTemplate (for V2) and
getTileURL (for V3) variables:

• /mapcache is the apache path where MapCache handles requests

• test@g is the tileset and grid name to use, joined by a ‘@’ - the {Z}/{X}/{Y} should be left alone

• the final extemsion should be changed to “jpg” if you are using a jpeg format with your tileset.

V2 API

<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="content-type" content="text/html; charset=utf-8"/>
<title>Google/MapServer Tile Example</title>
<script src="http://maps.google.com/maps?file=api&v=2&key=ABQIAAAAnfs7bKE82qgb3Zc2YyS-oBT2yXp_ZAY8_ufC3CFXhHIE1NvwkxSySz_REpPq-4WZA27OwgbtyR3VcA"

type="text/javascript"></script>
<script type="text/javascript">

function load() {
if (GBrowserIsCompatible()) {
var urlTemplate = ’/mapcache/gmaps/test@g/{Z}/{X}/{Y}.png’;
var myLayer = new GTileLayer(null,0,18,{

tileUrlTemplate:urlTemplate,
isPng:true,
opacity:0.8 });

var map = new GMap2(document.getElementById("map"));
map.addControl(new GLargeMapControl());
map.addControl(new GMapTypeControl());
map.setCenter(new GLatLng(0, 0), 1);
map.addOverlay(new GTileLayerOverlay(myLayer));

}
}

</script>
</head>
<body onload="load()" onunload="GUnload()">

<div id="map" style="width: 500px; height: 500px"></div>

6.1. MapCache 325

MapServer Documentation, Release 6.4.1

</body>
</html>

V3 API

The previous javascript for the V2 example should be slightly changed to:

var map = new google.maps.Map("<element-id>", { /*options*/ });
var layerOptions = {
getTileUrl: function(coord, zoom) {
return "/mapcache/gmaps/test@g/" + zoom + "/" + coord.x + "/" + coord.y + ".png";

},
tileSize: new google.maps.Size(256,256) // or whatever

};
map.overlayMapTypes.insertAt(0, new google.maps.ImageMapType(layerOptions));

Virtual Earth Tile service

Tiles are organized in one of two different layouts depending on whether they are using a Spherical Mercator
project, like epsg:3857 or epsg:900913, or if they are using the geographical projection, like epsg:4326.

Tiles are requested using this scheme:

http://myhost.com/mapcache/ve?LAYER=<tileset_name>@<grid_name>&tile=<quadkey>

For epsg:3857 or epsg:900913 or GoogleMapsCompatible grids, <quadkey> are arranged:

z0:

[0]

http://myhost.com/mapcache/ve?LAYER=osm@GoogleMapsCompatible&tile=0

z1:

[00][01]
[02][03]

http://myhost.com/mapcache/ve?LAYER=osm@GoogleMapsCompatible&tile=00
http://myhost.com/mapcache/ve?LAYER=osm@GoogleMapsCompatible&tile=01
http://myhost.com/mapcache/ve?LAYER=osm@GoogleMapsCompatible&tile=02
http://myhost.com/mapcache/ve?LAYER=osm@GoogleMapsCompatible&tile=03

etc...

For epsg:4326 or WGS84 grids, <quadkey> are arranged:

z1:

[0][1]

http://myhost.com/mapcache/ve?LAYER=osm@WGS84&tile=0
http://myhost.com/mapcache/ve?LAYER=osm@WGS84&tile=1

z2:

[00][01][10][11]
[02][03][12][13]

http://myhost.com/mapcache/ve?LAYER=osm@WGS84&tile=00
http://myhost.com/mapcache/ve?LAYER=osm@WGS84&tile=01
http://myhost.com/mapcache/ve?LAYER=osm@WGS84&tile=02

326 Chapter 6. MapCache

MapServer Documentation, Release 6.4.1

http://myhost.com/mapcache/ve?LAYER=osm@WGS84&tile=03
http://myhost.com/mapcache/ve?LAYER=osm@WGS84&tile=10
http://myhost.com/mapcache/ve?LAYER=osm@WGS84&tile=11
http://myhost.com/mapcache/ve?LAYER=osm@WGS84&tile=12
http://myhost.com/mapcache/ve?LAYER=osm@WGS84&tile=13

etc...

6.1.4 Seeder

Author Thomas Bonfort

Contact tbonfort at terriscope.fr

Author Mathieu Coudert

Contact mathieu.coudert at gmail.com

Mod-mapcache ships whith an advanced seeding tool, whose main features are:

• configurable number of seeding threads, to speed up the rendering.

• ability to reseed tiles older than a certain timestamp

• ability to seed tiles given a shapefile/ogr datasource

Usage

The seeding utility is named mapcache_seed, and is located under your install directory (default is /usr/local/bin).

Commandline options

Options are available in a short or long version (i.e. -c or –config).

-c | –config [file]: path to the mapcache.xml configuration file that contains the tilesets that need to be seeded.

-D | –dimension “DIMENSION=VALUE”: used to specify which dimension to use if the tileset supports dimen-
sions. Can be used multiple times to set multiple dimensions, e.g. -D “DIM1=VAL1” -D “DIM2=VAL2”.

-e | –extent minx,miny,maxx,maxy: bounding box of the area to seed.

-f | –force: force tile recreation even if it already exists.

-g | –grid [grid]: name of the grid that must be seeded (the selected tileset must reference the given grid).

-h | –help: show help

-i | –iteration-mode: either “drill-down” or “level-by-level”. Default is to use drill-down for g, WGS84 and
GoogleMapsCompatible grids, and level-by-level for others. Use this flag to override.

-m | –mode: the mode to use the seeder : seed, delete or transfer. Default is seed (mode: seed).

-M | –metasize: override metatile size while seeding, eg. 8,8.

-n | –nthreads: number of parallel threads that should be used to request tiles from the wms source. The default
is 1, but can be set higher if the WMS server can withstand parallel requests (as a rule of thumb, the value chosen
here should never be much higher than the number of cpus on the wms server).

Note: this option is imcompatible with the -p | –nprocesses option.

-o | –older [timestamp|now]: only seed tiles that are older than the given value. The value can either be the string
“now”, or a date formatted like year/month/day hour:minute, eg: “2011/01/31 20:45”.

6.1. MapCache 327

MapServer Documentation, Release 6.4.1

Note: a full timestamp should be quoted.

-p | –nprocesses: number of parallel processes that should be used to request tiles from the wms source.

Note: this option is imcompatible with the -n | –nthreads option.

Warning: When working with multiple processes (-p switch) and sqlite cache backends, some errors may
appear under high concurrency when writing to the sqlite database (error: SQL logic error or missing database
(1)). Upgrading to sqlite >= 3.7.15 seems to resolve this issue.

-q | –quiet: don’t print progress messages to the standard output.

-t | –tileset [tileset]: name of the tileset that must be seeded.

-v | –verbose: print verbose debugging info (if compiled in).

-x | –transfer: the tileset to transfer when seeder is use into transfer mode.

-z | –zoom minzoom,maxzoom: start and end zoom levels that must be seeded.

Optional Commandline options when using OGR/GEOS

At compile time, if ogr and geos where found on the system, the seeder tool supports additional options to seed
only the tiles that cover an arbitrary geographical area. Important: Note that for the time being, the OGR data-
source should be in the same projection as the grid you are seeding, as there is no automatic reprojection from the
datasource projection to the grid projection.

-d | –ogr-datasource [ogr_datasource]: ogr connection to the spatial source. Consult the OGR documentation
for all that is supported. In the simplest case (e.g. a Shapefile), this is just the full filename of the shapefile.

-l | –ogr-layer [ogr_layer]: for datasources that contain multiple layers (e.g. postgis, with multiple tables),
determines which layer will be used.

-s | –ogr-sql [ogr_sql]: OGR sql expression that can be applied (see OGR SQL).

-w | –ogr-where [ogr_where]: sql “where” expression to filter out returned values. This would typically be used
to select only the geometry of a given country if the datasource contains all the world contours.

Important Note

The seeding utility must be run under the same user account as the user running the webserver. This is required
so the permissions on the tiles created by the seeder are accessible by the webserver, and conversely so the seeder
has the rights to write files to directories created by the webserver.

A sample seeding session goes like this:

[user@host]$ sudo www-data
[www-data@host]$ /path/to/mapcache/src/mapcache_seed -c /path/to/www/conf/mapcache.xml [[options]]
[www-data@host]$ logout
[user@host]$

Examples

Seed the “osm” tileset with the “g” (google/web-mercator) grid:

./src/mapcache_seed -c mapcache.xml -t osm -g g

Seed levels 0 through 12:

328 Chapter 6. MapCache

http://www.gdal.org/ogr/ogr_sql.html

MapServer Documentation, Release 6.4.1

./src/mapcache_seed -c mapcache.xml -t osm -g g -z 0,12

Given a shapefile that contains the world country countours, seed only the areas that are covered by land (i.e. skip
the oceans). Also use 4 request threads in parallel:

./src/mapcache_seed -c mapcache.xml -t osm -g g -z 0,12 -n 4 -d /path/to/seed.shp

Same as beforehand, but only seed the USA (notice the quote usage, required to create valid sql with a single-
quoted ‘US’:

./src/mapcache_seed -c mapcache.xml -t osm -g g -z 0,12 -n 4 -d /path/to/seed.shp -w "FIPS_A2=’US’"

Reseed levels 0 to 12 (this could also be done by deleting the cache for levels 0 to 12 and doing a classic seed, but
doing so this way does not slow down the access from web clients):

./src/mapcache_seed -c mapcache.xml -t osm -g g -z 0,12 -o now

6.1.5 Cache Types

Author Thomas Bonfort

Contact tbonfort at terriscope.fr

This document details the different cache backends that can be used to store tiles

Disk Caches

The disk based cache is the simplest cache to configure, and the one with the the fastest access to existing tiles. It
is ideal for small tile repositories, but may cause trouble for sites hosting millions of tiles, as the number of files or
directory may rapidly overcome the capabilities of the underlying filesystem. Additionaly, the block size chosen
for the filesystem must closely match the mean size of a stored tile: ideally, any given tile should just fit inside a
filesystem block, so as not to waste storage space inside each block, and not have to use up multiple blocks per
tile.

The location of the files/directories has to be readable and writable by the user running the tile server.

There are two types of disk caches, that create a different hierarchy of files:

Default Structure

The default disk cache stores tiles in a structure nearly identical to the file/directory hierarchy used by TileCache.
The only change is that a top level directory corresponding to the name of the grid is added (as MapCache supports
multiple grids per tileset)

This cache is capable of detecting blank (i.e. uniform color) tiles and using a symbolic link to a single blank tile
to gain disk space.

<cache name="disk" type="disk">
<base>/tmp</base>
<symlink_blank/>

</cache>

The two only configuration keys are the root directory where the tiles will be stored, and a key to activate the
symbolic linking of blank tiles

Template Structure

The template based disk cache allows you to create (or reuse an existing) tile structure that you define in advance.
The <template> parameter takes a string argument where various template entries will be replaced at runtime by
the correct value for each tile to store.

6.1. MapCache 329

MapServer Documentation, Release 6.4.1

<cache name="tmpl" type="disk">
<!-- template

string template that will be used to map a tile (by tileset, grid name, dimension,
format, x, y, and z) to a filename on the filesystem.
the following replacements are performed:
- {tileset} : the tileset name
- {grid} : the grid name
- {dim} : a string that concatenates the tile’s dimension
- {ext} : the filename extension for the tile’s image format
- {x},{y},{z} : the tile x,y,z values
- {inv_x}, {inv_y}, {inv_z} : inverted x,y,z values (inv_x = level->maxx - x - 1). This

is mainly used to support grids where one axis is inverted (e.g. the google schema)
and you want to create on offline cache.

* note that this type of cache does not support blank-tile detection and symlinking.

* warning: it is up to you to make sure that the template you chose creates a unique
filename for your given tilesets. e.g. do not ommit the {grid} parameter if your
tilesets reference multiple grids. Failure to do so will result in filename
collisions !

-->
<template>/tmp/template-test/{tileset}#{grid}#{dim}/{z}/{x}/{y}.{ext}</template>

</cache>

BerkeleyDB Caches

The BerkeleyDB cache backend stores tiles in a key-value flat-file database. and therefore does not have the
disadvantages of disk caches with regards to the number of files stored on the filesystem. As the image blobs
are stored contiguously, the block size chosen for the filesystem has no influence on the storage capacity of the
volume.

Note that for a given bdb cache, only a single database file is created, which will store the tiles of its associated
tilesets (i.e. there is not a database file created per tileset, grid, and or dimension). If you need to store different
tilesets to different files, then use multiple dbd cache entries. It is not possible to use multiple database files for
tileset grids or dimensions.

The berkeleyDB based caches are a bit faster than the disk based caches during reads, but may be a bit slower
during concurrent writes if a high number of threads all try to insert new tiles concurrently.

<cache name="bdb" type="bdb">
<!-- base (required)

absolute filesystem path where the berkeley db database file is to be stored.
this directory must exist, and be writable

-->
<base>/tmp/foo/</base>

<!-- key_template (optional)
string template used to create the key for a tile entry in the database.
defaults to the value below. you should include {tileset}, {grid} and {dim} here
unless you know what you are doing, or you will end up with mixed tiles

<key_template>{tileset}-{grid}-{dim}-{z}-{y}-{x}.{ext}</key_template>
-->

</cache>

Sqlite Caches

There are two different sqlite caches that vary by the database schema they create and query. Sqlite caches have
the advantage that they store tiles as blobs inside a single database file, and therefore do not have the disadvantages

330 Chapter 6. MapCache

MapServer Documentation, Release 6.4.1

of disk caches with regards to the number of files stored. As the image blobs are stored contiguously, the block
size chosen for the filesystem has no influence on the storage capacity of he volume.

The sqlite based caches are a bit slower than the disk based caches, and may have write-locking issues at seed
time if a high number of threads all try to insert new tiles concurrently.

Default Schema

Tiles are stored in the configured sqlite file created by mapcache with

create table if not exists tiles(
tileset text,
grid text,
x integer,
y integer,
z integer,
data blob,
dim text,
ctime datetime,
primary key(tileset,grid,x,y,z,dim)

);

<cache name="sqlite" type="sqlite3">
</cache>

You may also add custom sqlite pragmas that will be executed when first connecting to a sqlite db, e.g. to override
some compiled in sqlite defaults

<cache name="sqlitetemplate" type="sqlite3">
<dbfile>/tmp/sqlitefile.db</dbfile>
<pragma name="max_page_count">10000000</pragma>

</cache>

<pragma> entries will result in a call to

PRAGMA max_page_count = 1000000;

Custom Schema

This cache can use any database schema, it is up to you to supply the SQL that will be exectuted to select or insert
a new tile.

This cache type is not fully implemented yet (there is no way to configure it from the mapcache.xml configuration
file yet)

MBTiles Schema

This cache type is a shortcut to the previous custom schema sqlite cache, with pre-populated SQL queries that
correspond to the MBTiles specification.

Although the default mbtiles schema is very simple, mapcache uses the same multi- table schema found in most
downloadable mbtiles file, to notably enable storing blank (i.e. uniform) tiles without duplicating the encoded
image data (in the same way the disk cache supports tile symlinking).

The mbtiles schema is created with:

create table if not exists images(
tile_id text,
tile_data blob,
primary key(tile_id));

create table if not exists map (

6.1. MapCache 331

MapServer Documentation, Release 6.4.1

zoom_level integer,
tile_column integer,
tile_row integer,
tile_id text,
foreign key(tile_id) references images(tile_id),
primary key(tile_row,tile_column,zoom_level));

create table if not exists metadata(
name text,
value text); -- not used or populated yet

create view if not exists tiles
as select

map.zoom_level as zoom_level,
map.tile_column as tile_column,
map.tile_row as tile_row,
images.tile_data as tile_data

from map
join images on images.tile_id = map.tile_id;

<cache name="mbtiles" type="mbtiles">
<dbfile>/Users/XXX/Documents/MapBox/tiles/natural-earth-1.mbtiles</dbfile>

</cache>

Note: Contrarily to the standard sqlite mapcache schema, the mbtiles db file only supports a single tileset per
cache. The behavior if multiple tilesets are associated to the same mbtiles cache is undefined, and will definitely
produce incorrect results.

Warning: When working with multiple processes (-p switch) and sqlite cache backends, some errors may
appear under high concurrency when writing to the sqlite database (error: SQL logic error or missing database
(1)). Upgrading to sqlite >= 3.7.15 seems to resolve this issue.

Memcache Caches

This cache type stores tile to an external memcached server running on the local machine or accessible on the
network. This cache type has the advantage that memcached takes care of expiring tiles, so the size of the cache
will never exceed what has been configured in the memcache instance.

Memcache support requires a rather recent version of the apr-util library. Note that under very high loads (usually
only atainable on synthetic benchmarks on localhost), the memcache implementation of apr-util may fail and start
dropping connections for some intervals of time before coming back online afterwards.

You can add multiple <server> entries.

<cache name="memcache" type="memcache">
<server>

<host>localhost</host>
<port>11211</port>

</server>
</cache>

Note: Tiles stored in memcache backends are configured to expire in 1 day by default. This can be overriden at
the tileset level with the <auto_expire> keyword.

(Geo)TIFF Caches

TIFF caches are the most recent addition to the family of caches, and use the internal tile structure of the TIFF
specification to access tile data. Tiles can be stored in JPEG only (TIFF does not support PNG tiles).

332 Chapter 6. MapCache

MapServer Documentation, Release 6.4.1

As a single tiff file may contain many tiles, there is a drastic reduction in the number of files that have to be stored
on the filesystem, which solves the major shortcomings of the disk cache. Another advantage is that the same TIFF
files can be used by programs or WMS servers that only understand regular GIS raster formats, and be served up
with high performance for tile access.

The TIFF cache should be considered read-only for the time being. Write access is already possible but should
be considered experimental as there might be some file corruption issues, notably on network file-systems. Note
that until all the tiles in a given tiff file have been seeded/created, the TIFF file is said to be “sparse” in the sense
that it is missing a number of jpeg tiles. As such most non-gdal based programs will have problems opening these
incomplete files.

Note that the tiff tile structure must exactly match the structure of the grid used by the tileset, and the tif file names
must follow strict naming rules.

Defining the TIFF file sizes

The number of tiles stored in each the horizontal and vertical direction must be defined:

• <xcount> the number of tiles stored along the x (horizontal) direction of the TIFF file.

• <ycount> the number of tiles stored along the y (vertical) direction of the TIFF file.

<cache name="tiff" type="tiff">
<xcount>64</xcount>
<ycount>64</ycount>
...

</cache>

Setting up the file naming convention

The <template> tag sets the template to use when looking up a TIFF file name given the x,y,z of the requested tile

<cache name="tiff" type="tiff">
<template>/data/tiffs/{tileset}/{grid}/L{z}/R{inv_y}/C{x}.tif</template>
...

</cache>

The following template keys are available for operating on the given tile’s x,y, and z:

• {x} is replaced by the x value of the leftmost tile inside the TIFF file containing the requested tile

• {inv_x} is replaced by the x value of the rightmost tile.

• {y} is replaced by the y value of the bottommost tile.

• {inv_y} is replaced by the y value of the topmost tile.

• {div_x} is replaced by the index of the TIFF file starting from the left of the grid (i.e. {div_x} =
{x}/<countx>)

• {inv_div_x} same as {div_x} but starting from the right.

• {div_y} is replaced by the index of the TIFF file starting from the bottom of the grid (i.e. {div_y} =
{y}/<county>)

• {inv_div_y} same as {div_y} but starting from the top.

Note: {inv_x} and {inv_div_x} will probably be rarely used, whereas {inv_y} and {inv_div_y} will find some
usage for people who prefer to index their TIFF files from top to bottom rather than bottom to top.

6.1. MapCache 333

MapServer Documentation, Release 6.4.1

Customizing the template keys

In some occurences, it may be desirable to have a precise hand on the filename to use for a given x,y,z, tile
lookup, e.g. to look for a file named “Z03-R00003-C000009.tif” instead of just “Z3-R3-C9.tif”. The <template>
entry supports formatting attributes, following the unix printf syntax (c.f.: http://linux.die.net/man/3/printf), by
suffixing each template key with “_fmt”, e.g.:

<cache name="tiff" type="tiff">
<template

x_fmt="%08d"
inv_y_fmt="%08d"

>/data/tiffs/{tileset}/{grid}/L{z}/R{inv_y}/C{x}.tif</template>
</cache>

Note: If not specified, the default behavior is to use “%d” for formatting.

Setting JPEG compression options

An additional optional parameter defines which JPEG compression should be applied to the tiles when saved into
the TIFF file:

• <format> the name of the (jpeg) format to use

See Also:

JPEG Format

<cache name="tiff" type="tiff">
...
<format>myjpeg</format>

</cache>

In this example, assuming a grid using 256x256 tiles, the files that are read to load the tiles are tiled TIFFs with
jpeg compression, who’s size are 16384x16384. The number of files to store on disk is thus reduced 4096 times
compared to the basic disk cache.

GeoTIFF Support

If compiled with GeoTiff and write support, MapCache will add referencing information to the TIFF files it creates,
so that the TIFF files can be used in any geotiff- enabled software. Write support does not produce full geotiffs
with the definition of the projection used, but only the pixel scale and tie-points, i.e. what is usually found in .tfw
files.

For reference, here is the gdalinfo output on a TIFF file created by MapCache when compiled with geotiff support:

LOCAL_CS["unnamed",
UNIT["metre",1,

AUTHORITY["EPSG","9001"]]]
Origin = (-20037508.342789247632027,20037508.342789247632027)
Pixel Size = (156543.033928040997125,-156543.033928040997125)
Metadata:

AREA_OR_POINT=Area
Image Structure Metadata:

COMPRESSION=YCbCr JPEG
INTERLEAVE=PIXEL
SOURCE_COLOR_SPACE=YCbCr

Corner Coordinates:
Upper Left (-20037508.343,20037508.343)
Lower Left (-20037508.343,-20037508.343)
Upper Right (20037508.343,20037508.343)

334 Chapter 6. MapCache

http://linux.die.net/man/3/printf

MapServer Documentation, Release 6.4.1

Lower Right (20037508.343,-20037508.343)
Center (0.0000000, 0.0000000)

6.1.6 Image Formats

Author Thomas Bonfort

Contact tbonfort at terriscope.fr

MapCache allows you to configure how the image should be saved to a cache once it has been requested from a
source. The JPEG format should mostly be used for raster imagery, whereas the PNG format is most usefull for
vector based imagery where there are large uniform areas.

JPEG Format

The JPEG format saves tiles to jpeg, you can configure the JPEG compression level (from 1 to 100) and the
colorspace that should be used (rgb or ycbcr)

<format name="myjpeg" type="JPEG">
<quality>85</quality>
<photometric>ycbcr</photometric>

</format>

• quality: this is the typical jpeg quality setting. Values under 50 produce lighter images but with notable
compression artifacts. 100 should be avoided as it produces very heavy images

• photometric: By default the YCbCr colorspace is used as it produces images that tend to be 2 to 3 times
lighter. Use rgb if you don’t want the default.

PNG Format

The PNG format creates PNG images, with optional quantization (reduction of the number of colors to create an
8bit paletted PNG)

<format name="mypng" type="PNG">
<compression>fast</compression>
<colors>256</colors>

</format>

• compression: choose which zlib compression to apply to the image data. Recognized values are “fast” and
“best”. Omit the key to use the default zlib compression.

• colors: number of colors to use for quantization. Ommit this key to produce 24 or 32 bit RGB/RGBA pngs,
or set to a value between 2 and 256 to create an 8-bit paletted png. The quantization step is destructive,
there is no guarantee that pixels will not have a noticable shift in color in the case when the tile contains
many colors.

Mixed Format

There is a third special format which mixes JPEG and PNG compression depending on the contents of the image.
This format allows to create caches for raster imagery using JPEG compression (which is more efficient) on
zones with imagery data, and PNG compression (which supports trasnparency) on zones with no imagery or on a
boundary between imagery and emptiness.

<format name="mymixed" type="MIXED">
<opaque>myjpeg</opaque>
<transparent>mypng</transparent>

</format>

6.1. MapCache 335

MapServer Documentation, Release 6.4.1

• opaque: the format to use when the image has only fully opaque pixels

• transparent: the format to use if when the image has some transparent or semi-opaque pixels.

6.1.7 Tileset Dimensions

Author Thomas Bonfort

Contact tbonfort at terriscope.fr

6.1.8 FeatureInfo Requests

Author Thomas Bonfort

Contact tbonfort at terriscope.fr

TBD

6.1.9 Proxying Unsupported Requests

Author Thomas Bonfort

Contact tbonfort at terriscope.fr

Note: This page is a work in progress

MapCache has the ability to forward any incoming request that it cannot natively respond to (either by returning a
tile directly, by merging multiple tiles, etc...).

This setup allows mapcache to be placed transparently in front of an existing OGC-service supplying server to
accelerate tiled or getmap requests for a selected number of grids, while maintaining service compatibility for,
e.g., unsupported grids, WFS requests, ...

Note: The proxying of requests is configured inside the WMS MapCache service, which is semantically awkward.

The configuration for this behavior is activated by a succession of entries inside the <forwarding_rule> element
of the wms <service>. Rules are tested for in the order in which they appear in the mapcache.xml configuration
file, and the first one that matches is used. If no rules are defined, or if no rule matches the incoming request, an
error is returned to the user.

<service type="wms" enabled="true">
<forwarding_rule name="first rule">

<!-- rule tests -->
<!-- proxy destination -->

</forwarding_rule>
<forwarding_rule name="second rule">

<!-- rule tests -->
<!-- proxy destination -->

</forwarding_rule>
</service>

A <forwarding_rule> consists of a set of matching rules and an <http> block defining where the request should be
forwarded to.

Parameter Filtering

The rules apply to the KVP parameters that were passed in the incoming request, and are added with the <param>
keyword:

336 Chapter 6. MapCache

MapServer Documentation, Release 6.4.1

<forwarding_rule name="first rule">
<param name="SERVICE" type="values">WFS,WCS</param>
<!-- ... !>

<forwarding_rule>

The “type” attribute is the same that what is allowed for dimensions, i.e. allowed values are “values”, “regex”, and
“intervals”. In the previous example, the rule would match any incoming request having ...&SERVICE=WFS&...
or ...&SERVICE=WCS&... in its request parameters.

<forwarding_rule name="first rule">
<param name="SERVICE" type="values">WFS,WCS</param>
<param name="LAYERS" type="values">somelayername</param>
<!-- ... !>

<forwarding_rule>

Multiple rules can be used if the filtering has to be done on mutiple parameters. In the previous example, the rule
would match a WFS or WCS request that concerns the “somelayername” layer only.

A <forwarding_rule> that has no <param> child will match any incoming request that could not be serviced by
MapCache directly from its cache, and can be used to forward all unsupported request to a full OGC compliant
server so that an un-cached response can be returned to the client.

See Also:

Tileset Dimensions

Proxy Destination

Once a <forwarding_rule> matches, its <http> child will be used to proxy the request to another server.

<forwarding_rule name="first rule">
<!-- ... !>
<http>

<url>http://wmsserver/ogc.cgi?</url>
</http>

<forwarding_rule>

See Also:

HTTP Service Definition

6.1.10 Data Sources

Author Thomas Bonfort

Contact tbonfort at terriscope.fr

Note: This page is a work in progress

MapCache uses the concept of a “source” as a service that is able to return image data given a set of parameters
(namely an extent, an image size, and a projection). Typically, a source is the third party WMS server that you
want to put a tilecache infront of.

6.1. MapCache 337

MapServer Documentation, Release 6.4.1

HTTP Service Definition

WMS Sources

MapFile Sources

6.1.11 Tile Assembling

Author Thomas Bonfort

Contact tbonfort at terriscope.fr

TBD

See Also:

MapCache presentation slides at FOSS4G2011

6.1.12 Features

• services WMS, WMTS, TMS, VirtualEarth/Bing and Googlemaps requests: Supported Tile Services

• ability to respond to untiled WMS requests by merging tiles from the cache or forwarding them to the wms
source: Tile Assembling

• responds to WMS/WMTS GetFeatureInfo requests (forwarded to source service)

• KML superoverlay generation

• data provided by WMS backends (GDAL supported sources planned)

• cache types:

– Disk

– BerkeleyDB

– Sqlite

– Memcached

– Tiled TIFFs

• configurable metatiling

• on-the-fly tile merging for combining multiple tiles into a single image

• image post-processing (recompression and quantization) when arriving from a backend

• interprets and produces cache control headers: Last-Modified, If-Modified-Since, Expires

• multithreaded seeding utility, that can seed specific zoom levels or specific areas (e.g.: seed levels 0 to 12
of all tiles intersecting Colorado)

• ability to add a custom watermark on stored tiles

• produces a CGI/fastCGI executable for using with other webservers than apache

• configurable symbolic linking of blank tiles to gain disk storage

• configurable error reporting: plain http error code, textual message, or empty (blank) image

• ability to specify vendor params or dimensions to be forwarded to the WMS backend (and build a cache
that takes these parameters into account): Tileset Dimensions

338 Chapter 6. MapCache

http://www.slideshare.net/tbonfort/modgeocache-mapcache-a-fast-tiling-solution-for-the-apache-web-server

CHAPTER

SEVEN

INPUT

7.1 Data Input

7.1.1 Vector Data

Author Jeff McKenna

Contact jmckenna at gatewaygeomatics.com

Author Tyler Mitchell

Contact tmitchell at osgeo.org

Last Updated 2013-10-01

This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a copy of this license,
visit: http://creativecommons.org/licenses/by-sa/2.0/ca/ or send a letter to Creative Commons, 559 Nathan Abbott
Way, Stanford, California 94305, USA.

What is vector data? This quote from is a good description of what vector data is:

Vector: “An abstraction of the real world where positional data is represented in the form of coordi-
nates. In vector data, the basic units of spatial information are points, lines and polygons. Each of
these units is composed simply as a series of one or more coordinate points. For example, a line is a
collection of related points, and a polygon is a collection of related lines. Vector images are defined
mathematically as a series of points joined by lines. Vector-based drawings are resolution indepen-
dent. This means that they appear at the maximum resolution of the output device, such as a printer or
monitor. Each object is self-contained, with properties such as color, shape, outline, size, and position
on the screen.”

From: http://www8.nos.noaa.gov/coris_glossary/index.aspx?letter=v

The rest of this document is the data format guide. This guide is structured to show the fundamentals of each
MapServer supported data format. Each section discusses one format, ranging from one to several pages in length.
The sections typically start with a summary of the most important information about the format, followed by
examples of file listings, connection methods, ogrinfo usage and MapServer map file syntax examples.

Each section has been designed to stand alone, so you may notice that certain warnings and comments are repeated
or redundant. This is intentional. Each format is presented in rough order of popular use, based on a survey of the
MapServer community.

The following formats are included:

Data Format Types

Each type of data is made up of a data source and (one or more) layers. These two definitions apply to MapServer
and OGR.

339

http://creativecommons.org/licenses/by-sa/2.0/ca/
http://www8.nos.noaa.gov/coris_glossary/index.aspx?letter=v

MapServer Documentation, Release 6.4.1

Data Source - a group of layers stored in a common repository. This may be a file that handles several layers
within it, or a folder that has several files.

Layer - a sub-set of a data source often containing information in one type of vector format (point, line, polygon).

There are three types of data mapping and GIS data formats. Each type is handled differently. Below are the types
and some example formats:

• File-based- Shapefiles, Microstation Design Files (DGN), GeoTIFF images

• Directory-based - ESRI ArcInfo Coverages, US Census TIGER

• Database connections - PostGIS, ESRI ArcSDE, MySQL

File-based Data

File-based data consists of one or more files stored in any arbitrary folder. In many cases a single file is used (e.g.
DGN) but ESRI Shapefiles, for example, consist of at least 3 files each with a different filename extension: SHP,
DBF, SHX. In this case all 3 files are required because they each perform a different task internally.

Filenames usually serve as the data source name and contain layers that may or may not be obvious from the
filename. In Shapefiles, for example, there is one data source per shapefile and one layer which has the same name
as that of the file.

Directory-based Data

Directory-based data consists of one or more files stored in a particular way within a parent folder. In some cases
(e.g. Coverages) they may also require additional folders in other locations in the file tree in order to be accessed.
The directory itself may be the data source. Different files within the directory often represent the layers of data
available.

For example, ESRI ArcInfo Coverages consist of more than one file with an ADF file extension, within a folder.
The PAL.ADF file represents the Polygon data. ARC.ADF holds the arc or line string data. The folder holds the
data source and each ADF file is a layer.

Database Connections

Database Connections are very similar to file and directory-based structures in one respect: they provide ge-
ographic coordinate data for MapServer to interpret. That may be oversimplifying what is happening inside
MapServer, but in essence all you need is access to the coordinates making up the vector datasets.

Database connections provide a stream of coordinate data that is temporarily stored (e.g. in memory) and read by
MapServer to create the map. Other attribute or tabular data may also be required, but the focus of this guide is
coordinate data.

One important distinction between databases must be made. The databases discuss here are spatial databases, those
which can hold geographic data in its own data type. This is opposed to strictly tabular databases which cannot
hold geographic coordinates in the same way. It is possible to store some very simple coordinate data in regular
tables, but for anything but the most simple use a spatial database is required. There are spatial extensions to many
databases (open source and commercial). One of the most robust is the PostGIS extension to the PostgreSQL
database. This database not only allows the storage of geographic data, but also allows the manipulation of that
data using SQL commands. The other open source database with spatial capabilities is MySQL.

Connections to databases usually consist of the following pieces of connection information:

Host - Directions to the server or computer hosting the database.

Database name - The name of the database you wish to access that is running on the host.

User name / passwords - Access privileges are usually restricted by user.

Note: Some databases (e.g. Oracle) use a name service identifier that includes both the host and database names.

340 Chapter 7. Input

MapServer Documentation, Release 6.4.1

Access to specific pieces of coordinate data usually require:

Table/View name - The name of the table or view holding the coordinate data.

Geographic column name - Where the geometry or coordinates are stored.

ArcInfo

ESRI ArcInfo Coverage Files are also known as simply as Coverages and less commonly as ADF files.

File listing

Coverages are made up of a set of files within a folder. The folder itself is the coverage name. The files roughly
represent different layers, usually representing different types of topology or feature types.

> ls /data/coverage/brazil
aat.adf arc.adf arx.adf bnd.adf lab.adf prj.adf tic.adf tol.adf

A folder with the name INFO is also part of the coverage. It sits at the same hierarchical level as the coverage
folder itself. Therefore, to copy a coverage (using regular file system tools) the coverage folder and the INFO
folder must both be copied. The INFO folder holds some catalogue information about the coverage.

> ls /data/coverage/info
arc0000.dat arc0001.dat arc0002.dat arc.dir
arc0000.nit arc0001.nit arc0002.nit

Data Access / Connection Method

• CONNECTIONTYPE OGR must be used. The ability to use coverages is not built into MapServer.

• The path to the coverage folder name is required.

• The layer name (feature type) is specified in the DATA parameter

OGRINFO Examples The directory is the data source. Layers are found within the directory. Using ogrinfo on
a coverage directory:

> ogrinfo /data/coverage/brazil -summary
INFO: Open of ‘brazil’
using driver ‘AVCBin’ successful.
1: ARC (Line String)
2: CNT (Point)
3: LAB (Point)
4: PAL (Polygon)

Using ogrinfo to examine the structure of a layer:

> ogrinfo /data/coverage/brazil PAL -summary
Had to open data source read-only.
INFO: Open of ‘brazil’
using driver ‘AVCBin’ successful.

Layer name: PAL
Geometry: Polygon
Feature Count: 1
Extent: (1272793.274958, 795381.617050) - (1287078.382785, 807302.747284)
Layer SRS WKT:
(unknown)
ArcIds: IntegerList (0.0)

7.1. Data Input 341

MapServer Documentation, Release 6.4.1

AREA: Real (18.5)
PERIMETER: Real (18.5)
F_OPER#: Integer (5.0)
F_OPER-ID: Integer (5.0)
OPER: String (2.0)
FCODE: String (10.0)

Map File Example:

LAYER
NAME Brazil_bounds
TYPE POLYGON
STATUS DEFAULT
CONNECTIONTYPE OGR
CONNECTION "/data/coverage/brazil"
DATA "PAL"
CLASS
NAME "Brazil Admin Areas"
STYLE

OUTLINECOLOR 153 102 0
SIZE 2

END
END

END

ArcSDE

Spatial Database Engine (SDE) is one of ESRI‘s products which enables spatial data to be stored, managed, and
quickly retrieved from leading commercial database management systems like Oracle, Microsoft SQL Server,
Sybase, IBM DB2, and Informix.

Supported ArcSDE Operations

• Versioned queries (query geometry and attributes from a specified version)

• queryByAttributes (select geometry and attributes based on the values of an attribute)

• Limited join support for within-database tables

• queryByRect (select geometry based on an extent)

• Projection on the fly

• SDE for Coverages (a read-only type of SDE for coverage, shapefile, and ArcStorm/ArcLibrarian reposito-
ries)

• SDE 8.1, 8.2, 8.3, 9.0, 9.1, and 9.2

• Linux, Windows, and Solaris (platforms that have SDE C API support)

Unsupported ArcSDE Operations

• queryByShape (pass in a shape with MapScript and use it for queries)

• Direct Connect (bypass SDE to connect directly to the database with the SDE C API)

How to make a connection to SDE:

• Install the SDE C API client libraries for your platform (preferably matched to the server version you are
using, ie 8.2 client -> 8.2 server, 8.3 client -> 8.3 server)

342 Chapter 7. Input

http://www.esri.com

MapServer Documentation, Release 6.4.1

• Compile MapServer with SDE support MapServer Unix Compilation Howto for specific details)

• Define a LAYER block in a MapFile that uses SDE as the CONNECTIONTYPE

LAYER
NAME states
TYPE POLYGON
CONNECTION "sdemachine.iastate.edu,port:5151,sde,username,password"
CONNECTIONTYPE SDE
DATA "HOBU.STATES_LAYER,SHAPE,SDE.DEFAULT"
FILTER "where MYCOLUMN is not NULL"
PROCESSING "QUERYORDER=ATTRIBUTE" # <-- MapServer 4.10 and above

Within database one-to-one join support

MapServer 5.0 and above
PROCESSING "JOINTABLE=SDE_MASTER.GEOSERVWRITE.JOINTABLE"

MapServer 5.0 and above
CLASSITEM "SDE_MASTER.GEOSERVWRITE.JOINTABLE.VAL"

MapServer 5.0 and above
FILTER "SDE_MASTER.GEOSERVWRITE.JOINTABLE.AQ_TAG=SDE_MASTER.GEOSERVWRITE.JOINTESTLAYER.AQ_TAG"

ObjectID column manipulation
MapServer 5.0 and above
PROCESSING "OBJECTID=OBJECTID"

TEMPLATE ’/where/the/template/file/is/located’
CLASS

STYLE
SYMBOL ’circle’
SIZE 3
COLOR -1 -1 -1
OUTLINECOLOR 0 0 0

END
END

END

CONNECTION - Order is important!

• sdemachine.iastate.edu - The name of the machine you are connecting to. In some instances, this may need
to be the IP address of the machine rather than the name if the server running MapServer is not configured
to cascade DNS lookups

• port:5151 - The port number of SDE. The port: is important as SDE expects you to define the service in
this slot, and it can be other names like sde:oracle (for direct connect) or esri_sde (for systems with port
5151 defined as esri_sde in /etc/services)

• sde - The database username that the SDE server is using to connect to your database. It is often only
important for SDE setups that are connecting to Oracle (and even then, not so important). Just leave it as
sde if you don’t know what it should be.

• username - The username that will be connecting to SDE. This user must have been granted rights to
select the layer that you will be specifying in the DATA directive. You can use ArcCatalog or the SDE
command-line utilities to grant the appropriate rights to layers.

• password - Password of the user connecting to SDE. Case Sensitive.

DATA - Order is important!

• HOBU.STATES_LAYER - The layer name you are querying. This the full name of the table in which the
layer resides. If you are using Oracle or Microsoft SQL Server as the DB for SDE, the schema name must

7.1. Data Input 343

MapServer Documentation, Release 6.4.1

also be supplied.

• SHAPE - The column that contains the geometry. SDE technically allows for storage of multiple geometry
types in the same layer, but in practice this isn’t desirable. Also, expect to have problems if there are invalid
or null geometries in the layer (or versions of the layer).

• SDE.DEFAULT - As of MapServer 4.2, you can query against a specific version of the layer. SDE supports
multi-user editing with versions. If a layer has been Registered with the GeoDatabase and Registered as
Versioned (ArcGIS terms), MapServer can query against specified versions of those edits. If not specified,
SDE.DEFAULT will be used for all queries. Case Sensitive.

Note: The version parameter is located in a different spot than MapServer 4.2, which had it on the CONNECTION
string.

TEMPLATE

• /where/the/template/file/is/located - A template directive must be specified (can point to a dummy file) in
order for MapServer to be able to query attributes from SDE. If you are only going to be drawing layers,
this directive is unnecessary and will slow down the query operations of SDE (especially for layers with lots
of attribute columns).

PROCESSING

• PROCESSING “QUERYORDER=ATTRIBUTE” - Allows you to force SDE to use the WHERE clause
that was defined in your FILTER statement first, without attempting to hit the spatial index. Only in very
special cases will you want to do this.

• PROCESSING “OBJECTID=OBJECTID” - If you are having trouble with the SDE driver detecting
your unique ID column, you can override it with this processing parameter. Doing so will also have a slight
performance benefit because it will save a couple of extra queries to the database.

• PROCESSING “ATTRIBUTE_QUALIFIED=TRUE” - User can set this option to always use fully qual-
ified attribute names.

Within-database Join Support MapServer’s SDE driver, as of MapServer 5.0, allows you to join a single
attribute table that has no geometries to the layer that you are rendering. This feature allows you to use the data
in the joined table much as you would in a composite query that was made with something like PostGIS or Oracle
Spatial. That is, the columns in the right table of the join are available for CLASSITEM, LABELITEM and so on.
The biggest constraint, however, is that fully qualified names must be used or it most likely will not work. The
join support is activated through PROCESSING options.

• PROCESSING “JOINTABLE=SDE_MASTER.GEOSERVWRITE.JOINTABLE” - The
JOINTABLE processing option tells the driver which table you are joining the current layer to.

• CLASSITEM “SDE_MASTER.GEOSERVWRITE.JOINTABLE.VAL” - A CLASSITEM or LA-
BELITEM for a joined table using this mechanism must be fully qualified.

• FILTER “SDE_MASTER.GEOSERVWRITE.JOINTABLE.AQ_TAG=SDE_MASTER.GEOSERVWRITE.JOINTESTLAYER.AQ_TAG”
- An important part of the join is defining how the join is to be made. Use a FILTER to do so.

Contour

1. Overview

Mapserver can compute and render a contour layer on the fly from a raster source. The raster source
is one band of raster data, which represents a digital elevation model (DEM). More info about DEMs at:
http://en.wikipedia.org/wiki/Digital_elevation_model

344 Chapter 7. Input

http://en.wikipedia.org/wiki/Digital_elevation_model

MapServer Documentation, Release 6.4.1

2. How it works

CONNECTIONTYPE CONTOUR. The new type is a hybrid layer, which has a raster data source as input and
vector features as output. Initially, only the line representation of those vector features will be supported.

Since the internal layer is of type vector, queries will be supported and operate on the vectors (not on the raw
raster source). In the future we might see a need to add a query mode that queries the raster source, but this is not
included in this phase of work.

To render a contour layer, we need to define a layer in the mapfile with the following options:

• Set the layer TYPE to LINE.

• Set CONNECTIONTYPE to CONTOUR.

• Set the DATA to the raster file that contains the elevation band.

• Specify the band to use as elevation using PROCESSING “BANDS”, same as regular raster.

• Specify one or more classes and styles to render the line features.

PROCESSING settings:

These options should be specified at layer level:

• CONTOUR_INTERVAL: elevation interval between contours

• CONTOUR_LEVELS: comma-separated list of one or more ‘fixed levels’ to extract

• CONTOUR_ITEM: provides a name for the item (attribute) in which to put the elevation. (op-
tional)

You can also provide explicit min/max scaledenom in the CONTOUR_iNTERVAL or
CONTOUR_LEVELS values if you wish to use scale-dependent contour spacing. This
is done by adding an optional “miscaledenom,maxscaledenom:” prefix to the value or list
of values. See the example below.

Example of a simple layer definition:

LAYER NAME "my_contour_layer"
TYPE LINE
STATUS DEFAULT
CONNECTIONTYPE CONTOUR
DATA /mnt/data/raster/grib/dem.grib
PROCESSING "BANDS=1"
PROCESSING "CONTOUR_ITEM=elevation"
PROCESSING "CONTOUR_INTERVAL=10"
CLASS
STYLE

WIDTH 2
COLOR 255 0 0

END
END

Example of a layer definition with scale-dependent contour ranges:

LAYER NAME "my_contour_layer"
TYPE LINE
STATUS DEFAULT
CONNECTIONTYPE CONTOUR
DATA /mnt/data/raster/grib/dem.grib
PROCESSING "BANDS=1"
PROCESSING "CONTOUR_ITEM=elevation"
PROCESSING "CONTOUR_INTERVAL=0,25000:5" # interval of 5 for scales of 25000 or less
PROCESSING "CONTOUR_INTERVAL=25000,500000:10" # interval of 10 for scales in the 25000 to 500000 range
PROCESSING "CONTOUR_LEVELS=500000,0:10,25,50,100" # explicit list of levels for scales of 500000 and up
LABELITEM "elevation"
CLASS

7.1. Data Input 345

MapServer Documentation, Release 6.4.1

STYLE
WIDTH 2
COLOR 255 0 0

END
LABEL

...
END

END

2.1 Data cellsize

The data produced by the gdal contour algorithm are generally in high resolution. A lot of point are used to
generated contours with precision. You might want to generalize/simplify the line in some cases (ie. Shape
Smoothing). The [data_cellsize] attribute binding represents the cellsize of the extend fetched from the raster file.
This is different than the map cellsize.

In the following example, I generalize my shape with a tolerance of 25% of the data cellsize to produce smooth
contours at all scales:

LAYER
NAME "MyContourLayer"
STATUS DEFAULT
DATA "wind.tif"
TYPE LINE
CONNECTIONTYPE CONTOUR
PROJECTION AUTO END
PROCESSING "BANDS=1"
PROCESSING "CONTOUR_ITEM=elevation"
PROCESSING "CONTOUR_INTERVAL=0,0:1"
GEOMTRANSFORM (smoothsia(generalize([shape], 0.25*[data_cellsize])))
CLASS
EXPRESSION ([elevation] >= 0)
STYLE

COLOR 0 0 255
END # STYLE

END # CLASS
END # LAYER

DGN

File listing

Data are encapsulated in a single file, usually with the suffix .dgn.

0824t.dgn

Data Access / Connection Method

• Access is available in MapServer through OGR.

• The CONNECTIONTYPE OGR parameter must be used.

• The path to the dgn file is required, file extension is needed.

• All types of features in a DGN file are held in one “layer” of data. The layer is called elements and is the
first and only layer.

• The type of feature to be read from the DGN depends on the TYPE parameter in the map file.

• DGN files typically contain POINT, LINE, POLYGON and ANNOTATION feature types.

346 Chapter 7. Input

MapServer Documentation, Release 6.4.1

• DGN files contain “styling” information - how to color and present the data. This is used, optionally, by
specifying the STYLEITEM “AUTO” parameter.

Note: DGN files typically use white as a color for their features and therefore are not visible on maps with white
backgrounds.

OGRINFO Examples

Using ogrinfo on a single DGN file:

> ogrinfo /data/dgn/0824t.dgn
Had to open data source read-only.
INFO: Open of ‘0842t.dgn’
using driver ‘DGN’ successful.
1: elements

Note: No geometry/feature type for the layer is identified because it can be multiple types.

DGN files are not really GIS data files. They evolved from drafting formats used by computer aided drafting/design
(CADD) programs.

They carry a few key attributes which are usually consistent across all DGN files. Most of the attributes relate to
graphical styling of features for map presentation, such as ColorIndex, Style, etc.

Spatial reference system information is not always encoded into DGN files. This can be a major problem when
trying to adequately reference the DGN data in another mapping program.

Measurement units can be a problem. In some cases the features could be located in kilometres or feet even though
it is not obvious from the output of ogrinfo. Sometimes the only way to identify or correct a problem with units is
to open the file in Microstation software.

Using ogrinfo to examine the structure of the file/layer:

> ogrinfo -summary /data/dgn/0824t.dgn elements
INFO: Open of ’0824t.dgn’
using driver ’DGN’ successful.

Layer name: elements
Geometry: Unknown (any)
Feature Count: 22685
Extent: (-513183.050000, 150292.930000) - (-224583.220000, 407463.360000)
Layer SRS WKT:
(unknown)
Type: Integer (2.0)
Level: Integer (2.0)
GraphicGroup: Integer (4.0)
ColorIndex: Integer (3.0)
Weight: Integer (2.0)
Style: Integer (1.0)
EntityNum: Integer (8.0)
MSLink: Integer (10.0)
Text: String (0.0)

Map File Example:

LAYER
NAME dgn
TYPE LINE
STATUS DEFAULT
CONNECTIONTYPE OGR
CONNECTION "dgn/0824t.dgn"

7.1. Data Input 347

MapServer Documentation, Release 6.4.1

STYLEITEM "AUTO"
CLASS
END

END # Layer

ESRI File Geodatabase

ESRI File Geodatabases exist in a file folder and offer improved performance and size limitations. For more
information see the ESRI description page.

Note: Only file geodatabases created by AcrGIS 10.0 and above can be read by GDAL/MapServer.

File listing

File geodatabases are made up of a set of files within a folder. The files are made up of geographic data, attribute
data, index files, and lock files. A better description of the file contents can be found here.

Data Access / Connection Method

File geodatabase access is available through OGR. See the OGR driver page for specific driver information. The
driver is available for GDAL >= 1.9.0.

The CONNECTION parameter must be used to point to the name of the file folder, and the DATA parameter
should be the name of the spatial table (or OGR layer).

CONNECTIONTYPE ogr
CONNECTION "filegdb-folder"
DATA "layername"

Note: The CONNECTION path is relative to the mapfile (SHAPEPATH is not used here). Full paths can also be
used.

OGRINFO Examples

First you should make sure that your GDAL/OGR build contains the file geodatabase “FileGDB” driver, by using
the ‘–formats’ command:

>ogrinfo --formats
Supported Formats:
...
"FileGDB" (read/write)
"ESRI Shapefile" (read/write)
"MapInfo File" (read/write)
"UK .NTF" (readonly)
"SDTS" (readonly)
"TIGER" (read/write)
...

If you don’t have the driver, see GDAL’s BuildHints page for compiling the driver.

Once you have the FileGDB driver you are ready to try an ogrinfo command on your database to get a list of
spatial tables. In the example below our folder is named us_states.gdb:

348 Chapter 7. Input

http://resources.arcgis.com/content/geodatabases/10.0/types-of-geodatabases
http://webhelp.esri.com/arcgisserver/9.3/java/index.htm#geodatabases/file_ge-516860750.htm
http://www.gdal.org/ogr/drv_filegdb.html
http://trac.osgeo.org/gdal/wiki/FileGDB

MapServer Documentation, Release 6.4.1

ogrinfo us_states.gdb
INFO: Open of ‘us_states.gdb’
using driver ‘FileGDB’ successful.
1: statesp020 (Multi Polygon)

Now use ogrinfo to get information on the structure of the statesp020 table:

ogrinfo us_states.gdb statesp020 -summary
INFO: Open of ‘us_states.gdb’
using driver ‘FileGDB’ successful.

Layer name: statesp020
Geometry: Multi Polygon
Feature Count: 2895
Extent: (-179.000000, 17.000000) - (179.000000, 71.000000)
Layer SRS WKT:
GEOGCS["GCS_North_American_1983",

DATUM["North_American_Datum_1983",
SPHEROID["GRS_1980",6378137.0,298.257222101]],

PRIMEM["Greenwich",0.0],
UNIT["Degree",0.017453292519943295]]

FID Column = OBJECTID
Geometry Column = SHAPE
AREA: Real (0.0)
PERIMETER: Real (0.0)
STATESP020: Real (0.0)
STATE: String (0.0)
STATE_FIPS: String (0.0)

Mapfile Example

LAYER
NAME "fgdb_poly"
TYPE POLYGON
STATUS ON
CONNECTIONTYPE OGR
CONNECTION "../data/filegdb/us_states.gdb"
DATA "statesp020"
LABELITEM "STATE"
CLASS
NAME "US States"
STYLE

COLOR 120 120 120
OUTLINECOLOR 0 0 0

END
LABEL

COLOR 255 255 255
OUTLINECOLOR 0 0 0

END
END

END

ESRI Personal Geodatabase (MDB)

ESRI Personal Geodatabases are basically Microsoft Access files that contain spatial information. For more
information see the ESRI description page.

7.1. Data Input 349

http://www.esri.com/software/arcgis/geodatabase/index.html

MapServer Documentation, Release 6.4.1

File listing

Similar to other database formats, the mdb file consists of several tables. The geometry is held in a BLOB table
column.

Data Access / Connection Method

Personal geodatabase access is available through OGR. See the OGR driver page for specific driver information.
The driver is standard in any win32 build of GDAL/OGR version 1.3.2 or later. For Linux/Unix, MDBTools
ODBC drivers can be used for this (with some difficulty).

OGR uses the names of spatial tables within the personal geodatabase (tables with a Shape column) as layers.

The CONNECTION parameter must include the mdb extension, and the DATA parameter should be the name of
the spatial table (or OGR layer).

CONNECTIONTYPE ogr
CONNECTION "pgeodatabase.mdb"
DATA "layername"

OGRINFO Examples

First you should make sure that your GDAL/OGR build contains the personal geodatabase “PGeo” driver, by using
the ‘–formats’ command:

>ogrinfo --formats
Loaded OGR Format Drivers:
...
-> "ODBC" (read/write)
-> "PGeo" (readonly)
-> "PostgreSQL" (read/write)
...

If you don’t have the driver, you might want to try the FWTools or MS4W packages, which include the driver.

Once you have the PGeo driver you are ready to try an ogrinfo command on your database to get a list of spatial
tables:

>ogrinfo test.mdb
INFO: Open of ‘test.mdb’
using driver ‘PGeo’ successful.
1: counties

Now use ogrinfo to get information on the structure of the spatial table:

>ogrinfo test.mdb counties -summary
INFO: Open of ‘test.mdb’
using driver ‘PGeo’ successful.

Layer name: counties
Geometry: Unknown (any)
Feature Count: 67
Extent: (-87.634943, 24.543945) - (-80.031369, 31.000975)
Layer SRS WKT:
GEOGCS["GCS_WGS_1984",

DATUM["WGS_1984",
SPHEROID["WGS_1984",6378137.0,298.257223563]],
PRIMEM["Greenwich",0.0],
UNIT["Degree",0.0174532925199433]]

OBJECTID_1: Integer (10.0)
OBJECTID: Integer (10.0)

350 Chapter 7. Input

http://gdal.org/ogr/drv_pgeo.html
http://mdbtools.sourceforge.net/
http://fwtools.maptools.org/
http://www.maptools.org/ms4w/

MapServer Documentation, Release 6.4.1

NAME: String (32.0)
STATE_NAME: String (25.0)
STATE_FIPS: String (2.0)
CNTY_FIPS: String (3.0)
FIPS: String (5.0)
...

Note that you can also use an ODBC connection to access all of the tables in your geodatabase:

>ogrinfo PGeo:testDSN counties -summary
INFO: Open of ‘testDSN’
using driver ‘PGeo’ successful.

1: counties
2: counties_Shape_Index
...

(where “testDSN” is the name of your System DSN)

Mapfile Example

Direct Access to MDB
LAYER

NAME my_geodatabase
TYPE POLYGON
CONNECTIONTYPE ogr
CONNECTION "test.mdb"
DATA "counties"
STATUS ON
CLASS

NAME "counties"
STYLE

COLOR 255 255 120
END

END
END

Through an ODBC Connection
LAYER

NAME my_geodatabase
TYPE POLYGON
CONNECTIONTYPE ogr
CONNECTION "PGeo:testDSN"
DATA "counties"
STATUS ON
CLASS

NAME "counties"
STYLE

COLOR 255 255 120
END

END
END

ESRI Shapefiles (SHP)

Also known as ESRI ArcView Shapefiles or ESRI Shapefiles. ESRI is the company that introduced this format.
ArcView was the first product to use shapefiles.

7.1. Data Input 351

MapServer Documentation, Release 6.4.1

File listing

Shapefiles are made up of a minimum of three similarly named files, with different suffixes:

Countries_area.dbf
Countries_area.shp
Countries_area.shx

Data Access / Connection Method

Shapefile access is built directly into MapServer. It is also available through OGR, but direct access without OGR
is recommended and discussed here. The path to the shapefile is required. No file extension should be specified.
Shapefiles only hold one layer of data, therefore no distinction needs to be made.

OGRINFO Examples

• The directory can serve as a data source.

• Each shapefile in a directory serves as a layer.

• A shapefile can also be a data source. In this case the layer has the same prefix as the shapefile.

Using ogrinfo on a directory with multiple shapefiles:

> ogrinfo /data/shapefiles/
INFO: Open of ‘/data/shapefiles/’
using driver ‘ESRI Shapefile’ successful.
1: wpg_h2o (Line String)
2: wpg_roads (Line String)
3: wpg_roads_dis (Line String)
4: wpgrestaurants (Point)

Using ogrinfo on a single shapefile:

> ogrinfo /data/shapefiles/Countries_area.shp
Had to open data source read-only.
INFO: Open of ‘Countries_area.shp’
using driver ‘ESRI Shapefile’ successful.
1: Countries_area (Polygon)

Using ogrinfo to examine the structure of the file/layer:

> ogrinfo -summary /data/shapefiles/Countries_area.shp Countries_area
Had to open data source read-only.
INFO: Open of ‘Countries_area.shp’
using driver ‘ESRI Shapefile’ successful.

Layer name: Countries_area
Geometry: Polygon
Feature Count: 27458
Extent: (-180.000000, -90.000000) - (180.000000, 83.627419)
Layer SRS WKT:
(unknown)
FAC_ID: Integer (5.0)
TILE: Integer (3.0)
ARCLIST: String (254.0)
NAM: String (77.0)
PERIMETER: Real (22.17)
POLYGONCOU: Integer (6.0)
NA2DESC: String (45.0)

Map File Example:

352 Chapter 7. Input

MapServer Documentation, Release 6.4.1

LAYER
NAME my_shapefile
TYPE POLYGON
DATA countries_area
STATUS OFF
CLASS
NAME "Countries"
OUTLINECOLOR 0 0 0
END

END

GML

Also known as Geographic Markup Language and GML/XML. GML is a text-based, XML format that can rep-
resent vector and attribute data. This is an Open Geospatial Consortium specification for data interchange. More
information is available at http://www.opengeospatial.org/standards/gml

File listing

GML files are usually a single text file with a GML filename extension. Some may use XML as the filename
extension:

coal_dep.gml

XML schema documents often accompany GML files that have been translated from some other format (e.g. using
the ogr2ogr utility).

GML uses sets of nested tags to define attributes and geometry coordinates. Example of text in a GML file:

<gml:featureMember>
<Coal_Deposits fid="1">
<UNKNOWN>0.000</UNKNOWN>
<NA>0.000</NA>
<ID>2</ID>
<ID2>2</ID2>
<MARK>7</MARK>
<COALKEY>110</COALKEY>
<COALKEY2>110</COALKEY2>
<ogr:geometryProperty>
<gml:Point>
<gml:coordinates>78.531,50.694</gml:coordinates>
</gml:Point>
</ogr:geometryProperty>
</Coal_Deposits>
</gml:featureMember>

Data Access / Connection Method

• GML access is available in MapServer through OGR. More information on OGR GML support is available
at http://www.gdal.org/ogr/drv_gml.html

• The CONNECTIONTYPE OGR parameter must be used.

• The path to the GML file is required, including file extension. There can be multiple layers in a GML file,
including multiple feature types.

OGRINFO Examples

Using ogrinfo on a single GML file:

7.1. Data Input 353

http://www.opengeospatial.org/standards/gml
http://www.gdal.org/ogr/drv_gml.html

MapServer Documentation, Release 6.4.1

> ogrinfo /data/gml/coal_dep.gml
Had to open data source read-only.
INFO: Open of ‘coal_dep.gml’
using driver ‘GML’ successful.
1: Coal_Deposits

Using ogrinfo to examine the structure of one layer:

> ogrinfo -summary /data/gml/coal_dep.gml Coal_Deposits
Had to open data source read-only.
INFO: Open of ‘coal_dep.gml’
using driver ‘GML’ successful.

Layer name: Coal_Deposits
Geometry: Unknown (any)
Feature Count: 266
Extent: (23.293650, 37.986340) - (179.272550, 80.969670)
Layer SRS WKT:
(unknown)
UNKNOWN: Real (0.0)
NA: Real (0.0)
ID: Integer (0.0)
ID2: Integer (0.0)
MARK: Integer (0.0)
COALKEY: Integer (0.0)
COALKEY2: Integer (0.0)
LONG: Real (0.0)
LAT: Real (0.0)

Map File Example:

LAYER
NAME coal_deposits
TYPE POINT
STATUS DEFAULT
CONNECTIONTYPE OGR
CONNECTION "gml/coal_dep.gml"
CLASS

STYLE
COLOR 0 0 0
SYMBOL ’circle’
SIZE 6

END
END
END

GPS Exchange Format (GPX)

GPX (the GPS Exchange Format) is a light-weight XML data format containing GPS data (waypoints, routes, and
tracks). For more information see the official GPX site.

File listing

All waypoints, routes, and tracks are stored in a single .gpx file.

Data Access / Connection Method

• GPX access is available through OGR. See the OGR driver page for specific driver information.

• A relative path to the .gpx file can be used in the mapfile LAYER’s CONNECTION string.

354 Chapter 7. Input

http://www.topografix.com/gpx.asp
http://www.gdal.org/ogr/drv_gpx.html

MapServer Documentation, Release 6.4.1

• The feature type is specified in the DATA parameter

– the “tracks” feature type will usually be the track line

– the “track_points” feature type will usually be the points that make up the track line

OGRINFO Examples

First you should make sure that your GDAL/OGR build contains the “GPX” driver, by using the ‘–formats’
command:

>ogrinfo --formats
Loaded OGR Format Drivers:
...
-> "CSV" (read/write)
-> "GML" (read/write)
-> "GPX" (read/write)
-> "KML" (read/write)
...

If you don’t have the driver, you might want to try the FWTools or MS4W packages, which include the driver.

Once you have the GPX driver you are ready to try an ogrinfo command on your file to get a list of feature types:

>ogrinfo test.gpx
INFO: Open of ‘test.gpx’

using driver ‘GPX’ successful.
1: waypoints (Point)
2: routes (Line String)
3: tracks (Multi Line String)
4: route_points (Point)
5: track_points (Point)

Now use ogrinfo to get information on one of the feature types:

>ogrinfo test.gpx track_points -summary
INFO: Open of ‘test.gpx’

using driver ‘GPX’ successful.

Layer name: track_points
Geometry: Point
Feature Count: 661
Extent: (-66.694270, 47.985570) - (-66.675222, 47.990791)
Layer SRS WKT:
GEOGCS["WGS 84",

DATUM["WGS_1984",
SPHEROID["WGS 84",6378137,298.257223563,

AUTHORITY["EPSG","7030"]],
AUTHORITY["EPSG","6326"]],

PRIMEM["Greenwich",0,
AUTHORITY["EPSG","8901"]],

UNIT["degree",0.01745329251994328,
AUTHORITY["EPSG","9122"]],

AUTHORITY["EPSG","4326"]]
track_fid: Integer (0.0)
track_seg_id: Integer (0.0)
track_seg_point_id: Integer (0.0)
ele: Real (0.0)
time: DateTime (0.0)
magvar: Real (0.0)
geoidheight: Real (0.0)
name: String (0.0)
cmt: String (0.0)
desc: String (0.0)

7.1. Data Input 355

http://fwtools.maptools.org/
http://www.maptools.org/ms4w/

MapServer Documentation, Release 6.4.1

src: String (0.0)
...

Mapfile Example

Since you have confirmed that OGR can read your GPX file, now you can create a MapServer layer:

LAYER
NAME gpx
TYPE POINT
STATUS ON
CONNECTIONTYPE OGR
CONNECTION test.gpx
DATA "track_points"
CLASS
NAME "gpx"
STYLE

SYMBOL ’circle’
COLOR 0 119 255
SIZE 2

END
END

END # layer

Inline

Inline features refer to coordinates entered directly into the map file. They are not a file or database format and
do not require any DATA or CONNECTION parameters. Instead they use a FEATURE section to define the
coordinates.

Inline features can be used to define points, lines and polygons as if taken from an external file. This requires
direct entry of coordinate pairs in the map file using a particular syntax.

Data Access / Connection Method

This is a native MapServer option that doesn’t use any external libraries to support it.

Map File Example

Points

• Each FEATURE..END section defines a feature.

• Multiple points can be defined in a FEATURE section. If multiple points are defined in the same layer, they
will have the same CLASS settings, e.g. for colours and styles.

• Coordinates are entered in the units set in the layer’s projection. In this case it is assuming the map file
projection is using decimal degrees.

LAYER
NAME inline_stops
TYPE POINT
STATUS DEFAULT
FEATURE
POINTS

72.36 33.82
END
TEXT "My House"

END

356 Chapter 7. Input

MapServer Documentation, Release 6.4.1

FEATURE
POINTS

69.43 35.15
71.21 37.95
72.02 38.60

END
TEXT "My Stores"

END
CLASS
STYLE

COLOR 0 0 250
SYMBOL ’circle’
SIZE 6

END
END

END

Lines Lines are simply a list of points strung together, but the layer must be TYPE LINE instead of TYPE
POINT.

LAYER
NAME inline_track
TYPE LINE
STATUS DEFAULT
MAXSCALE 10000000
FEATURE
POINTS

72.36 33.82
70.85 34.32
69.43 35.15
70.82 36.08
70.90 37.05
71.21 37.95

END
END
CLASS
STYLE

COLOR 255 10 0
SYMBOL ’circle’
SIZE 2

END
END

END

Polygons Polygons are the same as the line example, just a list of points. They require the TYPE POLYGON
parameter. Polygons also require the final coordinate pair to be the same as the first, making it a closed polygon.

KML - Keyhole Markup Language

Table of Contents

• KML - Keyhole Markup Language
– Links to KML-Related Information
– Data Access / Connection Method
– Example 1: Displaying a .KML file
– Example 2: Displaying a .KMZ file

7.1. Data Input 357

MapServer Documentation, Release 6.4.1

Keyhole Markup Language (KML) is an XML-based language for managing the display of 3D geospatial data.
KML is a standard maintained by the Open Geospatial Consoritum (OGC).

Links to KML-Related Information

• Google’s KML Reference

• OGC’s KML Specification

• KML Validator

• KML Validator (against OGC KML 2.2)

Data Access / Connection Method

KML access in MapServer is available through OGR. See the OGR driver page for specific driver information.
Read support was initially added to GDAL/OGR version 1.5.0. A more complete KML reader was added to
GDAL/OGR in version 1.8.0, through the libKML driver (including the ability to read multigeometry, and KMZ
files).

The CONNECTION parameter must include the kml or kmz extension, and the DATA parameter should be the
name of the layer.

CONNECTIONTYPE OGR
CONNECTION "filename.kml"
DATA "layername"

Example 1: Displaying a .KML file

OGRINFO First you should make sure that your GDAL/OGR build contains the “KML” driver, by using the
‘–formats’ command:

>ogrinfo --formats
Loaded OGR Format Drivers:
...
-> "GML" (read/write)
-> "GPX" (read/write)
-> "KML" (read/write)
...

If you don’t have the driver, you might want to try the FWTools or MS4W packages, which include the driver.

Once you have the KML driver you are ready to try an ogrinfo command on your file to get a list of available
layers:

>ogrinfo myplaces.kml
INFO: Open of ‘myplaces.kml’
using driver ‘KML’ successful.
1: Layer #0 (Point)

Now use ogrinfo to get information on the structure of the layer:

>ogrinfo fountains-hotel.kml "Layer #0" -summary
Had to open data source read-only.
INFO: Open of ‘fountains-hotel.kml’
using driver ‘KML’ successful.

Layer name: Layer #0
Geometry: Point
Feature Count: 1
Extent: (18.424930, -33.919627) - (18.424930, -33.919627)

358 Chapter 7. Input

http://code.google.com/apis/kml/documentation/kmlreference.html
http://www.opengeospatial.org/standards/kml
http://feedvalidator.org/
http://www.kmlvalidator.com/home.htm
http://www.gdal.org/ogr/drv_kml.html
http://www.gdal.org/ogr/drv_libkml.html
http://fwtools.maptools.org/
http://www.maptools.org/ms4w/

MapServer Documentation, Release 6.4.1

Layer SRS WKT:
GEOGCS["WGS 84",

DATUM["WGS_1984",
SPHEROID["WGS 84",6378137,298.257223563,
AUTHORITY["EPSG","7030"]],

AUTHORITY["EPSG","6326"]],
PRIMEM["Greenwich",0,

AUTHORITY["EPSG","8901"]],
UNIT["degree",0.01745329251994328,

AUTHORITY["EPSG","9122"]],
AUTHORITY["EPSG","4326"]]

Name: String (0.0)
Description: String (0.0)

Mapfile Example
LAYER
NAME "kml_example"
TYPE POINT
STATUS DEFAULT
CONNECTIONTYPE OGR
CONNECTION "kml/fountains-hotel.kml"
DATA "Layer #0"
LABELITEM "NAME"
CLASS

NAME "My Places"
STYLE

COLOR 250 0 0
OUTLINECOLOR 255 255 255
SYMBOL ’circle’
SIZE 6

END
LABEL

SIZE TINY
COLOR 0 0 0
OUTLINECOLOR 255 255 255
POSITION AUTO

END
END

END

Example 2: Displaying a .KMZ file

OGRINFO First you should make sure that your GDAL/OGR build contains the “LIBKML” driver, by using
the ‘–formats’ command:

>ogrinfo --formats
Loaded OGR Format Drivers:
...
-> "GML" (read/write)
-> "GPX" (read/write)
-> "LIBKML" (read/write)
-> "KML" (read/write)
...

If you don’t have the driver, you might want to try the FWTools or MS4W packages, which include the driver. Or
you can follow the compiling notes for libKML and GDAL/OGR.

Once you have the LIBKML driver you are ready to try an ogrinfo command on your file to get a list of available
layers:

7.1. Data Input 359

http://fwtools.maptools.org/
http://www.maptools.org/ms4w/
http://trac.osgeo.org/gdal/wiki/LibKML

MapServer Documentation, Release 6.4.1

>ogrinfo Lunenburg_Municipality.kmz
INFO: Open of ‘Lunenburg_Municipality.kmz’
using driver ‘LIBKML’ successful.
1: Lunenburg_Municipality

Now use ogrinfo to get information on the structure of the layer:

>ogrinfo Lunenburg_Municipality.kmz Lunenburg_Municipality -summary
INFO: Open of ‘Lunenburg_Municipality.kmz’

using driver ‘LIBKML’ successful.

Layer name: Lunenburg_Municipality
Geometry: Unknown (any)
Feature Count: 1
Extent: (-64.946433, 44.133207) - (-64.230281, 44.735125)
Layer SRS WKT:
GEOGCS["WGS 84",

DATUM["WGS_1984",
SPHEROID["WGS 84",6378137,298.257223563,

AUTHORITY["EPSG","7030"]],
TOWGS84[0,0,0,0,0,0,0],
AUTHORITY["EPSG","6326"]],

PRIMEM["Greenwich",0,
AUTHORITY["EPSG","8901"]],

UNIT["degree",0.0174532925199433,
AUTHORITY["EPSG","9108"]],

AUTHORITY["EPSG","4326"]]
Name: String (0.0)
description: String (0.0)
timestamp: DateTime (0.0)
begin: DateTime (0.0)
end: DateTime (0.0)
altitudeMode: String (0.0)
tessellate: Integer (0.0)
extrude: Integer (0.0)
visibility: Integer (0.0)

Mapfile Example
LAYER

NAME "lunenburg"
TYPE POLYGON
STATUS DEFAULT
CONNECTIONTYPE OGR
CONNECTION "Lunenburg_Municipality.kmz"
DATA "Lunenburg_Municipality"
CLASS
NAME "Lunenburg"
STYLE

COLOR 244 244 16
OUTLINECOLOR 199 199 199

END
END

END # layer

MapInfo

File listing

The following files are also associated with .TAB files: .DAT, .ID, .MAP. An example is:

360 Chapter 7. Input

MapServer Documentation, Release 6.4.1

border.DAT
border.ID
border.MAP
border.TAB

The term MID/MIF refers to files with .MID and .MIF extension.

Data Access / Connection Method

TAB and MID/MIF access is available in MapServer through OGR.

• The CONNECTIONTYPE OGR parameter must be used.

• The path to the (*.tab or *.mif) file is required, and the file extension is needed.

• The path may be relative to the SHAPEPATH

• MapInfo files already contain styling information. This styling information can be used optionally by spec-
ifying the STYLEITEM “AUTO” parameter in the LAYER object of the map file.

Note: If you use STYLEITEM “AUTO” you must have an empty class in the layer.

OGRINFO Examples

Using ogrinfo on a single TAB file

> ogrinfo elev5_poly.TAB
Had to open data source read-only.
INFO: Open of ‘elev5_poly.TAB’
using driver ‘MapInfo File’ successful.
1: elev5_poly (Polygon)

Using ogrinfo to examine the structure of the file/layer

> ogrinfo elev5_poly.TAB elev5_poly
Had to open data source read-only.
INFO: Open of ‘elev5_poly.TAB’
using driver ‘MapInfo File’ successful.

Layer name: elev5_poly
Geometry: Polygon
Feature Count: 2236
Extent: (-141.000000, 60.000000) - (-124.403310, 69.300251)
Layer SRS WKT:
GEOGCS["unnamed",
DATUM["MIF 0",
SPHEROID["WGS 84 (MAPINFO Datum 0)",6378137.01,298.257223563],

TOWGS84[0,0,0,0,0,0,0]],
PRIMEM["Greenwich",0],
UNIT["degree",0.0174532925199433]]
AREA: Real (0.0)
PERIMETER: Real (0.0)
ELEV5_: Integer (0.0)
ELEV5_ID: Integer (0.0)
TYPE: Real (4.0)
ELEV5: Real (4.0)
...

7.1. Data Input 361

MapServer Documentation, Release 6.4.1

Map File Example

LAYER
NAME Elevation_Poly_5
TYPE POLYGON
STATUS DEFAULT
CONNECTIONTYPE OGR
CONNECTION "./hypso/elev5_poly.TAB"
STYLEITEM "AUTO"
CLASS

NAME "Elevation Poly 5"
END
END # Layer

MSSQL

Author Tamas Szekeres

Contact szekerest at gmail.com

Author Jeff McKenna

Contact jmckenna at gatewaygeomatics.com

Last Updated 2012-09-26

Contents

• MSSQL
– Introduction
– Creating Spatial Data Tables in MSSQL 2008
– Connecting to Spatial Data in MSSQL 2008

* OPTION 1: Connect Through OGR
· Verify Local Support for MSSQLSpatial
· Test OGR Connection Parameters
· Create MapServer Layer using CONNECTIONTYPE OGR

* OPTION 2: Connect Through MapServer Plugin
· Create MapServer Layer
· Selecting the Type of the Geometry Column
· Expected Location of the MSSQL Plugin
· Binaries Containing the MSSQL Plugin

* Using Spatial Indexes
* Layer Processing Options

– More Information

Introduction

Microsoft SQL Server 2008+ supports storing spatial data by using the built-in geometry/geography data types.
MapServer can connect to MSSQL through either: 1) an OGR connectiontype, or 2) a driver that accesses these
tables containing spatial columns, which is compiled as a plugin (“msplugin_mssql2008.dll”).

Creating Spatial Data Tables in MSSQL 2008

There are several ways to create spatial data tables in MSSQL 2008. You can easily upload existing data to an
MSSQL table by using the ogr2ogr commandline tool and the OGR’s MSSQL Spatial driver Here is an example
that uploads a shapefile (province.shp) into an MSSQL 2008 instance:

362 Chapter 7. Input

http://www.gdal.org/ogr2ogr
http://www.gdal.org/ogr/drv_mssqlspatial.html

MapServer Documentation, Release 6.4.1

ogr2ogr -f MSSQLSpatial -a_srs EPSG:4326 "MSSQL:server=.\SQLEXPRESS;database=geo;trusted_connection=yes" province.shp

Connecting to Spatial Data in MSSQL 2008

In order to connect to the MSSQL 2008 spatial database you should set up a valid connection string to the database
like the following examples:

Server=.\MSSQLSERVER2008;Database=Maps;Integrated Security=true

Server=55.55.55.55,1433;uid=a_user;pwd=a_password;database=a_database;
Integrated Security=True

Server=55.55.55.55\SQLEXPRESS,1433;uid=a_user;pwd=a_password;
database=a_database;Integrated Security=True

OPTION 1: Connect Through OGR GDAL/OGR (and therefore MapServer) can read spatial tables in
MSSQL 2008 through the MSSQLSpatial driver.

Verify Local Support for MSSQLSpatial Use the command “ogrinfo –formats” to verify that your local GDAL
is built with support for MSSQL; the response should contain “MSSQLSpatial” such as:

Supported Formats:
-> "OCI" (read/write)
-> "ESRI Shapefile" (read/write)
-> "MapInfo File" (read/write)
...
-> "MSSQLSpatial" (read/write)
...

Test OGR Connection Parameters Use the ogrinfo commandline utility to test your connection through the
MSSQLSpatial driver, such as:

ogrinfo "MSSQL:server=.\SQLEXPRESS;database=geo;trusted_connection=yes" province -summary

Create MapServer Layer using CONNECTIONTYPE OGR Your layer should contain a CONNECTION-
TYPE OGR statement, as well as a CONNECTION. The connection should also contact a “tables=” parameter,
and also the name of the geometry column in brackets. You do not need to specify the DATA parameter unless
you define an sql select statement starting with the ‘WHERE’ keyword. For example:

LAYER
NAME "provinces"
TYPE POLYGON
STATUS ON
####
CONNECTIONTYPE OGR
CONNECTION "MSSQL:server=.\SQLEXPRESS;uid=xx;pwd=xxx;database=geo;trusted_connection=yes;tables=province(ogr_geometry)"
####
PROJECTION
"init=epsg:4326"

END
CLASS
NAME "Land"
STYLE

COLOR 240 240 240
OUTLINECOLOR 199 199 199

END
END

7.1. Data Input 363

http://www.gdal.org/ogr/drv_mssqlspatial.html

MapServer Documentation, Release 6.4.1

PROCESSING ’CLOSE_CONNECTION=DEFER’
END # layer

Note: The usual CONNECTIONTYPE terms ‘using unique’ and ‘using srid’ are not meaningful for the OGR
driver in this case, as these parameters are automatically retrieved from the ‘geometry_columns’ metadata table.

OPTION 2: Connect Through MapServer Plugin

Create MapServer Layer Once the connection can be established to the server the layer can be configured to
access MSSQL2008 as follows:

LAYER
NAME "rivers_mssql_spatial"
TYPE POLYGON
STATUS DEFAULT
CONNECTIONTYPE PLUGIN
PLUGIN "msplugin_mssql2008.dll"
CONNECTION "Server=.\MSSQLSERVER2008;Database=Maps;Integrated Security=true"
DATA "ogr_geometry from rivers USING UNIQUE ogr_fid USING SRID=4326"
...

END

The DATA parameter is used to perform the SQL select statement to access your table in MSSQL. The geometry
column is required in the select statement; in the above example the ogr_geometry column is the geometry column
in the rivers table. The table should also have an unique column (ogr_fid) which is provided for random access to
the features in the feature query operations.

The DATA section should also contain the spatial reference id (SRID) of the features in the data table The SRID
is used when specifying the search shapes during the intersect operations which should match with the SRID of
the features otherwise no features are returned in a particular query. if you omit specifying the SRID value in the
DATA section the diver will use SRID=0 when defining the search shapes.

Selecting the Type of the Geometry Column For the geometry columns MSSQL supports 2 data types: “ge-
ometry” and “geography”. By default the driver considers the type of the geometry column is “geometry”. In case
if the type of the geometry column is “geography” we must specify the data type in the DATA section explicitly,
like:

DATA "ogr_geometry(geography) from rivers USING UNIQUE ogr_fid USING SRID=4326"

Expected Location of the MSSQL Plugin On Windows platforms the DLLs needed by the program are
searched for in the following order:

1. The directory from which the application loaded.

2. The current directory.

3. The system directory. Use the GetSystemDirectory function to get the path of this directory.

4. The 16-bit system directory.

5. The Windows directory. Use the GetWindowsDirectory function to get the path of this directory.

6. The directories that are listed in the PATH environment variable.

Binaries Containing the MSSQL Plugin Currently the following binary distributions contain msplu-
gin_mssql2008.dll:

• MapServer and GDAL binary and SDK packages

• MS4W distributions

364 Chapter 7. Input

http://msdn.microsoft.com/en-us/library/ms724373.aspx
http://msdn.microsoft.com/en-us/library/ms724454.aspx
http://vbkto.dyndns.org/sdk/
http://www.maptools.org/ms4w/

MapServer Documentation, Release 6.4.1

Using Spatial Indexes In order to speed up the access to the features a spatial index should be created to the
geometry column which could easily be done with the OGR MSSQL Spatial driver like:

ogrinfo -sql "create spatial index on rivers"
"MSSQL:server=.\MSSQLSERVER2008;database=Maps;
Integrated Security=true"

In general we can safely rely on the query optimizer to select the most appropriate index in the sql query operations.
In some cases - however - we should force the optimizer to use the spatial index by specifying the index hint in
the DATA section like:

DATA "ogr_geometry from rivers using index ogr_geometry_sidx
USING UNIQUE ogr_fid USING SRID=4326"

Layer Processing Options We can control the behaviour of the MSSQL driver by using the following PRO-
CESSING options:

• CLOSE_CONNECTION=DEFER - This is where you can enable connection pooling for certain layer
types. Connection pooling will allow MapServer to share the handle to an open database or layer connection
throughout a single map draw process.

• MSSQL_READ_WKB=TRUE - Uses WKB (Well Known Binary) format instead of native format when
fetching geometries.

More Information

• OGR MSSQL Spatial driver page (describes the OGR MSSQL support)

• ogr2ogr application (describes the ogr2ogr commandline application)

• Vector Data (MapServer Vector Data Access Guide)

MySQL

Author David Fawcett

Contact david.fawcett at moea.state.mn.us

Author Jeff McKenna

Contact jmckenna at gatewaygeomatics.com

Last Updated 2010-07-29

Contents

• MySQL
– Introduction
– Connecting to Spatial Data in MySQL

* Requirements
* Verify MySQL Support in OGR Build
* Test Connection with ogrinfo
* Create MapServer Layer

– Connecting to non-Spatial Data in MySQL
* Requirements
* Create .ovf file
* Test Connection with ogrinfo
* Create MapServer Layer

– More Information

7.1. Data Input 365

http://www.gdal.org/ogr/drv_mssqlspatial.html
http://www.gdal.org/ogr2ogr

MapServer Documentation, Release 6.4.1

Introduction

The following methods connect to MySQL through OGR’s MySQL driver, thus avoiding the need to set up an
ODBC connection.

Connecting to Spatial Data in MySQL

This section describes how to display a spatial MySQL table (meaning that the table has a column of type geome-
try) in MapServer. OGR’s MySQL driver was expanded in OGR version 1.3.2 to support access to MySQL spatial
tables.

Requirements

• MapServer compiled with OGR support

• OGR/GDAL version 1.3.2 or more recent compiled with MySQL support

Verify MySQL Support in OGR Build You can verify that your local build of OGR contains MySQL support
by using the ogrinfo commandline utility, and making sure that “MySQL” is returned:

ogrinfo --formats

Supported Formats:
-> "ESRI Shapefile" (read/write)
-> "MapInfo File" (read/write)
...
-> "PostgreSQL" (read/write)
-> "MySQL" (read/write)
...

Test Connection with ogrinfo MySQL connection strings in OGR are in the following format:

MYSQL:database,host=yourhost,user=youruser,password=yourpass,tables=yourtable

Therefore an example ogrinfo command would be:

> ogrinfo MYSQL:test,user=root,password=mysql,port=3306

which should return a list of all of your tables in the ‘test’ database:

INFO: Open of ‘MYSQL:test,user=root,password=mysql,port=3306’
using driver ‘MySQL’ successful.

1: province (Polygon)

and you can return a summary of the MySQL spatial layer:

> ogrinfo MYSQL:test,user=root,password=mysql,port=3306 province -summary

INFO: Open of ‘MYSQL:test,user=root,password=mysql,port=3306’
using driver ‘MySQL’ successful.

Layer name: province
Geometry: Polygon
Feature Count: 48
Extent: (-13702.315770, 3973784.599548) - (1127752.921471, 4859616.714055)
Layer SRS WKT:
PROJCS["ED50_UTM_zone_30N",
...
FID Column = OGR_FID

366 Chapter 7. Input

http://www.gdal.org/ogr/drv_mysql.html
http://www.gdal.org/ogr/drv_mysql.html

MapServer Documentation, Release 6.4.1

Geometry Column = SHAPE
id: Real (2.0)
...

Create MapServer Layer
LAYER

NAME "spain_provinces_mysql_spatial"
TYPE POLYGON
STATUS DEFAULT
CONNECTIONTYPE OGR
CONNECTION "MySQL:test,user=root,password=mysql,port=3306"
DATA "SELECT SHAPE,admin_name from province"
LABELITEM "admin_name"
CLASS
NAME "Spain Provinces"
STYLE

COLOR 240 240 240
OUTLINECOLOR 199 199 199

END
LABEL
COLOR 0 0 0
FONT sans
TYPE truetype
SIZE 8
POSITION AUTO
PARTIALS FALSE
OUTLINECOLOR 255 255 255

END
END

END # layer

The DATA parameter is used to perform the SQL select statement to access your table in MySQL. The geometry
column is required in the select statement; in the above example the SHAPE column is the geometry column in
the province table.

Connecting to non-Spatial Data in MySQL

This section describes how to display a non-spatial MySQL table (meaning the table does not have a column of
type geometry) in MapServer.

Support for this functionality is found in GDAL/OGR 1.2.6 and older on Windows and GDAL/OGR 1.3.2 on
Linux.

Requirements

• MySQL database containing a table with fields containing x and y coordinates

• .ovf file, a small xml file you will create

• MapServer compiled with OGR version supporting this functinality

Create .ovf file Here is the .ovf file named aqidata.ovf

<OGRVRTDataSource>
<OGRVRTLayer name="aqidata">

<SrcDataSource>MYSQL:aqiTest,user=uuuuu,password=ppppp,host=192.170.1.100,port=3306,tables=testdata</SrcDataSource>
<SrcSQL>SELECT areaID, x, y, sampleValue FROM testdata</SrcSQL>
<GeometryType>wkbPoint</GeometryType>
<GeometryField encoding="PointFromColumns" x="x" y="y"/>

7.1. Data Input 367

MapServer Documentation, Release 6.4.1

</OGRVRTLayer>
</OGRVRTDataSource>

If you look at the connection string in <SrcDataSource>

• The MySQL database name is ‘aqiTest’

• ‘testdata’ is the table containing the coordinate data

• host and port are for MySQL server

Use the GeometryField element to tell OGR which fields store the x and y coordinate data. Mine are simply named
x and y.

Test Connection with ogrinfo
usr/local/bin/ogrinfo /maps/aqidata.ovf

ogrinfo returns

ERROR 4: Update access not supported for VRT datasources.
Had to open data source read-only.
INFO: Open of ‘/maps/aqidata.ovf’
using driver ‘VRT’ successful.
1: aqidata (Point)

Don’t worry about the error, this is just telling you that it is a read-only driver. If it really bugs you, call ogrinfo
with the -ro (read only) flag.

To see the actual data

usr/local/bin/ogrinfo /maps/aqidata.ovf -al

Create MapServer Layer
LAYER

NAME "MyAqi"
STATUS DEFAULT
TYPE POINT
CONNECTIONTYPE OGR
CONNECTION "aqidata.ovf"
DATA "aqidata"
CLASS
NAME "MyClass"
STYLE

SYMBOL ’circle’
SIZE 15
COLOR 0 255 0

END
END

END

DATA in the LAYER definition should be the same as the name attribute of the OGRVRTLayer element in the ovf
file.

For this to draw, you need to have a SYMBOLSET defined in your mapfile and have a symbol called ‘circle’ in
your symbols.sym file.

More Information

• OGR (MapServer OGR document)

• Vector Data (MapServer Vector Data Access Guide)

• MySQL wiki page (describes the deprecated mygis support)

368 Chapter 7. Input

http://trac.osgeo.org/mapserver/wiki/MySQL

MapServer Documentation, Release 6.4.1

NTF

NTF files are mostly used by the United Kingdom Ordnance Survey (OS). For more on the Ordnance Survey, see
their website at: http://www.ordnancesurvey.co.uk/oswebsite/

File listing

NTF files have an NTF extension.

Data Access / Connection Method

• NTF access requires OGR.

• The path to the NTF file is required in the CONNECTION string. It may be relative to the SHAPEPATH
setting in the map file or the full path.

• The DATA parameter is used to specify the layer to use

OGRINFO Examples

Using ogrinfo on an NTF file to retrieve layer names:

> ogrinfo llcontours.ntf
ERROR 4: NTF Driver doesn’t support update.
Had to open data source read-only.
INFO: Open of ‘llcontours.ntf’
using driver ‘UK .NTF’ successful.
1: LANDLINE_POINT (Point)
2: LANDLINE_LINE (Line String)
3: LANDLINE_NAME (Point)
4: FEATURE_CLASSES (None)

Using ogrinfo to examine the structure of an NTF layer:

> ogrinfo llcontours.ntf LANDLINE_LINE -summary
ERROR 4: NTF Driver doesn’t support update.
Had to open data source read-only.
INFO: Open of ‘llcontours.ntf’
using driver ‘UK .NTF’ successful.

Layer name: LANDLINE_LINE
Geometry: Line String
Feature Count: 491
Extent: (279000.000000, 187000.000000) - (280000.000000, 188000.000000)
Layer SRS WKT:
PROJCS["OSGB 1936 / British National Grid",

GEOGCS["OSGB 1936",
DATUM["OSGB_1936",

SPHEROID["Airy 1830",6377563.396,299.3249646,
AUTHORITY["EPSG","7001"]],
AUTHORITY["EPSG","6277"]],

PRIMEM["Greenwich",0,
AUTHORITY["EPSG","8901"]],

UNIT["degree",0.0174532925199433],
AUTHORITY["EPSG","4277"]],

PROJECTION["Transverse_Mercator"],
PARAMETER["latitude_of_origin",49],
PARAMETER["central_meridian",-2],
PARAMETER["scale_factor",0.999601272],
PARAMETER["false_easting",400000],

7.1. Data Input 369

http://www.ordnancesurvey.co.uk/oswebsite/

MapServer Documentation, Release 6.4.1

PARAMETER["false_northing",-100000],
UNIT["metre",1,

AUTHORITY["EPSG","9001"]],
AUTHORITY["EPSG","27700"]]

LINE_ID: Integer (6.0)
FEAT_CODE: String (4.0)
...

Map File Example:

LAYER
NAME ntf_uk
TYPE LINE
CONNECTIONTYPE OGR
CONNECTION "./ntf/llcontours.ntf"

DATA "LANDLINE_LINE"
STATUS DEFAULT
CLASS

NAME "Contours"
STYLE

COLOR 0 150 200
END
END

END

OGR

Author Jeff McKenna

Contact jmckenna at gatewaygeomatics.com

Last Updated 2010-10-16

Table of Contents

• OGR
– Introduction
– What is OGR?
– Obtaining and Compiling MapServer with OGR Support
– Integrating OGR Support with MapServer Applications
– STYLEITEM “AUTO” - Rendering Layers Using Style Information from the OGR File
– Sample Sites Using OGR/MapServer
– FAQ / Common Problems

Introduction

Starting with version 3.5, MapServer included the ability to access vector data sets in formats other than Shapefile
in their native format using the OGR library. The following document describes the process for implementing
OGR support within MapServer applications.

Note: Experimental OGR support was included in MapServer version 3.4 but this initial implementation had
some limitations and is not covered in this document.

This document assumes that you are already familiar with certain aspects of MapServer:

• MapServer application development and especially setting up .map files.

• Some compilation skills if you don’t have ready access to a pre-compiled installation and need to compile
your own copy of MapServer with OGR support.

370 Chapter 7. Input

MapServer Documentation, Release 6.4.1

• access to OGR utilities, such as ogrinfo, which are available in the FWTools and MS4W packages.

Readers should also check out the Vector Data Access Guide, which has lots of examples of how to access specific
vector formats.

What is OGR?

The OGR Simple Features Library is a C++ open source library (and command-line tools) providing read (and
sometimes write) access to a variety of vector file formats including ESRI Shapefiles, and MapInfo mid/mif and
TAB formats.

OGR is actually part of the GDAL library, so you will notice that some references point to GDAL (such as the
mailing list).

What Does OGR Add to MapServer? The OGR Simple Features Library allows MapServer users to display
several types of vector data files in their native formats. For example, MapInfo Mid/Mif and TAB data do not need
to be converted to ESRI shapefiles when using OGR support with MapServer.

What Data Formats are Supported? See http://www.gdal.org/ogr/ogr_formats.html for the latest list of sup-
ported formats. At the date this document was written, the following formats were supported:

• ArcInfo Binary Coverages

• ArcInfo E00 Coverages

• Atlas BNA

• Comma Separated Value (.csv)

• DODS/OPeNDAP

• ESRI ArcSDE

• ESRI Personal GeoDatabase

• ESRI Shapefiles

• FMEObjects Gateway

• Géoconcept Export

• GeoJSON

• GeoRSS

• GML

• GMT

• GRASS

• GPX

• Informix DataBlade

• INGRES

• INTERLIS

• KML

• MapInfo files

• Memory

• Microstation DGN files

• MySQL

7.1. Data Input 371

http://fwtools.maptools.org/
http://www.maptools.org/ms4w/
http://www.gdal.org/ogr/ogr_formats.html
http://www.gdal.org/ogr/drv_avcbin.html
http://www.gdal.org/ogr/drv_avce00.html
http://www.gdal.org/ogr/drv_bna.html
http://www.gdal.org/ogr/drv_csv.html
http://www.gdal.org/ogr/drv_dods.html
http://www.gdal.org/ogr/drv_sde.html
http://www.gdal.org/ogr/drv_pgeo.html
http://www.gdal.org/ogr/drv_shapefile.html
http://www.gdal.org/ogr/drv_fme.html
http://www.gdal.org/ogr/drv_geoconcept.html
http://www.gdal.org/ogr/drv_geojson.html
http://www.gdal.org/ogr/drv_georss.html
http://www.gdal.org/ogr/drv_gml.html
http://www.gdal.org/ogr/drv_gmt.html
http://www.gdal.org/ogr/drv_grass.html
http://www.gdal.org/ogr/drv_gpx.html
http://www.gdal.org/ogr/drv_idb.html
http://www.gdal.org/ogr/drv_ingres.html
http://www.gdal.org/ogr/drv_ili.html
http://www.gdal.org/ogr/drv_kml.html
http://www.gdal.org/ogr/drv_mitab.html
http://www.gdal.org/ogr/drv_memory.html
http://www.gdal.org/ogr/drv_dgn.html
http://www.gdal.org/ogr/drv_mysql.html

MapServer Documentation, Release 6.4.1

• ODBC

• OGDI Vectors

• Oracle Spatial

• PostgreSQL

• SDTS

• SQLite

• UK.NTF (National Transfer Format)

• US Census TIGER/Line

• VRT - Virtual Datasource

• X-Plane/Flighgear aeronautical data

Note: Some of the above formats (e.g. OGDI) have external dependencies and are not always included in the
pre-compiled binary distributions of MapServer with OGR support.*

Note: Some of the above formats are not well suited for random access by nature, that’s the case of MapInfo
MIF/MID files which is a TEXT format and will give very poor performance for a web application. On the other
hand, some binary formats such as MapInfo TAB are better suited for random access and will give performance
comparable to native shapefile access in MapServer.*

How to Get More Information on the OGR Project

• More information on the OGR Simple Features Project can be found at http://www.gdal.org/ogr/.

• The GDAL mailing list can be used for OGR related questions. Always search the list archives before
sending new questions.

• The GDAL Wiki has lots of good information for users and developers.

• The #gdal IRC channel on irc.freenode.net might also be of help. For info on IRC see the MapServer IRC
page.

The main developer of the OGR library is Frank Warmerdam and the integration of OGR within MapServer was
done by Daniel Morissette.

Obtaining and Compiling MapServer with OGR Support

• Follow the instructions on the OGR page to compile/install OGR/GDAL.

• Obtain the MapServer source.

For UNIX users, see the README.CONFIGURE file in the MapServer source, or see the UNIX Compilation and
Installation. If GDAL/OGR is normally installed it should be sufficient to add –with-ogr to the configure line
before (re)building MapServer. Linux users might want to try FGS, a Linux installer for MapServer.

For Windows users, it is recommended to look for a pre-compiled binary on the MapServer site (MS4W is recom-
mended). If you want to compile your own then see the README.WIN32 file in the MapServer source.

Integrating OGR Support with MapServer Applications

The only change that is needed to integrate OGR support with a MapServer application is with the .map file. The
LAYER’s DATA parameter is expanded to three parameters (CONNECTIONTYPE OGR, CONNECTION and
DATA).

372 Chapter 7. Input

http://www.gdal.org/ogr/drv_odbc.html
http://www.gdal.org/ogr/drv_ogdi.html
http://www.gdal.org/ogr/drv_oci.html
http://www.gdal.org/ogr/drv_pg.html
http://www.gdal.org/ogr/drv_sdts.html
http://www.gdal.org/ogr/drv_sqlite.html
http://www.gdal.org/ogr/drv_ntf.html
http://www.gdal.org/ogr/drv_tiger.html
http://www.gdal.org/ogr/drv_vrt.html
http://www.gdal.org/ogr/drv_xplane.html
http://www.gdal.org/ogr/
http://lists.osgeo.org/mailman/listinfo/gdal-dev
http://trac.osgeo.org/gdal/wiki/
http://www.gdal.org/ogr/
http://www.maptools.org/fgs/
http://www.maptools.org/ms4w/

MapServer Documentation, Release 6.4.1

The syntax for this differs depending on the type of data being used (the Vector Data Access Guide is an excel-
lent resource for this). In OGR, a data source can be either a set of files that share a common basename (e.g.
.shp/.shx/.dbf for ArcView Shapefiles, or .tab/.map/.dat/.ind/.id for MapInfo TAB files) or a whole directory of
files (e.g. TIGER).

Let’s call the former “File-based data sources” and the later “Directory-based data sources”. When accessing a
file-based data source you specify the filename of one of the files in the set (e.g. roads.shp or roads.tab) and
when accessing a directory-based data source you specify the directory name and OGR reads all the files in the
directory as a single data source with potentially several layers (e.g. TIGER files).

Some OGR drivers (e.g. SHP, TAB) can have dual behaviors, that is if they’re pointed to a single file then they
behave as a file-based data source and if they’re pointed to a directory then they will behave as a directory-based
data source and then every file in the directory becomes a new layer in the data source.

See the OGR formats page for more info on the specific file format you’re using. (Click on the format name for
more specific driver info on that format)

Using OGR Data Sources in the Map File The .map file LAYER definition for file-based sources is as follows:

LAYER
...
CONNECTIONTYPE OGR
CONNECTION "<datasource_name>"
DATA "<layer_definition>"
...

END

<datasource_name> is the name of the datasource to read from and is prefixed by the CONNECTION keyword.
The exact organization depends on the format driver in use. The format driver to use is automatically selected by
OGR based on the nature of the string passed as the datasource, and/or the format of the file referenced by it.

• For file based datasources this is the name of the file, including the extension, using an absolute path, or a
relative path. Relative paths are interpreted relative to the SHAPEPATH first, if not found then we try again
relative to the .map file location.

Note: Before version 4.1 the SHAPEPATH was ignored for OGR datasources.

• For directory based datasources, such as TIGER/Line, or Arc/Info Binary Coverages this is the name of the
directory containing the files. If the path is relative it is interpreted relative to the .map file.

• For virtual datasources such as database systems, and OGDI this is the service connection string
and is generally not related to the filesystem. For instance, for Oracle Spatial this might be
“OCI:warmerda/Password@gdal800.velocet.ca”.

<layer_definition> is the name, number or SQL definition of the layer to use from the datasource. It is indicated
via the DATA keyword in the map file.

• Layer Name: The (case insenstive) layer name may be used to select a layer.

• Layer Number: The layer number (starting from 0 for the first layer) may be used to select a layer. Generally
the layer name is preferred to this since it is more self describing.

• Omitted: If no DATA keyword is provided, this is equivalent to selecting layer 0.

• SQL SELECT: If an SQL SELECT statement is used, it is interpreted in a driver specific manner to try and
generate a temporary pseudo-layer. For some formats this a restricted subset of SQL is interpreted within
OGR. For RDBMS based drivers (such as PostGIS and Oracle) this is passed through to the underlying
database.

The OGRINFO utility can be used to find out the list of layers and their names in a data source.

7.1. Data Input 373

http://www.gdal.org/ogr/ogr_formats.html

MapServer Documentation, Release 6.4.1

Examples of Layer Definitions Using OGR Please see the Vector Data Access Guide for details and examples
of each data format supported.

Example 1. MapInfo TAB file

LAYER
NAME "Builtup_Areas_tab"
TYPE POLYGON
CONNECTIONTYPE OGR
CONNECTION "data/tab/092b06_builtup_a.tab"
STATUS ON
CLASS
...

END
...
END

Example 2. Microstation DGN file using <layer_index>

The entire DGN file is represented in OGR as one layer (see the DGN driver page for more details):

LAYER
NAME "dgn"
TYPE LINE
CONNECTIONTYPE OGR
CONNECTION "dgn/santabarbara02.dgn"
DATA "0"
STATUS ON
STYLEITEM "AUTO"
CLASS
...

END
END # Layer

Example 3. TIGER/Line file using <layer_name>

LAYER
NAME "Roads_tig"
TYPE line
CONNECTIONTYPE OGR
CONNECTION "full/path/to/tiger/TGR25001"
DATA "CompleteChain"
STATUS ON
CLASS
...

END
END

Example 4. Directory of Shapefiles using SQL JOIN

LAYER
NAME "Parks_cov"
TYPE POLYGON
CONNECTIONTYPE OGR
CONNECTION "data/shppoly"
DATA "SELECT eas_id, idl.Name FROM pol LEFT JOIN idl ON pol.eas_id = idl.eas_id"
STATUS ON
CLASSITEM "idlink.Name"
CLASS
...

END
END

How to Use “OGRINFO” OGRINFO is part of the GDAL/OGR distribution (it is also included in FWTools
and MS4W). It is an executable that can be used to obtain layer information about OGR supported files. The

374 Chapter 7. Input

http://www.gdal.org/ogr/drv_dgn.html
http://fwtools.maptools.org/
http://www.maptools.org/ms4w/

MapServer Documentation, Release 6.4.1

parameters are:

ogrinfo [-ro] [-q] datasource_name [layer [layer...]]

• -ro opens the file as read only (optional)

• -q executes in quiet mode, only the layer idex line will be returned (optional)

• datasource_name is the filename including extension (eg. roads.tab); for TIGER/Line files,
datasource_name is the directory containing the TIGER files (eg. ogrinfo TGR25001)

Example 5. To get the list of layers in a file:

$ ogrinfo popplace.tab

Had to open data source read-only.
INFO: Open of ‘popplace.tab’
using driver ‘MapInfo File’ successful.
1: popplace (Point)

which shows that there is one point layer in the popplace.tab file.

Example 6. To get a dump of a specific layer, including field names, projection, etc:

$ ogrinfo popplace.tab popplace

Had to open data source read-only.
INFO: Open of ‘popplace.tab’
using driver ‘MapInfo File’ successful.

Layer name: popplace
Geometry: Point
Feature Count: 497
Layer SRS WKT: PROJCS["unnamed",GEOGCS["unnamed",DATUM["North ...snipped...
AREA: Real (15.3)
PERIMETER: Real (15.3)
POPPLACE_: Real (11.0)
POPPLACE_I: Real (15.0)
NAME: String (50.0)
OGRFeature(popplace):1

AREA (Real) = 0.000
PERIMETER (Real) = 0.000
POPPLACE_ (Real) = 1
POPPLACE_I (Real) = 1
NAME (String) = Port Hope Simpson
POINT (2437287.249 1153656.751)

OGRFeature(popplace):2
AREA (Real) = 0.000
PERIMETER (Real) = 0.000
POPPLACE_ (Real) = 2
POPPLACE_I (Real) = 1
NAME (String) = Hopedale

...

...

Example 7. To get a list of layers in a TIGER/Line Directory:

$ ogrinfo TGR25001

Had to open data source read-only.
INFO: Open of ‘TGR25001’
using driver ‘TIGER’ successful.
1: CompleteChain (Line String)
2: AltName (None)

7.1. Data Input 375

MapServer Documentation, Release 6.4.1

3: FeatureIds (None)
4: ZipCodes (None)
5: Landmarks (Point)
6: AreaLandmarks (None)
7: KeyFeatures (None)
8: Polygon (None)
9: EntityNames (Point)
10: IDHistory (None)
11: PolyChainLink (None)
12: PIP (Point)
13: TLIDRange (None)
14: ZipPlus4 (None)

The above example shows that there are 14 layers in the TGR25001 directory.

Example 8. To get a summary of a specific TIGER layer, including only field names, projection, and extent

$ ogrinfo TGR25001 Landmarks -summary

Had to open data source read-only.
INFO: Open of ‘TGR25001’
using driver ‘TIGER’ successful.

Layer name: Landmarks
Geometry: Point
Feature Count: 777
Extent: (-70.674324, 41.519817) - (-69.969211, 42.046868)
Layer SRS WKT: GEOGCS["NAD83",DATUM["North_American_Datum_1983",
SPHEROID["GRS 1980",6378137,298.257222101]],PRIMEM["Greenwich",0],

UNIT["degree",0.0174532925199433]]
MODULE: String (8.0)
FILE: String (5.0)
STATE: Integer (2.0)
COUNTY: Integer (3.0)
LAND: Integer (10.0)
SOURCE: String (1.0)
CFCC: String (3.0)
LANAME: String (30.0)

Queries Through OGR Format OGR layers can be queried the same way as regular shapefiles in MapServer.

TILEINDEX with OGR OGR layers can utilize tile indexes in a similar fashion to Shapefile based layers. The
TILEINDEX keyword should contain the connection string for the tile index file. The tile index file may be any
supported OGR format, including shapefiles.

The TILEITEM keyword in the LAYER definition indicates what attribute from the tile index file should be used
as the datasource location. If omitted, the default TILEITEM value is “location”. The value in the location field
should be a connection string the same as would have been used in the CONNECTION field for OGR layers.
The CONNECTION keyword is not needed (and will be ignored) for layers using the OGR connection type and
having the TILEINDEX keyword.

Tileindex files can be prepared in an external GIS, or using the OGR utility ogrtindex. Details can be found on the
OGR Utilities Page.

The following is a simple example of a point layer using a tile index.

LAYER
NAME "ogr_points"
TYPE POINT
CONNECTIONTYPE OGR
TILEINDEX "PIP_ogr_tiles.shp,0"
STATUS ON

376 Chapter 7. Input

http://www.gdal.org/ogr_utilities.html

MapServer Documentation, Release 6.4.1

CLASS
NAME "points"
STYLE

SYMBOL "default-circle"
COLOR 255 0 0
SIZE 6

END
END

END

OGR tileindex layers should support all normal query and attribute fetching mechanisms, including from Map-
Script; however, this has not been heavily tested as of April/2002. Please report problems via the MapServer
Trac. If auto projection support is used for tileindexed OGR layers, the tileindex is read for the projection (not
the component tiles). Problems may (or may not) be encountered if the component tiles have differing schemas
(different sets of attributes).

Connection Pooling For some OGR supported formats, connecting to the dataset is quite expensive in terms of
CPU use and amount of disk IO. For instance, establishing access to an S-57 dataset results in a complete read
into memory of the data files. Connection pooling control aims at reducing this overhead in situations where the
same file is used for several different map layers.

To ensure that an OGR supported dataset is only opened once per map render (instead of separately for each map
LAYER referencing the dataset, use the CLOSE_CONNECTION PROCESSING option. The default value is for
CLOSE_CONNECTION is NORMAL, but if set to DEFER the dataset will be kept open till the map render is
complete. It will be reused by any other layers with using the same datasource.

Example 9. Preserve S-57 connection for two layers

In this example, we are using the same dataset (NO410810.000) for two layers. To avoid re-reading the dataset,
we mark the first layer to defer closing the connection till layer. In the second (or last) layer we request NORMAL
connection handling (though this could have been left out as normal handling is the default).

LAYER
NAME "AdminAreas"
TYPE POLYGON
CONNECTIONTYPE OGR
CONNECTION "NO410810.000"
DATA "ADMARE"
PROCESSING "CLOSE_CONNECTION=DEFER"
STATUS ON
...

END
LAYER

NAME "Land Areas"
TYPE POLYGON
CONNECTIONTYPE OGR
CONNECTION "NO410810.000"
DATA "LNDARE"
PROCESSING "CLOSE_CONNECTION=NORMAL"
STATUS ON
...

END

1. The text of the CONNECTION keyword must match exactly between layers for the connection to be reused.

2. Some dataset connections are quite memory expensive, and keeping them open may result in increased
memory use.

3. If all layers rendered for a particular connection defer closing the connection, it will remain open till
MapServer terminates. For normal cgi or MapScript use this is likely OK.

4. This use of CLOSE_CONNECTION handling is unique to OGR layers, and may be changed at some point
in the future as part of a broader implementation of connection pooling in MapServer.

7.1. Data Input 377

MapServer Documentation, Release 6.4.1

STYLEITEM “AUTO” - Rendering Layers Using Style Information from the OGR File

Note: This feature is only supported with MapInfo TAB and Microstation DGN files at the moment, but eventu-
ally other formats that carry colors and styles at the shape-level may also be supported through OGR.*

In MapServer, ArcView, and other shapefile-based applications, colors and styles are usually defined at the layer
level. This means that all the shapes in a given layer are usually rendered using the same color and styles.

On the other hand, some formats supported by OGR such as MapInfo TAB do have color and style information
attached to each shape. OGR adds support for the ‘STYLEITEM “AUTO”’ layer parameter which allows you to
request that the shapes in a layer be rendered using colors and styles coming from the data source instead of being
driven by CLASSes as was traditionally done with MapServer.

How to Implement In order to have a layer rendered using colours and styles coming from the OGR data source,
your must do the following:

• Your layer definition must contain the STYLEITEM “AUTO” parameter.

• Your layer definition needs to contain at least one CLASS (which may be empty) and optionally a CLAS-
SITEM to match the expressions if your CLASS contains an expression. The empty CLASS in the layer
will be updated dynamically at runtime to contain colours and styles coming from the data source for each
shape.

Examples Example 10. Layer Definition Using STYLEITEM “AUTO” without a CLASSITEM

LAYER
NAME "test_dgn"
STATUS ON
TYPE POLYGON
CONNECTIONTYPE OGR
CONNECTION "../data/dgn/test.dgn"

This enables use of colors and styles from the source file.
STYLEITEM "AUTO"

Define an empty class that will be filled at runtime from the
color and styles read on each shape in the source file.
CLASS
END

END # layer

Example 11. Layer Definition Using STYLEITEM “AUTO” with a CLASSITEM

LAYER
NAME "Builtup_Areas_tab"
TYPE POLYGON
CONNECTIONTYPE OGR
CONNECTION "data/tab/092b06_builtup_a.tab"
STATUS ON

This enables use of colors and styles from the source file.
STYLEITEM "AUTO"

Define an empty class that will be filled at runtime from the
color and styles read on each shape in the source file.
CLASSITEM "CATEGORY"
CLASS

EXPRESSION "1"
END

END

378 Chapter 7. Input

MapServer Documentation, Release 6.4.1

Please Note:

CLASS EXPRESSIONs are still working, so it is still possible to query and classify layers that are using
STYLEITEM “AUTO”. The only difference is that instead of using static class definitions, the colors and style
will be read from the data file.

Important Notes

NOTE 1 Even though MapInfo and other OGR data sources may support layers with mixed geometry
types (e.g. points, lines and polygons in the same file) this is not yet supported in MapServer.
So you still have to define a layer ‘TYPE’ and make sure that all the shapes in the OGR data
source are compatible with that layer type, otherwise MapServer may produce an error about
incompatible geometry types at runtime.

NOTE 2 Due to the dynamic nature of this feature, it is not compatible with the labelcache, so the
labelcache is automatically disabled for layers that make use of ‘STYLEITEM “AUTO”’.

NOTE 3 When you use STYLEITEM AUTO, MapServer tries to match symbol names returned by
OGR to names in your symbol file. For a quick solution, try using the following symbol file:

http://demo.mapserver.org/ogr-demos/yk_demo/etc/symbols_mapinfo.txt

The name of the symbols returned by OGR to MapServer depends on the file format. In the case of MapInfo files,
it will be:

• For “old-style” symbols (default MapInfo 3.0 symbols numbered 32 to 67) the symbol name will be
‘mapinfo-sym-##’ where ‘##’ is the symbol number, e.g. ‘mapinfo-sym-32’.

• For “Font Symbols”, the symbol name is also ‘mapinfo-sym-##’ where ‘##’ is the symbol number in the
font. In this case, the name of the font itself is ignored by MapServer.

• MapInfo also supports “custom symbols” (bitmap symbols)... I’m not sure what you would get from OGR
for this, but I’m pretty sure that MapServer doesn’t do anything useful with them.

The OGRINFO utility can be used to find out exactly which symbol names OGR will return to MapServer. Look
at the “Style” string in the ogrinfo output for each shape that is read.

Mapping of OGR Style Info to the MapServer CLASS Members Here is the list of style parameters that are
currently supported from OGR data sources and how they’re mapped in MapServer:

Line color The line colour is mapped to CLASS.COLOR

Line thickness The line thickness is mapped to CLASS.STYLE.WIDTH. The default will be 1 pixel line (as it
always is with MapServer).

Polygon fill color Polygon fill color is mapped directly to CLASS.COLOR

Note that at this time, transparent polygons are not supported (they’re always opaque).

Polygon outline If a polygon has an outline color and thickness defined in the data source then the same
rule as for line color and thickness above will apply, except that the outline color is mapped to
CLASS.OUTLINECOLOR

Point symbols Point symbol color is directly mapped to CLASS.COLOR. Point symbol size is directly mapped
to CLASS.SIZE.

If your symbolset contains a symbol called “default-marker” then this symbol will be used, otherwise the
default will be CLASS.SYMBOL=0 (i.e. a 1 pixel dot)

It is also possible (with a bit of work) to control which symbol gets used in rendering point symbols. OGR
provides MapServer with symbol names, and if the symbol name returned by OGR to MapServer matches
the name of one of the symbols in your symbolset then this symbol will be used.

For MapInfo point symbols (numbered 32 to 67 in the MapInfo MIF spec), the name returned by OGR is
“mapinfo-sym-X” where X should be replaced with the MapInfo symbol number (e.g. “mapinfo-sym-35”
is the star symbol).

7.1. Data Input 379

http://demo.mapserver.org/ogr-demos/yk_demo/etc/symbols_mapinfo.txt

MapServer Documentation, Release 6.4.1

If the OGR symbol id is a web reference (http://.../mysymbol.png), the symbol will be downloaded and a
new symbol entry will be created referring to it.

Text labels The text string is mapped to CLASS.TEXT

Text color is mapped to CLASS.LABEL.COLOR

Text background color is mapped to CLASS.LABEL.BACKGROUNDCOLOR

Text height is mapped to CLASS.LABEL.SIZE

Text angle is mapped to CLASS.LABEL.ANGLE

Text font mapping follows the following rules:

1. If TTF fonts are supported:

(a) If the native font name (e.g. “Arial”) is found in your fontset then this font will be used. The font
styles bold and italic are supported as follows: Arial bold fontname maps to arial-bold. Arial
italic fontname maps to arial-italic. Arial bold italic fontname maps to arial-bold-italic. If the
styles are not available, arial will be used.

(b) If 1a. failed and a font called “default” is present in your fontset then this “default” font will be
used.

2. If TTF fonts are not supported or if all above cases failed, then BITMAP MEDIUM font will be used.

Transparency If the color parameter from the OGR style contains an alpha value, the value will be used to set
the OPACITY parameter in the STYLE object.

Accessing OGR STYLEITEMAUTO Label Styles Through MapScript OGR STYLEITEMAUTO label
styles can be accessed through MapScript, such as PHP/MapScript’s getshape() or getvalue() methods, by set-
ting the LAYER’s PROCESSING parameter to “GETSHAPE_STYLE_ITEMS=all”. Therefore, the LAYER may
contain:

LAYER
...
PROCESSING "GETSHAPE_STYLE_ITEMS=all"
...

END

The following label styles are supported:

380 Chapter 7. Input

http://.../mysymbol.png

MapServer Documentation, Release 6.4.1

Label Style Description MapServer Version
Implemented

OGR:LabelFont Comma-delimited list of fonts names 5.4
OGR:LabelSize Numeric value with units 5.2.0
OGR:LabelText Label text string 5.2.0
OGR:LabelAngle Rotation angle (in degrees) 5.2.0
OGR:LabelFColorForeground color 5.4
OGR:LabelBColorBackground color 5.4
OGR:LabelPlacementHow is the text drawn relative to the feature’s geometry 5.4
OGR:LabelAnchorA value from 1 to 12 defining the label’s position relative to the

point to which it is attached.
5.4

OGR:LabelDx X offset 5.4
OGR:LabelDy Y offset 5.4
OGR:LabelPerp Perpendicular offset 5.4
OGR:LabelBold Bold text 5.4
OGR:LabelItalic Italic text 5.4
OGR:LabelUnderlineUnderlined text 5.4
OGR:LabelPriorityNumeric value defining the order in which style parts should be

drawn.
5.4

OGR:LabelStrikeoutStrike out text (gdal >= 1.4.0) 5.4
OGR:LabelStretchStretch factor changes the width of all characters in the font by

factor percent. (gdal >= 1.4.0)
5.4

OGR:LabelAdjHorHorizontally adjacent text (gdal >= 1.4.0) 5.4
OGR:LabelAdjVertVertically adjacent text (gdal >= 1.4.0) 5.4
OGR:LabelHColorShadow color (gdal >= 1.4.0) 5.4
OGR:LabelOColorOutline color (gdal > 1.6.0) 5.4

Please see the OGR Feature Style Specification document for more details on those specific styles.

Sample Sites Using OGR/MapServer

The following sites use OGR’s STYLEITEM “AUTO” feature:

• http://demo.mapserver.org/ogr-demos/yk_demo/demo_init.html

• http://demo.mapserver.org/ogr-demos/nfld_demo/demo_init.html

The following site uses OGR, as well as MapInfo’s ‘Seamless Map Layers’ feature:

• http://demo.mapserver.org/ogr-demos/ro_demo/demo_init.html

The following site uses OGR to display TIGER 2000 files:

• http://demo.mapserver.org/ogr-demos/tig_demo/demo_init.html

FAQ / Common Problems

Q What Does “OGR” Stand For?

A Basically, OGR does not stand for anything. For a detailed explanation of how OGR was named,
see GDAL’s FAQ at http://trac.osgeo.org/gdal/wiki/FAQ.

Q When using STYLEITEM AUTO, what should I have in my .sym symbols file?

A When you use STYLEITEM AUTO, MapServer tries to match symbol names returned by OGR to
names in your symbol file. For a quick solution, try using the following symbol file:

http://demo.mapserver.org/ogr-demos/yk_demo/etc/symbols_mapinfo.txt

The name of the symbols returned by OGR to MapServer depends on the file format. In the case
of MapInfo files, it will be:

7.1. Data Input 381

http://www.gdal.org/ogr/ogr_feature_style.html
http://demo.mapserver.org/ogr-demos/yk_demo/demo_init.html
http://demo.mapserver.org/ogr-demos/nfld_demo/demo_init.html
http://demo.mapserver.org/ogr-demos/ro_demo/demo_init.html
http://demo.mapserver.org/ogr-demos/tig_demo/demo_init.html
http://trac.osgeo.org/gdal/wiki/FAQ
http://demo.mapserver.org/ogr-demos/yk_demo/etc/symbols_mapinfo.txt

MapServer Documentation, Release 6.4.1

• For “old-style” symbols (default MapInfo 3.0 symbols numbered 32 to 67) the symbol
name will be ‘mapinfo-sym-##’ where ‘##’ is the symbol number, e.g. ‘mapinfo-sym-32’.

• For “Font Symbols”, the symbol name is also ‘mapinfo-sym-##’ where ‘##’ is the symbol
number in the font. In this case, the name of the font itself is ignored by MapServer.

• MapInfo also supports “custom symbols” (bitmap symbols)... I’m not sure what you would
get from OGR for this, but I’m pretty sure that MapServer doesn’t do anything useful with
them.

The OGRINFO utility can be used to find out exactly which symbol names OGR will return to
MapServer. Look at the “Style” string in the ogrinfo output for each shape that is read.

Oracle Spatial

Author Bart van den Eijnden

Last Updated 2005/12/12

Table of Contents

• Oracle Spatial
– What MapServer 5.2 with Oracle Spatial
– Binaries
– Installation
– Two options for using Oracle Spatial with MapServer
– Mapfile syntax for native Oracle Spatial support
– Using subselects in the DATA statement
– Additional keywords - [FUNCTION]
– Additional keywords - [VERSION]
– More information
– Example of a LAYER
– Mapfile syntax for OGR Oracle Spatial support

Oracle Spatial is a spatial cartridge for the Oracle database. Remember that all Oracle databases come with
Locator, which has less features than Oracle Spatial. The differences between Locator and Spatial can be found in
the Oracle Spatial FAQ.

You can also see the original OracleSpatial wiki page that this document was based on.

What MapServer 5.2 with Oracle Spatial

• mode=map

• query modes: query, nquery, itemnquery

• MapScript query functions such as querybyattributes

• OGC:WMS: GetCapabilities, GetMap, GetFeatureInfo, DescribeLayer

• OGC:WFS, GetCapabilities, DescribeFeatureType, GetFeature

Binaries

MapServer Windows plugins with Oracle spatial support can be downloaded from MS4W. But you need Oracle
client software in the server on which you are running MapServer. Oracle client software can be obtained for
development purposes from the Oracle website, but you need to register, which by the way is free. The most recent
version is Oracle Database 10g Release 1 Client. The ORACLE TECHNOLOGY NETWORK DEVELOPMENT
LICENSE AGREEMENT applies to this software. The instant client will be satisfactory, and you can download

382 Chapter 7. Input

http://www.orafaq.com/faqsdo.htm
https://github.com/mapserver/mapserver/wiki/OracleSpatial

MapServer Documentation, Release 6.4.1

the instant client. Make sure though your MapServer is compiled against the same version as your Oracle client,
for compiling you need a full client install, not just the instant client.

Installation

See Oracle Installation for more configuration and installation information for MapServer’s native Oracle support

Note: If you receive error messages like “Error: .”. It’s likely related to MapServer being unable access or locate
the ORACLE_HOME.

Two options for using Oracle Spatial with MapServer

Oracle Spatial layers in MapServer can be used through 2 interfaces:

• The native built-in support through maporaclespatial.c

• OGR, but watch out: OGR is not compiled with Oracle Spatial support so it won’t work without compiling in
OCI (Oracle client) yourself. This requires both recompiling GDAL/OGR as well as recompiling MapServer
itself against the new GDAL/OGR !!!!

Mapfile syntax for native Oracle Spatial support

The DATA statement for a LAYER of CONNECTIONTYPE oraclespatial can now have 4 options. This change is
backwards compatible, i.e. the old ways of specifying DATA still work. The new options are an extension to the
old DATA statements, as they needed to include identification of the primary key to be used for the query modes
(UNIQUE).

The following options are valid DATA statements:

"[geom_column]
FROM
[table]| [(

SELECT [...]
FROM [table]|[Spatial Operator]
[WHERE condition])]

[USING [UNIQUE column]
| [SRID #srid]
| [FUNCTION]
| [VERSION #version]

]"

Example 1 The most simple DATA statement, in this case you only need to define one geometry column and
one table. This option assumes you do not have an SRID defined.

LAYER
...
CONNECTIONTYPE oraclespatial
DATA "MYGEOMETRY FROM MYTABLE"
...

END

Example 2 It’s composed of the first option plus the USING UNIQUE parameter. These new features are
necessary when you want to use any query function. When it is used you must pass a numeric column type. This
option assumes you do not have an SRID defined.

7.1. Data Input 383

http://www.oracle.com/technology/software/tech/oci/instantclient/index.html

MapServer Documentation, Release 6.4.1

LAYER
...
CONNECTIONTYPE oraclespatial
DATA "MYGEOMETRY FROM MYTABLE USING UNIQUE MYTABLE_ID"
...

END

Example 3 This option is an extension to the first option. In this mode you must define the USING SRID
parameter when the SRID value in your data is different from NULL.

LAYER
...
CONNECTIONTYPE oraclespatial
DATA "MYGEOMETRY FROM MYTABLE USING SRID 90112"
...

END

Example 4 This option is a combination of examples 2 and 3.

LAYER
...
CONNECTIONTYPE oraclespatial
DATA "MYGEOMETRY FROM MYTABLE USING UNIQUE MYTABLE_ID SRID 90112"
...

END

Using subselects in the DATA statement

It is possible to define the source of the date as a subselect and not only as a table. As source of data, used in
FROM token, you can define any SQL, table, function, or operator that returns a SDO_GEOMETRY. For example:

DATA "[geom_column] FROM (SELECT [columns] FROM [table]|[Spatial function])"

If the LAYER definition contains a CLASSITEM, LABELITEM or FILTER, it is necessary that the fields used
are returned by the query. When you define CLASSITEM you can use an expression without any problems.

Additional keywords - [FUNCTION]

You can add three keywords to the DATA statement for [FUNCTION] option that influence the query which will
be executed in Oracle:

USING FILTER
"[geom_column] FROM [table]|([Subselect]) USING FILTER"

Using this keyword triggers MapServer to use the Oracle Spatial SDO_FILTER operator. This operator executes
only the Oracle Spatial primary filter over your query data. In the Oracle User guide they explain: The primary
filter compares geometric approximations, it returns a superset of exact result. The primary filter therefore should
be as efficient (that is, selective yet fast) as possible. This operator uses the spatial index, so you need to define
your spatial index correctly to retrieve an exact result. If the result of the query is not exact you can try the next
option.

USING RELATE
"[geom_column] FROM [table]|([Subselect]) USING RELATE"

384 Chapter 7. Input

MapServer Documentation, Release 6.4.1

Using this keyword triggers MapServer to use the Oracle Spatial SDO_RELATE operator. This operator applies
the primary and secondary Oracle Spatial filters. It’s performance can be slightly slow but the result is extremely
correct. You can use this mode when you want a perfect result or when you can’t readjust the spatial index.

USING GEOMRELATE
"[geom_column] FROM [table]|([Subselect]) USING GEOMRELATE"

Using this keyword triggers MapServer to use the geometry function SDO_GEOM.RELATE, a function that
searches the relations between geometries. SDO_GEOM.RELATE does not use the spatial index and your perfor-
mance is more slow than operators but it’s very accurate. You can use this mode when you can’t use the spatial
index or when it doesn’t exist.

USING NONE
"[geom_column] FROM [table]|([Subselect]) USING NONE"

Using this keyword triggers MapServer to don’t use any geometry function or spatial operator. So, the inter-
nal SQL don’t retrict, bases in the extent, the data from source. All the data from source will be returned for
MapServer. The NONE token is very useful when the source of the data don’t contains any spatial index. It’s
usually occur when the source is a function like SDO_BUFFER, SDO_XOR, SDO_INTERSECTION...... So this
mode is recomended when you can’t use the spatial index or when it doesn’t exist.

Additional keywords - [VERSION]

You can define what version of database you are using to improve the internal sql. This is very useful when using
geodetic SRIDs and MapServer functions that retrieve the extent from data.

USING VERSION 8i
"[geom_column] FROM [table]|([Subselect]) USING VERSION 8i"

This indicates MapServer to use a internal SQL that it’s compatible with Oracle 8i version.

USING VERSION 9i
"[geom_column] FROM [table]|([Subselect]) USING VERSION 9i"

The second indicates MapServer to use 9i version, is recommended to use this parameter if you are using 9i
version because the internal SQL will use specific spatial functions that is need to retrieve data correctly from 9i
Oracle Spatial versions.

USING VERSION 10g
"[geom_column] FROM [table]|([Subselect]) USING VERSION 10g"

This indicates MapServer to use a internal SQL that it’s compatible with Oracle 10g version.

More information

• You can define any PROJECTION to your LAYER without problem, can be used for data with or without an
SRID in Oracle.

• The native support for Oracle Spatial supports the defaults definition for SDO_GEOMETRY in database,
the Oracle Spatial SDO package.

7.1. Data Input 385

MapServer Documentation, Release 6.4.1

• Information about the primary and secondary Oracle Spatial filters can be found in the Oracle Spatial User
Guide (the “Query Model” section). Information about the SDO_FILTER and SDO_RELATE operators
can be found in the “Spatial Operators” section, and information about the SDO_GEOM.RELATE function
can be found in the “Geometry Function” section of the Oracle Spatial User Guide.

Example of a LAYER

LAYER
NAME kwadranten
TYPE POLYGON
CONNECTIONTYPE oraclespatial
CONNECTION "user/pwd"
DATA "GEOMETRIE FROM KWADRANTEN USING SRID 90112"
CLASS

STYLE
OUTLINECOLOR 0 0 0
COLOR 0 128 128

END
END

END

You can specify the SID for your database, the SID alias needs to be supplied in the tnsnames.ora file of the Oracle
client, e.g.

Example for tnsnames.ora:

MYDB =
(DESCRIPTION =

(ADDRESS_LIST =
(ADDRESS = (PROTOCOL = TCP)(HOST = server_ip)(PORT = 1521))

)
(CONNECT_DATA =

(SERVICE_NAME = DB1)
)

)

So after this you can define you layer connection as:

CONNECTION "user/pwd@MYDB"

Mapfile syntax for OGR Oracle Spatial support

Syntax for your MAP file:

CONNECTION "OCI:user/pwd@service"
CONNECTIONTYPE OGR
DATA "Tablename"

Note: Make sure you set the wms_extent METADATA for the LAYER, as otherwise the “Getcapabilities” request
takes a lot of time.

PostGIS/PostgreSQL

386 Chapter 7. Input

MapServer Documentation, Release 6.4.1

Table of Contents

• PostGIS/PostgreSQL
– PostGIS/PostgreSQL
– Data Access /Connection Method
– OGRINFO Examples
– Mapfile Example
– Support for SQL/MM Curves

* Example#1: CircularString in MapServer
* Example#2: CompoundCurve in MapServer
* Example#3: CurvePolygon in MapServer
* Example#4: MultiCurve in MapServer
* Example#5: MultiSurface in MapServer
* Using MapServer < 6.0

PostGIS/PostgreSQL

PostGIS spatially enables the Open Source PostgreSQL database.

The PostGIS wiki page may include additional information.

Data Access /Connection Method

PostGIS is supported directly by MapServer and must be compiled into MapServer to work.

The PostgreSQL client libraries (libpq.so or libpq.dll) must be present in the system’s path environment for func-
tionality to be present.

The CONNECTIONTYPE parameter must be set to POSTGIS.

The CONNECTION parameter is used to specify the parameters to connect to the database. CONNECTION
parameters can be in any order. Most are optional. dbname is required. user is required. host defaults to localhost,
port defaults to 5432 (the standard port for PostgreSQL).

The DATA parameter is used to specify the data used to draw the map. The form of DATA is “[geome-
try_column] from [table_name|sql_subquery] using unique [unique_key] using srid=[spatial_reference_id]”. The
“using unique” and “using srid=” clauses are optional when drawing features, but using them improves perfor-
mance. If you want to make MapServer query calls to a PostGIS layer, your DATA parameter must include “using
unique”. Omitting it will cause the query to fail.

Here is a simple generic example:

CONNECTIONTYPE POSTGIS
CONNECTION "host=yourhostname dbname=yourdatabasename user=yourdbusername

password=yourdbpassword port=yourpgport"
DATA "geometrycolumn from yourtablename"

This example shows specifying the unique key and srid in the DATA line:

CONNECTIONTYPE POSTGIS
CONNECTION "dbname=yourdatabasename user=yourdbusername"
DATA "the_geom from the_database using unique gid using srid=4326"

This example shows using a SQL subquery to perform a join inside the database and map the result in MapServer.
Note the “as subquery” string in the statement – everything between “from” and “using” is sent to the database for
evaluation:

CONNECTIONTYPE POSTGIS
CONNECTION "dbname=yourdatabasename user=yourdbusername"
DATA "the_geom from (select g.gid, g.the_geom, a.attr1, a.attr2 from

7.1. Data Input 387

http://postgis.net/
http://www.postgresql.org/
https://github.com/mapserver/mapserver/wiki/PostGIS

MapServer Documentation, Release 6.4.1

geotable g join attrtable a on g.gid = a.aid) as subquery
using unique gid using srid=4326"

This example shows using a geometry function and database sort to limit the number of features and vertices
returned to MapServer:

CONNECTIONTYPE POSTGIS
CONNECTION "dbname=yourdatabasename user=yourdbusername"
DATA "the_geom from (select g.gid, ST_Simplify(g.the_geom, 10.0) as

the_geom from geotable g order by ST_Area(g.the_geom) desc
limit 10) as subquery using unique gid using srid=4326"

This example shows the use of the !BOX! substitution string to over-ride the default inclusion of the map bounding
box in the SQL. By default the spatial box clause is appended to the SQL in the DATA clause, but you can use
!BOX! to insert it anywhere you like in the statement. In general, you won’t need to use !BOX!, because the
PostgreSQL planner will generate the optimal plan from the generated SQL, but in some cases (complex sub-
queries) a better plan can be generated by placing the !BOX! closer to the middle of the query:

CONNECTIONTYPE POSTGIS
CONNECTION "dbname=yourdatabasename user=yourdbusername"
DATA "the_geom from (select g.gid, ST_Union(g.the_geom, 10.0) as

the_geom from geotable g where ST_Intersects(g.geom,!BOX!)) as
subquery using unique gid using srid=4326"

OGRINFO Examples

OGRINFO can be used to read out metadata about PostGIS tables directly from the database.

First you should make sure that your GDAL/OGR build contains the PostgreSQL driver, by using the ‘–formats’
command:

>ogrinfo --formats
Loaded OGR Format Drivers:
...
-> "PGeo" (readonly)
-> "PostgreSQL" (read/write)
-> "MySQL" (read/write)
...

If you don’t have the driver, you might want to try the FWTools or MS4W packages, which include the driver.

Once you have the driver you are ready to try an ogrinfo command on your database to get a list of spatial tables:

>ogrinfo PG:"host=127.0.0.1 user=postgres password=postgres dbname=canada port=5432"
using driver ‘PostgreSQL’ successful.
1: province (Multi Polygon)

Now use ogrinfo to get information on the structure of the spatial table:

>ogrinfo PG:"host=127.0.0.1 user=postgres password=postgres dbname=canada port=5432"
province -summary

INFO: Open of ‘PG:host=127.0.0.1 user=postgres password=postgres dbname=canada’
using driver ‘PostgreSQL’ successful.

Layer name: province
Geometry: Multi Polygon
Feature Count: 1068
Extent: (-2340603.750000, -719746.062500) - (3009430.500000, 3836605.250000)
Layer SRS WKT:
(unknown)
FID Column = gid
Geometry Column = the_geom
area: Real (0.0)

388 Chapter 7. Input

http://fwtools.maptools.org
http://www.maptools.org

MapServer Documentation, Release 6.4.1

island: String (30.0)
island_e: String (30.0)
island_f: String (30.0)
name: String (30.0)
...

Mapfile Example

LAYER
NAME "province"
STATUS ON
TYPE POLYGON
CONNECTIONTYPE POSTGIS
CONNECTION "host=127.0.0.1 port=5432 dbname=canada user=postgres password=postgres"
DATA "the_geom from province"
CLASS

...
END

END

For more info about PostGIS and MapServer see the PostGIS docs: http://postgis.net/documentation/

Support for SQL/MM Curves

PostGIS is able to store circular interpolated curves, as part of the SQL Multimedia Applications Spatial specifi-
cation (read about the SQL/MM specification).

For more information about PostGIS’ support, see the SQL-MM Part 3 section in the PostGIS documentation,
such as here.

As of MapServer 6.0, the PostGIS features CircularString, CompoundCurve, CurvePolygon, MultiCurve, and
MultiSurface can be drawn through MapServer directly.

Example#1: CircularString in MapServer The following is the Well Known Text of the feature loading into
PostGIS:

INSERT INTO test (g, id) VALUES (ST_GeomFromText(’CIRCULARSTRING(0 0,
4 0, 4 4, 0 4, 0 0)’, -1), 2);

An example MapServer layer might look like:

LAYER
NAME "curves_poly"
STATUS DEFAULT
TYPE POLYGON
CONNECTIONTYPE postgis
CONNECTION "user=postgres password=postgres dbname=curves host=localhost port=5432"
DATA "g from test using SRID=-1 using unique id"
CLASS
STYLE

COLOR 128 128 128
ANTIALIAS true

END
END

END

And testing with shp2img should produce a map image of:

7.1. Data Input 389

http://postgis.net/documentation/
http://subs.emis.de/LNI/Proceedings/Proceedings26/GI-Proceedings.26-17.pdf
http://www.postgis.net/docs/manual-1.5/ch04.html#SQL_MM_Part3

MapServer Documentation, Release 6.4.1

Example#2: CompoundCurve in MapServer The following is the Well Known Text of the feature loading
into PostGIS:

INSERT INTO test (g, id) VALUES (ST_GeomFromText(’COMPOUNDCURVE(
CIRCULARSTRING(0 0, 1 1, 1 0),(1 0, 0 1))’, -1), 3);

An example MapServer layer might look like:

LAYER
NAME "curves_poly"
STATUS DEFAULT
TYPE POLYGON
CONNECTIONTYPE postgis
CONNECTION "user=postgres password=postgres dbname=curves host=localhost port=5432"
DATA "g from test using SRID=-1 using unique id"
CLASS
STYLE

COLOR 128 128 128
ANTIALIAS true

END
END

END

And testing with shp2img should produce a map image of:

Example#3: CurvePolygon in MapServer The following is the Well Known Text of the feature loading into
PostGIS:

INSERT INTO test (g, id) VALUES (ST_GeomFromText(’CURVEPOLYGON(
CIRCULARSTRING(0 0, 4 0, 4 4, 0 4, 0 0),(1 1, 3 3,
3 1, 1 1))’, -1), 4);

An example MapServer layer might look like:

LAYER
NAME "curves_poly"
STATUS DEFAULT
TYPE POLYGON
CONNECTIONTYPE postgis
CONNECTION "user=postgres password=postgres dbname=curves host=localhost port=5432"
DATA "g from test using SRID=-1 using unique id"
CLASS
STYLE

390 Chapter 7. Input

MapServer Documentation, Release 6.4.1

COLOR 128 128 128
ANTIALIAS true

END
END

END

And testing with shp2img should produce a map image of:

Example#4: MultiCurve in MapServer The following is the Well Known Text of the feature loading into
PostGIS:

INSERT INTO test (g, id) VALUES (ST_GeomFromText(’MULTICURVE((0 0,
5 5),CIRCULARSTRING(4 0, 4 4, 8 4))’, -1), 6);

An example MapServer layer might look like:

LAYER
NAME "curves_poly"
STATUS DEFAULT
TYPE POLYGON
CONNECTIONTYPE postgis
CONNECTION "user=postgres password=postgres dbname=curves host=localhost port=5432"
DATA "g from test using SRID=-1 using unique id"
CLASS
STYLE

COLOR 128 128 128
ANTIALIAS true

END
END

END

And testing with shp2img should produce a map image of:

7.1. Data Input 391

MapServer Documentation, Release 6.4.1

Example#5: MultiSurface in MapServer The following is the Well Known Text of the feature loading into
PostGIS:

INSERT INTO test (g, id) VALUES (ST_GeomFromText(’MULTISURFACE(
CURVEPOLYGON(CIRCULARSTRING(0 0, 4 0, 4 4, 0 4,
0 0),(1 1, 3 3, 3 1, 1 1)),((10 10, 14 12, 11 10,
10 10),(11 11, 11.5 11, 11 11.5, 11 11)))’, -1), 7);

An example MapServer layer might look like:

LAYER
NAME "curves_poly"
STATUS DEFAULT
TYPE POLYGON
CONNECTIONTYPE postgis
CONNECTION "user=postgres password=postgres dbname=curves host=localhost port=5432"
DATA "g from test using SRID=-1 using unique id"
CLASS
STYLE

COLOR 128 128 128
ANTIALIAS true

END
END

END

And testing with shp2img should produce a map image of:

392 Chapter 7. Input

MapServer Documentation, Release 6.4.1

Using MapServer < 6.0 If you cannot upgrade to MapServer 6.0, then you can use the PostGIS function
ST_CurveToLine() in your MapServer LAYER to draw the curves (note that this is much slower however):

LAYER
NAME "curves_poly"
STATUS DEFAULT
TYPE POLYGON
CONNECTIONTYPE postgis
CONNECTION "user=postgres password=postgres dbname=curves host=localhost port=5432"
DATA "wkb_geometry from (select c.id, ST_CurveToLine(c.g) as

wkb_geometry from c) as subquery using
unique id using SRID=-1"

CLASS
STYLE

COLOR 128 128 128
ANTIALIAS true

END
END

END

SDTS

This is a United States Geological Survey (USGS) format. SDTS has a raster and a vector format. The raster
format is not supported in MapServer. Only the vector formats are supported, including VTP and DLG files.

7.1. Data Input 393

MapServer Documentation, Release 6.4.1

File listing

• SDTS files are often organized into state-sized pieces. For example, all of the state of Maryland (MD),
U.S.A.

• Files are also available for multiple types of features including hydrography, transportation and administra-
tive boundaries.

This example uses transportation data, which consists of 35 separate files, each with the suffix DDF:

MDTRAHDR.DDF MDTRARRF.DDF MDTRCATS.DDF
MDTRDQCG.DDF MDTRFF01.DDF MDTRLE02.DDF
MDTRNA03.DDF MDTRNO03.DDF MDTRSPDM.DDF
MDTRAMTF.DDF MDTRBFPS.DDF MDTRCATX.DDF
MDTRDQHL.DDF MDTRIDEN.DDF MDTRLE03.DDF
MDTRNE03.DDF MDTRPC01.DDF MDTRSTAT.DDF
MDTRARDF.DDF MDTRBMTA.DDF MDTRDDSH.DDF
MDTRDQLC.DDF MDTRIREF.DDF MDTRNA01.DDF
MDTRNO01.DDF MDTRPC02.DDF MDTRXREF.DDF
MDTRARDM.DDF MDTRCATD.DDF MDTRDQAA.DDF
MDTRDQPA.DDF MDTRLE01.DDF MDTRNA02.DDF
MDTRNO02.DDF MDTRPC03.DDF

Data Access / Connection Method

• SDTS access is available in MapServer through OGR.

• The CONNECTIONTYPE OGR parameter must be used.

• The path (which can be relative) to the catalog file (????CATD.DDF) is required, including file extension.

• There are multiple layers in the SDTS catalog, some of which are only attributes and have no geometries.

• The layer name is specified with the DATA parameter

OGRINFO Examples

Using ogrinfo on a catalog file (note that the first 7 layers do not have geometries):

> ogrinfo /data/sdts/MD/MDTRCATD.DDF
Had to open data source read-only.
INFO: Open of ‘MDTRCATD.DDF’
using driver ‘SDTS’ successful.
1: ARDF (None)
2: ARRF (None)
3: AMTF (None)
4: ARDM (None)
5: BFPS (None)
6: BMTA (None)
7: AHDR (None)
8: NE03 (Point)
9: NA01 (Point)
10: NA02 (Point)
11: NA03 (Point)
12: NO01 (Point)
13: NO02 (Point)
14: NO03 (Point)
15: LE01 (Line String)
16: LE02 (Line String)
17: LE03 (Line String)
18: PC01 (Polygon)

394 Chapter 7. Input

MapServer Documentation, Release 6.4.1

19: PC02 (Polygon)
20: PC03 (Polygon)

Using ogrinfo to examine the structure of the file/layer:

> ogrinfo /data/sdts/MD/MDTRCATD.DDF LE01 -summary
Had to open data source read-only.
INFO: Open of ‘MDTRCATD.DDF’
using driver ‘SDTS’ successful.

Layer name: LE01
Geometry: Line String
Feature Count: 780
Extent: (-80.000289, 36.999774) - (-74.999711, 40.000225)
Layer SRS WKT:
GEOGCS["NAD27",

DATUM["North_American_Datum_1927",
SPHEROID["Clarke 1866",6378206.4,294.978698213901]],

PRIMEM["Greenwich",0],
UNIT["degree",0.0174532925199433]]

RCID: Integer (0.0)
SNID: Integer (0.0)
ENID: Integer (0.0)
ENTITY_LABEL: String (7.0)
ARBITRARY_EXT: String (1.0)
RELATION_TO_GROUND: String (1.0)
VERTICAL_RELATION: String (1.0)
OPERATIONAL_STATUS: String (1.0)
ACCESS_RESTRICTION: String (1.0)
OLD_RAILROAD_GRADE: String (1.0)
WITH_RAILROAD: String (1.0)
COVERED: String (1.0)
HISTORICAL: String (1.0)
LIMITED_ACCESS: String (1.0)
PHOTOREVISED: String (1.0)
LANES: Integer (2.0)
ROAD_WIDTH: Integer (3.0)
BEST_ESTIMATE: String (1.0)
ROUTE_NUMBER: String (7.0)
ROUTE_TYPE: String (9.0)

Map File Example:

LAYER
NAME sdts_maryland
TYPE LINE
CONNECTIONTYPE OGR
CONNECTION "data/sdts/MD/MDTRCATD.DDF"
DATA "LE01"
STATUS DEFAULT
CLASS
STYLE

COLOR 0 0 0
END

END
END

S57

Also known as S57. The IHO S-57 format is a vector interchange format used for maritime charts. It was
developed by the International Hydrographic Organisation (IHO). For more information about the IHO see:
http://www.iho.shom.fr/

7.1. Data Input 395

http://www.iho.shom.fr/

MapServer Documentation, Release 6.4.1

File listing

Individual S57 data files have an extension of *.000. For example:

US1BS02M.000

Data Access / Connection Method

• S57 access in MapServer occurs through OGR, CONNECTIONTYPE OGR must be used.

• Specify a full path or a relative path from the SHAPEPATH to the .000 file for the CONNECTION

• Use the DATA parameter to specify the s57 layer name

Special Notes The underlying OGR code requires two files from your GDAL/OGR installation when reading
S57 data in MapServer : s57objectclasses.csv and s57attributes.csv. These files can be found in the /GDAL/data/
folder (unix: /usr/local/share/gdal windows: /ms4w/gdaldata). If you receive an error in MapServer such as:

msDrawMap(): Image handling error. Failed to draw layer named ’s57’.
msOGRFileOpen(): OGR error. xxx failed for OGR connection

you may have to point MapServer to these files using the CONFIG parameter in the main section of your map file:

CONFIG GDAL_DATA "C:\ms4w\gdaldata"

OGRINFO Examples

Using ogrinfo on an S57 file to get the layer name:

> ogrinfo us1bs02m.000
ERROR 4: S57 Driver doesn’t support update.
Had to open data source read-only.
INFO: Open of ‘us1bs02m.000’
using driver ‘IHO S-57 (ENC)’ successful.
1: ADMARE (Polygon)
2: CBLSUB (Line String)
3: CTNARE
4: COALNE (Line String)
5: DEPARE
6: DEPCNT (Line String)
7: LNDARE
8: LNDELV
9: LNDRGN
10: LNDMRK
11: LIGHTS (Point)
12: OBSTRN
13: RDOSTA (Point)
14: SEAARE
15: SBDARE
16: SLCONS
17: SOUNDG (Multi Point)
18: UWTROC (Point)
19: WATTUR
20: WRECKS
21: M_COVR (Polygon)
22: M_NPUB (Polygon)
23: M_NSYS (Polygon)
24: M_QUAL (Polygon)
25: C_ASSO (None)

396 Chapter 7. Input

MapServer Documentation, Release 6.4.1

Using ogrinfo to examine the structure of an S57 layer:

> ogrinfo us1bs02m.000 DEPARE -summary
ERROR 4: S57 Driver doesn’t support update.
Had to open data source read-only.
INFO: Open of ‘us1bs02m.000’
using driver ‘IHO S-57 (ENC)’ successful.

Layer name: DEPARE
Geometry: Unknown (any)
Feature Count: 297
Extent: (165.666667, 48.500000) - (180.000000, 60.750000)
Layer SRS WKT:
GEOGCS["WGS 84",

DATUM["WGS_1984",
SPHEROID["WGS 84",6378137,298.257223563]],

PRIMEM["Greenwich",0],
UNIT["degree",0.0174532925199433]]

GRUP: Integer (3.0)
OBJL: Integer (5.0)
RVER: Integer (3.0)
AGEN: Integer (2.0)
FIDN: Integer (10.0)
FIDS: Integer (5.0)
LNAM: String (16.0)
LNAM_REFS: StringList (16.0)
DRVAL1: Real (0.0)
DRVAL2: Real (0.0)
QUASOU: String (0.0)
SOUACC: Real (0.0)
VERDAT: Integer (0.0)
INFORM: String (0.0)
NINFOM: String (0.0)
NTXTDS: String (0.0)
SCAMAX: Integer (0.0)
SCAMIN: Integer (0.0)
TXTDSC: String (0.0)
RECDAT: String (0.0)
RECIND: String (0.0)
...

Map File Example:

LAYER
NAME s57
TYPE POLYGON
STATUS DEFAULT
CONNECTIONTYPE OGR
CONNECTION "./s57/us1bs02m.000"
DATA "DEPARE"
CLASS
STYLE

COLOR 247 237 219
OUTLINECOLOR 120 120 120

END
END

END # Layer

SpatiaLite

SpatiaLite spatially enables the file-based SQLite database. For more information see the SpatiaLite description
page.

7.1. Data Input 397

http://www.gaia-gis.it/spatialite/index.html
http://www.gaia-gis.it/spatialite/index.html

MapServer Documentation, Release 6.4.1

File listing

Similar to other database formats, the .sqlite file consists of several tables. The geometry is held in a BLOB table
column.

Data Access / Connection Method

Spatialite access is available through OGR. See the OGR driver page for specific driver information. The driver is
available in GDAL/OGR version 1.7.0 or later.

OGR uses the names of spatial tables within the SpatiaLite database (tables with a geometry column that are
registered in the geometry_columns table) as layers.

The CONNECTION parameter must include the sqlite extension, and the DATA parameter should be the name of
the spatial table (or OGR layer).

CONNECTIONTYPE OGR
CONNECTION "spatialite_db.sqlite"
DATA "layername"

OGRINFO Examples

First you should make sure that your GDAL/OGR build contains the spatialite “SQLite” driver, by using the
‘–formats’ command:

>ogrinfo --formats
Loaded OGR Format Drivers:
...
-> "GMT" (read/write)
-> "SQLite" (read/write)
-> "ODBC" (read/write)
...

If you don’t have the driver, you might want to try the MS4W or OSGeo4W packages, which include the driver.

Once you have confirmed that you have the SQLite driver you are ready to try an ogrinfo command on your
database to get a list of spatial tables:

>ogrinfo counties.sqlite
INFO: Open of ‘counties.sqlite’
using driver ‘SQLite’ successful.
1: mn_counties (Polygon)

Now use ogrinfo to get information on the structure of the spatial table:

>ogrinfo counties.sqlite county -summary
INFO: Open of ‘counties.sqlite’
using driver ‘SQLite’ successful.

Layer name: mn_counties
Geometry: Polygon
Feature Count: 87
Extent: (189783.560000, 4816309.330000) - (761653.524114, 5472346.500000)
Layer SRS WKT:
PROJCS["NAD83 / UTM zone 15N",

GEOGCS["NAD83",
DATUM["North_American_Datum_1983",

SPHEROID["GRS 1980",6378137,298.257222101,
AUTHORITY["EPSG","7019"]],
TOWGS84[0,0,0,0,0,0,0],
AUTHORITY["EPSG","6269"]],

398 Chapter 7. Input

http://www.gdal.org/ogr/drv_sqlite.html
http://www.maptools.org/ms4w/
http://trac.osgeo.org/osgeo4w//

MapServer Documentation, Release 6.4.1

PRIMEM["Greenwich",0,
AUTHORITY["EPSG","8901"]],

UNIT["degree",0.0174532925199433,
AUTHORITY["EPSG","9122"]],

AUTHORITY["EPSG","4269"]],
UNIT["metre",1,

AUTHORITY["EPSG","9001"]],
PROJECTION["Transverse_Mercator"],
PARAMETER["latitude_of_origin",0],
PARAMETER["central_meridian",-93],
PARAMETER["scale_factor",0.9996],
PARAMETER["false_easting",500000],
PARAMETER["false_northing",0],
AUTHORITY["EPSG","26915"],
AXIS["Easting",EAST],
AXIS["Northing",NORTH]]

FID Column = PK_UID
Geometry Column = Geometry
AREA: Real (0.0)
PERIMETER: Real (0.0)
COUNTY_ID: Integer (0.0)
FIPS: String (0.0)
...

Mapfile Example

Standard connection
LAYER

NAME my_counties_layer
TYPE POLYGON
CONNECTIONTYPE ogr
CONNECTION "counties.sqlite"
DATA "mn_counties"
STATUS ON
CLASS

NAME "mncounties"
STYLE

COLOR 255 255 120
END

END
END

Connection utilizing SQL syntax
LAYER

NAME my_counties_layer
TYPE POLYGON
CONNECTIONTYPE OGR
CONNECTION "counties.sqlite"
DATA "select geometry from mn_counties"
STATUS ON
CLASS

NAME "mncounties"
STYLE

COLOR 255 255 120
END

END
END

Connection utilizing joined table for additional attributes

7.1. Data Input 399

MapServer Documentation, Release 6.4.1

LAYER
NAME my_counties_layer
TYPE POLYGON
CONNECTIONTYPE OGR
CONNECTION "counties.sqlite"
DATA "SELECT mn.geometry, c.fips FROM mn_counties mn inner

join county_data c on mn.county_id = c.county_id’
STATUS ON
CLASS

NAME "mncounties"
STYLE

COLOR 255 255 120
END

END
END

Standard Connection with a filter
LAYER

NAME my_counties_layer
TYPE POLYGON
CONNECTIONTYPE OGR
CONNECTION "counties.sqlite"
DATA "mn_counties"
FILTER (’[fips]’ = ’27031’)
STATUS ON
CLASS

NAME "mncounties"
STYLE

COLOR 255 255 120
END

END
END

Filter utilizing SQL syntax
LAYER

NAME my_counties_layer
TYPE POLYGON
CONNECTIONTYPE OGR
CONNECTION "counties.sqlite"
DATA "select geometry from mn_counties where fips = ’27031"
STATUS ON
CLASS

NAME "mncounties"
STYLE

COLOR 255 255 120
END

END
END

USGS TIGER

TIGER/Line files are created by the US Census Bureau and cover the entire US. They are often referred simply as
TIGER files. For more information see: http://www.census.gov/geo/www/tiger/.

File listing

TIGER/Line files are text files and directory-based data sources. For example, one county folder TGR06059
contains several associated files:

400 Chapter 7. Input

http://www.census.gov/geo/www/tiger/

MapServer Documentation, Release 6.4.1

TGR06059.RT1 TGR06059.RT2 TGR06059.RT4 TGR06059.RT5
TGR06059.RT6 TGR06059.RT7 TGR06059.RT8 TGR06059.RTA
TGR06059.RTC TGR06059.RTH TGR06059.RTI TGR06059.RTP
TGR06059.RTR TGR06059.RTS TGR06059.RTT TGR06059.RTZ

Data Access / Connection Method

• TIGER/Line access occurs through an OGR CONNECTION

• The full path to the directory containing the associated files is required in the CONNECTION string.

• The feature type is specified in the DATA parameter

OGRINFO Examples Using ogrinfo on a TIGER directory to retrieve feature types:

> ogrinfo TGR06059 (NOTE that this is a directory)
ERROR 4: Tiger Driver doesn’t support update.
Had to open data source read-only.
INFO: Open of ‘TGR06059’
using driver ‘TIGER’ successful.
1: CompleteChain (Line String)
2: AltName (None)
3: FeatureIds (None)
4: ZipCodes (None)
5: Landmarks (Point)
6: AreaLandmarks (None)
7: Polygon (None)
8: PolygonCorrections (None)
9: EntityNames (Point)
10: PolygonEconomic (None)
11: IDHistory (None)
12: PolyChainLink (None)
13: PIP (Point)
14: TLIDRange (None)
15: ZeroCellID (None)
16: OverUnder (None)
17: ZipPlus4 (None)

Using ogrinfo to examine the structure of the TIGER feature type CompleteChain:

> ogrinfo TGR06059 CompleteChain -summary
ERROR 4: Tiger Driver doesn’t support update.
Had to open data source read-only.
INFO: Open of ‘TGR06059’
using driver ‘TIGER’ successful.

Layer name: CompleteChain
Geometry: Line String
Feature Count: 123700
Extent: (-118.125898, 33.333992) - (-117.412987, 33.947512)
Layer SRS WKT:
GEOGCS["NAD83",
DATUM["North_American_Datum_1983",

SPHEROID["GRS 1980",6378137,298.257222101]],
PRIMEM["Greenwich",0],
UNIT["degree",0.0174532925199433]]
MODULE: String (8.0)
TLID: Integer (10.0)
SIDE1: Integer (1.0)
SOURCE: String (1.0)
FEDIRP: String (2.0)
FENAME: String (30.0)

7.1. Data Input 401

MapServer Documentation, Release 6.4.1

FETYPE: String (4.0)
FEDIRS: String (2.0)
CFCC: String (3.0)
FRADDL: String (11.0)
TOADDL: String (11.0)
FRADDR: String (11.0)
TOADDR: String (11.0)
FRIADDL: String (1.0)
TOIADDL: String (1.0)
FRIADDR: String (1.0)
TOIADDR: String (1.0)
ZIPL: Integer (5.0)

Map File Example:

LAYER
NAME Complete_Chain
TYPE LINE
STATUS DEFAULT
CONNECTIONTYPE OGR
CONNECTION "/path/to/data/tiger/TGR06059"
DATA "CompleteChain"
CLASS
STYLE

COLOR 153 102 0
END

END
END # Layer

Vector field rendering - UVraster

Vector fields are used for instance in meteorology to store/display wind direction and magnitude.

The source is two bands of raster data, the first band represents the U component of the vector, and the second
band the V component. Using the u,v values at a given location we can compute a rotation and magnitude and
use that to draw an arrow of a size proportional to the magnitude and pointing in the direction of the phenomenon
(wind, current, etc.)

For more details about vector fields, refer to: Vector field

A vector field LAYER is a hybrid layer, which has a raster data source as input and vector features as output. The
output features are represented as points. Queries are not supported.

Since the data source is a raster, all raster processing options can be used (e.g. RESAMPLE). RESAM-
PLE=AVERAGE generally gives a good result, and the default. This can be overridden by explicitly specifying
the type of resampling.

Vector field layers are of TYPE point, and have CONNECTIONTYPE uvraster. The raster data set is specified in
DATA. The two bands that define the vector field are specified using PROCESSING BANDS (U first, V second).

The UVraster connection type offers the following attributes:

• [u]: the raw u value

• [v]: the raw v value

• [uv_angle]: the vector angle

• [uv_minus_angle]: the vector angle - opposite direction

• [uv_length]: the vector length (scaled with the UV_SIZE_SCALE optional value)

• [uv_length_2]: half the vector length

Optional PROCESSING settings:

402 Chapter 7. Input

http://en.wikipedia.org/wiki/Vector_field

MapServer Documentation, Release 6.4.1

• UV_SPACING: The spacing is simply the distance, in pixels, between arrows to be displayed in the vector
field. Default is 32.

• UV_SIZE_SCALE: The uv size scale is used to convert the vector lengths (magnitude) of the raster to pixels
for a better rendering. Default is 1.

Example of a layer definition:

SYMBOL
NAME "horizline"
TYPE VECTOR
POINTS

0 0
1 0

END # points
END # symbol
SYMBOL

NAME "arrowhead"
TYPE vector
FILLED true
#ANCHORPOINT 0 0.5
POINTS
0 2
4 1
0 0

END # points
END # symbol
SYMBOL

NAME "arrowtail"
TYPE vector
FILLED true
ANCHORPOINT 1 0.5 # to shift the arrowtail
POINTS
0 2
4 1
0 0
-99 -99
0 1
4 1

END # points
END # symbol
LAYER

NAME "my_uv_test"
TYPE POINT
STATUS DEFAULT
CONNECTIONTYPE uvraster
DATA / p a t h / w i n d . g r i b 2
PROCESSING "BANDS=1,2"
PROCESSING "UV_SPACING=40"
PROCESSING "UV_SIZE_SCALE=0.2"
CLASS
STYLE

SYMBOL "horizline"
ANGLE [uv_angle]
SIZE [uv_length]
WIDTH 3
COLOR 100 255 0

END # style
STYLE

SYMBOL "arrowhead"
ANGLE [uv_angle]
SIZE 10
COLOR 255 0 0
POLAROFFSET [uv_length_2] [uv_angle]

7.1. Data Input 403

MapServer Documentation, Release 6.4.1

END # style
STYLE

SYMBOL "arrowtail"
ANGLE [uv_angle]
SIZE 10
COLOR 255 0 0
POLAROFFSET [uv_length_2] [uv_minus_angle]

END # style
END # class

END # layer

New in version 6.2: (rfc78)

Virtual Spatial Data

Table of Contents

• Virtual Spatial Data
– Types of Databases
– Types of Flat Files
– Steps for Display

This is an OGR extension to MapServer. It allows you to connect to databases that do not explicitly hold spatial
data, as well as flat text files. Your data must have an X and a Y column, and the data may be accessed through an
ODBC connection or a direct pointer to a text file.

The original VirtualSpatialData wiki page may contain additional information.

Types of Databases

The VirtualSpatialData OGR extension has been tested with the following databases and should, in theory, support
all ODBC data sources.

• Oracle

• MySQL

• SQL Server

• Access

• PostgreSQL

Types of Flat Files

Comma, tab or custom delimited text/flat files work with VirtualSpatialData.

Steps for Display

1. Create the Datasource Name (DSN)

• Specific notes about creating a DSN on Windows and Linux can be found by searching the MapServer
reference documents site

• On some Windows systems you must create a SYSTEM DSN.

404 Chapter 7. Input

https://github.com/mapserver/mapserver/wiki/VirtualSpatialData

MapServer Documentation, Release 6.4.1

2. Test your Connection Test your connection with ogrinfo. The syntax for this command is:

> ogrinfo ODBC:user/pass@DSN table

Windows users may not be required to specify a user/password, so the syntax would be:

> ogrinfo ODBC:@DSN table

Example: Accessing a comma separated text file through ODBC using ogrinfo

The following is a snippet of the flat text file coal_dep.txt containing lat/long points:

unknown,na,id,id2,mark,coalkey,coalkey2,long,lat
0.000,0.000,1,1,7,87,87,76.90238,51.07161
0.000,0.000,2,2,7,110,110,78.53851,50.69403
0.000,0.000,3,3,3,112,112,83.22586,71.24420
0.000,0.000,4,4,6,114,114,80.79896,73.41175

If the DSN name is Data_txt, the ogrinfo command to see a list of applicable files in the directory is:

> ogrinfo ODBC:jeff/test@Data_txt
INFO: Open of ‘ODBC:jeff/test@Data_txt’
using driver ‘ODBC’ successful.
1: coal_dep.csv
2: coal_dep.txt
3: coal_dep_nf.txt
4: coal_dep_trim.txt
5: Copy of coal_dep.txt
6: deposit.csv
7: maruia.asc
8: oahuGISbathy.csv
9: oahuGISbathy.txt
10: on_pts.txt
11: on_pts_utm.txt
12: test.txt
13: utm_test.txt

Username and password may be optional, so the following may also be valid:

> ogrinfo ODBC:@Data_txt

Therefore, the command to see more information about one of the specific layers is:

> ogrinfo ODBC:@Data_txt coal_dep.txt
INFO: Open of ‘ODBC:@Data_txt’
using driver ‘ODBC’ successful.

Layer name: coal_dep.txt
Geometry: Unknown (any)
Feature Count: 266
Layer SRS WKT:
(unknown)
UNKNOWN: String (255.0)
NA: String (255.0)
ID: String (255.0)
ID2: String (255.0)
MARK: String (255.0)
COALKEY: String (255.0)
COALKEY2: String (255.0)
LONG: String (255.0)
LAT: String (255.0)
OGRFeature(coal_dep.txt):0
UNKNOWN (String) = 0.000
....

7.1. Data Input 405

MapServer Documentation, Release 6.4.1

3. Create a Virtual Data File This is a file with an ovf extension and looks like the following:

<OGRVRTDataSource>
<OGRVRTLayer name="mylayer">
<SrcDataSource>ODBC:user/pass@DSN</SrcDataSource>
<SrcLayer>tablename</SrcLayer>
<GeometryType>wkbPoint</GeometryType>
<LayerSRS>WGS84</LayerSRS>
<GeometryField encoding="PointFromColumns" x="x" y="y"/>
</OGRVRTLayer>

</OGRVRTDataSource>

More information on ovf files can be found at: http://www.gdal.org/ogr/drv_vrt.html

Example ovf file for coal_dep.txt:

<OGRVRTDataSource>
<OGRVRTLayer name="coal-test">
<SrcDataSource>ODBC:Data_txt</SrcDataSource>
<SrcLayer>coal_dep.txt</SrcLayer>
<GeometryField encoding="PointFromColumns" x="Long" y="Lat"/>
<GeometryType>wkbPoint</GeometryType>
</OGRVRTLayer>

</OGRVRTDataSource>

4. Test Virtual Data File with ogrinfo Use ogrinfo to test your new ovf file, such as:

> ogrinfo coal.ovf coal-test
ERROR 4: Update access not supported for VRT datasources.
Had to open data source read-only.
INFO: Open of ‘myfile.ovf’
using driver ‘VRT’ successful.

Layer name: coal_dep.txt
Geometry: Unknown (any)
Feature Count: 266
Layer SRS WKT:
(unknown)
UNKNOWN: String (255.0)
NA: String (255.0)
ID: String (255.0)
ID2: String (255.0)
MARK: String (255.0)
...

5. Mapfile Layer Using an ovf file your layer may look like:

LAYER
CONNECTION "coal.ovf"
CONNECTIONTYPE OGR
DATA "coal-test"
METADATA

"wms_srs" "4326"
"wms_title" "coal-test"

END
NAME "coal-test"
SIZEUNITS PIXELS
STATUS ON
TOLERANCE 0
TOLERANCEUNITS PIXELS
TYPE POINT
UNITS METERS
CLASS

406 Chapter 7. Input

http://www.gdal.org/ogr/drv_vrt.html

MapServer Documentation, Release 6.4.1

STYLE
COLOR 255 0 0

MAXSIZE 100
MINSIZE 1
SIZE 6
SYMBOL "star"

END
END

END

Or you may specify the ovf contents inline such as:

LAYER
CONNECTION "<OGRVRTDataSource>
<OGRVRTLayer name=’coal-test’>
<SrcDataSource>ODBC:@Data_txt</SrcDataSource>
<SrcLayer>coal_dep.txt</SrcLayer>
<GeometryField encoding=’PointFromColumns’ x=’Long’ y=’Lat’/>
<GeometryType>wkbPoint</GeometryType>
</OGRVRTLayer>
</OGRVRTDataSource>"
CONNECTIONTYPE OGR
DATA "coal-test"
METADATA

"wms_srs" "4326"
"wms_title" "coal-test"

END
NAME "coal-test"
SIZEUNITS PIXELS
STATUS ON
TOLERANCE 0
TOLERANCEUNITS PIXELS
TYPE POINT
UNITS METERS
CLASS

STYLE
COLOR 255 0 0
MAXSIZE 100
MINSIZE 1
SIZE 6
SYMBOL "star"

END
END

END

6. Test your Mapfile The first thing you should try is to use the shp2img utility:

shp2img -m mymapfile.map -o test.png

Once you successfully created a map image, then try your application. Note Windows users may come across a
problem where shp2img works but their application throws an error similar to this:

Warning: [MapServer Error]: msOGRFileOpen(): Open failed for OGR connection ‘coal.ovf’.
Unable to initialize ODBC connection to DSN for jeff/test@Data_txt,
[Microsoft][ODBC Driver Manager] Data source name not found
and no default driver specified in D:\ms4w\Apache\htdocs\quickmap.php on line 40

If that happens you should make sure you have created a System DSN.

7.1. Data Input 407

MapServer Documentation, Release 6.4.1

WFS

WFS is an Open Geospatial Consortium (OGC) specification. For more information about the format itself, see:
http://www.opengeospatial.org/standards/wfs

WFS allows a client to retrieve geospatial data encoded in Geography Markup Language (GML) from multiple
Web Feature Services. GML is built on the standard web language XML.

WFS differs from the popular Web Map Service (WMS) specification in that WFS returns a subset of the data in
valid GML format, not just a graphic image of data.

Capabilities

Requesting the capabilities using the GetCapabilities request to a WFS server returns an XML document showing
what layers and projections are available, etc. Example of a WFS GetCapabilities URL:

http://demo.mapserver.org/cgi-bin/wfs?SERVICE=WFS&VERSION=1.0.0&REQUEST=GetCapabilities

Example of the Resulting XML from GetCapabilties:
...
<FeatureTypeList>

<Operations>
<Query/>

</Operations>
<FeatureType>

<Name>continents</Name>
<Title>World continents</Title>
<SRS>EPSG:4326</SRS>
<LatLongBoundingBox minx="-180" miny="-90" maxx="180" maxy="83.6274"/>

</FeatureType>
<FeatureType>

<Name>cities</Name>
<Title>World cities</Title>
<SRS>EPSG:4326</SRS>
<LatLongBoundingBox minx="-178.167" miny="-54.8" maxx="179.383" maxy="78.9333"/>

</FeatureType>
</FeatureTypeList>
...

Data Access / Connection Method

• WFS access is a core MapServer feature. MapServer currently supports WFS version 1.0.0

• The CONNECTIONTYPE WFS parameter must be used.

• WFS layers can be requested through a layer in a map file, or you can request the GML directly through the
browser with a GetFeature request. You can specify a specific layer with the TypeName request. In a map
file the name/value pairs should be put into a METADATA object.

• You can limit the number of features returned in the GML by using the MaxFeatures option (e.g.
&MAXFEATURES=100).

Example of a WFS Request Directly Through the Browser:

The following URL requests the GML for the layer continents. (see the GetCapabilities above for the possible
layers available on this test server) . The URL is all one line, broken up here for readability (click here for a
working link).

http://demo.mapserver.org/cgi-bin/wfs?
SERVICE=WFS&
VERSION=1.0.0&
REQUEST=getfeature&

408 Chapter 7. Input

http://www.opengeospatial.org/standards/wfs
http://demo.mapserver.org/cgi-bin/wfs?SERVICE=WFS&VERSION=1.0.0&REQUEST=GetCapabilities
http://demo.mapserver.org/cgi-bin/wfs?SERVICE=WFS&VERSION=1.0.0&REQUEST=getfeature&TYPENAME=continents&MAXFEATURES=100

MapServer Documentation, Release 6.4.1

TYPENAME=continents&
MAXFEATURES=100

Map File Example

LAYER
NAME "continents"
TYPE POLYGON
STATUS ON
CONNECTION "http://demo.mapserver.org/cgi-bin/wfs?"
CONNECTIONTYPE WFS
METADATA
"wfs_typename" "continents"
"wfs_version" "1.0.0"
"wfs_connectiontimeout" "60"
"wfs_maxfeatures" "10"

END
PROJECTION
"init=epsg:4326"

END
CLASS
NAME "Continents"
STYLE

COLOR 255 128 128
OUTLINECOLOR 96 96 96

END
END

END # Layer

7.1.2 Raster Data

Author Frank Warmerdam

Contact warmerdam at pobox.com

Revision $Revision$

Date $Date$

Last Updated 2013/07/04

Table of Contents

• Raster Data
– Introduction
– How are rasters added to a Map file?
– Supported Formats
– Rasters and Tile Indexing
– Raster Warping
– 24bit RGB Rendering
– Special Processing Directives
– Raster Query
– Raster Display Performance Tips
– Preprocessing Rasters
– Georeference with World Files

7.1. Data Input 409

MapServer Documentation, Release 6.4.1

Introduction

MapServer supports rendering a variety of raster file formats in maps. The following describes some of the
supported formats, and what capabilities are supported with what formats.

This document assumes that you are already familiar with setting up MapServer Mapfile, but does explain the
raster specific aspects of mapfiles.

How are rasters added to a Map file?

A simple raster layer declaration looks like this. The DATA file is interpreted relative to the SHAPEPATH, much
like shapefiles.

LAYER
NAME "JacksonvilleNC_CIB"
DATA "Jacksonville.tif"
TYPE RASTER
STATUS ON

END

Though not shown rasters can have PROJECTION, METADATA, PROCESSING, MINSCALE, and MAXSCALE
information. It cannot have labels, CONNECTION, CONNECTIONTYPE, or FEATURE information.

Classifying Rasters

Rasters can be classified in a manner similar to vectors, with a few exceptions.

There is no need to specify a CLASSITEM. The raw pixel value itself (“[pixel]”) and, for paletted images, the
red, green and blue color associated with that pixel value (“[red]”, “[green]” and “[blue]”) are available for use in
classifications. When used in an evaluated expression the pixel, red, green and blue keywords must be in lower
case.

LAYER
NAME "JacksonvilleNC_CIB"
DATA "Jacksonville.tif"
TYPE RASTER
STATUS ON
CLASSITEM "[pixel]"
class using simple string comparison, equivelent to ([pixel] = 0)
CLASS
EXPRESSION "0"
STYLE

COLOR 0 0 0
END

END
class using an EXPRESSION using only [pixel].
CLASS
EXPRESSION ([pixel] >= 64 AND [pixel] < 128)
STYLE

COLOR 255 0 0
END

END
class using the red/green/blue values from the palette
CLASS
NAME "near white"
EXPRESSION ([red] > 200 AND [green] > 200 AND [blue] > 200)
STYLE

COLOR 0 255 0
END

END
Class using a regular expression to capture only pixel values ending in 1

410 Chapter 7. Input

MapServer Documentation, Release 6.4.1

CLASS
EXPRESSION /*1/
STYLE

COLOR 0 0 255
END

END
END

As usual, CLASS definitions are evaluated in order from first to last, and the first to match is used. If a CLASS has
a NAME attribute it may appear in a LEGEND. Only the COLOR, EXPRESSION and NAME parameters within a
CLASS definition are utilized for raster classifications. The other styling or control information is ignored.

Raster classifications always take place on only one raster band. It defaults to the first band in the referenced
file, but this can be altered with the BANDS PROCESSING directive. In particular this means that including even
a single CLASS declaration in a raster layer will result in the raster layer being rendered using the one band
classification rules instead of other rules that might have applied (such as 3 band RGB rendering).

Classifying Non-8bit Rasters As of MapServer 4.4 support has been added for classifying non-8bit raster in-
puts. That is input rasters with values outside the range 0-255. Mostly this works transparently but there are a few
caveats and options to provide explicit control.

Classifying raster data in MapServer is accomplished by pre-classifying all expected input values and using that
table of classification results to lookup each pixel as it is rendered. This is done because evaluating a pixel value
against a series of CLASS definitions is relatively expensive to do for the hundreds of thousands of pixels in a
typical rendered image.

For simple 8bit inputs, only 256 input values need to be pre-classified. But for non-8bit inputs more values need
to be classified. For 16bit integer inputs all 65536 possible input values are pre-classified. For floating point and
other input data types, up to 65536 values are pre-classified based on the maximum expected range of input values.

The PROCESSING directive can be used to override the range of values to be pre-classified, or the number of
values (aka Buckets) in that range to classify. The SCALE=min,max PROCESSING directive controls the range.
The SCALE_BUCKETS PROCESSING directive controls the number of buckets. In some cases rendering can be
accelerated considerable by selecting a restricted range of input values and a reduced number of scaling values
(buckets).

The following example classifies a floating raster, but only 4 values over the range -10 to 10 are classified. In
particular, the values classified would be -7.5, -2.5, 2.5, and 7.5 (the middle of each “quarter” of the range). So
those four value are classified, and one of the classification results is selected based on which value is closest to
the pixel value being classified.

LAYER
NAME grid1
TYPE raster
STATUS default
DATA data/float.tif
PROCESSING "SCALE=-10,10"
PROCESSING "SCALE_BUCKETS=4"
CLASS
NAME "red"
EXPRESSION ([pixel] < -3)
STYLE

COLOR 255 0 0
END

END
CLASS
NAME "green"
EXPRESSION ([pixel] >= -3 and [pixel] < 3)
STYLE

COLOR 0 255 0
END

END

7.1. Data Input 411

MapServer Documentation, Release 6.4.1

CLASS
NAME "blue"
EXPRESSION ([pixel] >= 3)
STYLE

COLOR 0 0 255
END

END
END

Supported Formats

Since version 6.2, Mapserver raster input support is through the GDAL raster library only.

More information on GDAL can be found at http://www.gdal.org, including the supported formats list. Some of
the advanced MapServer raster features, such as resampling, RGB color cube generation and automatic projection
capture only work with raster formats used through GDAL. GDAL is normally built and installed separately from
MapServer, and then enabled during the build of MapServer using the –with-gdal configuration switch.

To find out if GDAL support is built into a particular MapServer executable, use the -v flag to discover what build
options are enabled. To find out what GDAL formats are available, the “gdalinfo –formats” command may be
used. For example:

warmerda@gdal2200[124]% mapserv -v
MapServer version 6.2.0 OUTPUT=GIF OUTPUT=PNG OUTPUT=JPEG
SUPPORTS=PROJ SUPPORTS=GD SUPPORTS=AGG SUPPORTS=FREETYPE
SUPPORTS=CAIRO SUPPORTS=OPENGL SUPPORTS=ICONV SUPPORTS=WMS_SERVER
SUPPORTS=WMS_CLIENT SUPPORTS=WFS_SERVER SUPPORTS=WFS_CLIENT
SUPPORTS=WCS_SERVER SUPPORTS=SOS_SERVER SUPPORTS=FASTCGI
SUPPORTS=THREADS SUPPORTS=GEOS INPUT=JPEG INPUT=POSTGIS INPUT=OGR
INPUT=GDAL INPUT=SHAPEFILE

warmerda@gdal2200[18]% gdalinfo --formats
Supported Formats:

VRT (rw+v): Virtual Raster
GTiff (rw+vs): GeoTIFF
NITF (rw+vs): National Imagery Transmission Format
RPFTOC (rovs): Raster Product Format TOC format
ECRGTOC (rovs): ECRG TOC format
...

Rasters and Tile Indexing

When handling very large raster layers it is often convenient, and higher performance to split the raster image into
a number of smaller images. Each file is a tile of the larger raster mosaic available for display. The list of files
forming a layer can be stored in a shapefile with polygons representing the footprint of each file, and the name of
the files. This is called a ‘TILEINDEX’ and works similarly to the same feature in vector layers. The result can
be represented in the Mapfile as one layer, but MapServer will first scan the tile index, and ensure that only raster
files overlapping the current display request will be opened.

The following example shows a simple example. No DATA statement is required because MapServer will fetch
the filename of the raster files from the Location attribute column in the hp2.dbf file for records associated with
polygons in hp2.shp that intersect the current display region. The polygons in hp2.shp should be rectangles
representing the footprint of the corresponding file. Note that the files do not have to be all the same size, the
formats can vary and they can even overlap (later files will be drawn over earlier ones).

Starting with MapServer 6.4, the files can have different coordinate system (projection). This requires specifying
the TILESRS keyword and generating the tileindex with a few additional options. See Tileindexes with tiles in
different projections.

412 Chapter 7. Input

http://www.gdal.org
http://www.gdal.org/formats_list.html

MapServer Documentation, Release 6.4.1

LAYER
NAME "hpool"
STATUS ON
TILEINDEX "hp2.shp"
TILEITEM "Location"
TYPE RASTER

END

The filenames in the tileindex are searched for relative to the SHAPEPATH or map file, not relative to the tileindex.
Great care should be taken when establishing the paths put into the tileindex to ensure they will evaluate properly
in use. Often it is easiest to place the tileindex in the SHAPEPATH directory, and to create the tileindex with a
path relative to the SHAPEPATH directory. When all else fails, absolute paths can be used in tileindex, but then
they cannot be so easily moved from system to system.

While there are many ways to produce TILEINDEX shapefiles for use with this command, one option is the
gdaltindex program, part of the GDAL utility suite. The gdaltindex program will automatically generate a tile
index shapefile from a list of GDAL supported raster files passed on the command line.

Usage: gdaltindex [-tileindex field_name] index_file [gdal_file]*

% gdaltindex doq_index.shp doq/*.tif

Tile Index Notes

• The shapefile (index_file) will be created if it doesn’t already exist.

• The default tile index field is ‘location’.

• Simple rectangular polygons must be generated in the same coordinate system as the raster layer. If the
files in the tileindex are not in the same projection as the raster layer, or are in heterogeneous projections,
the TILESRS keyword must be specified in the LAYER definition. See Tileindexes with tiles in different
projections

• Raster filenames will be put in the file exactly as they are specified on the commandline.

• Many problems with tile indexes relate to how relative paths in the tile index are evaluated. They should be
evaluated relative to the SHAPEPATH if one is set, otherwise relative to the tileindex file. When in doubt
absolute paths may avoid path construction problems.

The gdaltindex program is built as part of GDAL. Prebuilt binaries for GDAL including the gdaltindex program
can be downloaded as part of the OSGeo4W, FWTools and MS4W distributions.

See Also:

Tile Indexes

Raster Warping

MapServer is able to resample GDAL rasters on the fly into new projections. Non-GDAL rasters may only be up
or down sampled without any rotation or warping.

Raster warping kicks in if the projection appears to be different for a raster layer than for the map being generated.
Warped raster layers are significantly more expensive to render than normal raster layers with rendering time being
perhaps 2-4 times long than a normal layer. The projection and datum shifting transformation is computed only at
selected points, and generally linearly interpolated along the scanlines (as long as the error appears to be less than
0.333 pixels.

In addition to reprojecting rasters, the raster warping ability can also apply rotation to GDAL rasters with rotational
coefficients in their georeferencing information. Currently rotational coefficients won’t trigger raster warping
unless the map and layer have valid (though matching is fine) projection definitions.

7.1. Data Input 413

http://www.gdal.org/gdal_utilities.html
http://trac.osgeo.org/osgeo4w/
http://fwtools.maptools.org/
http://www.maptools.org/ms4w/

MapServer Documentation, Release 6.4.1

24bit RGB Rendering

Traditionally MapServer has been used to produce 8 bit pseudo-colored map displays generated from 8bit
greyscale or pseudocolored raster data. However, if the raster file to be rendered is actually 24bit (a red, green and
blue band) then additional considerations come into play. Rendering of 24bit imagery is supported via the GDAL
renderer.

If the output is still 8bit pseudo-colored (the IMAGEMODE is PC256 in the associated OUTPUTFORMAT decla-
ration) then the full 24bit RGB colors for input pixels will be converted to a color in the colormap of the output
image. By default a color cube is used. That is a fixed set of 175 colors providing 5 levels of red, 7 levels of green
and 5 levels of blue is used, plus an additional 32 greyscale color entries. Colors in the input raster are mapped
to the closest color in this color cube on the fly. This substantial degrades color quality, especially for smoothly
changing images. It also fills up the colors table, limited to 256 colors, quite quickly.

A variation on this approach is to dither the image during rendering. Dithering selects a color for a pixel in a
manner that “diffuses error” over pixels. In an area all one color in the source image, a variety of output pixel
colors would be selected such that the average of the pixels would more closely approximate the desired color.
Dithering also takes advantage of all currently allocated colors, not just those in the color cube. Dithering requires
GDAL 1.1.9 or later, and is enabled by providing the PROCESSING “DITHER=YES” option in the mapfile.
Dithering is more CPU intensive than using a simple color cube, and should be avoided if possible in performance
sensitive situations.

The other new possibility for handling 24bit input imagery in MapServer 4.0 or later, is to produce 24bit output
images. The default “IMAGETYPE png24” or “IMAGETYPE jpeg” declaration may be used to produce a 24bit
PNG output file, instead of the more common 8bit pseudo-colored PNG file. The OUTPUTFORMAT declaration
provides for detailed control of the output format. The IMAGEMODE RGB and IMAGEMODE RGBA options
produce 24bit and 32bit (24bit plus 8bit alpha/transparency) for supported formats.

Special Processing Directives

As of MapServer 4.0, the PROCESSING parameter was added to the LAYER of the Mapfile. It is primarily used
to pass specialized raster processing options to the GDAL based raster renderer. The following processing options
are supported in MapServer 4.0 and newer.

BANDS=red_or_grey[,green,blue[,alpha]] This directive allows a specific band or bands to be selected from a
raster file. If one band is selected, it is treated as greyscale. If 3 are selected, they are treated as red, green
and blue. If 4 are selected they are treated as red, green, blue and alpha (opacity).

Example:

PROCESSING "BANDS=4,2,1"

COLOR_MATCH_THRESHOLD=n Alter the precision with which colors need to match an entry in the color
table to use it when producing 8bit colormapped output (IMAGEMODE PC256). Normally colors from a
raster colormap (or greyscale values) need to match exactly. This relaxes the requirement to being within
the specified color distance. So a COLOR_MATCH_THRESHOLD of 3 would mean that an existing color
entry within 3 (sum of difference in red, green and blue) would be used instead of creating a new colormap
entry. Especially with greyscale raster layers, which would normally use all 256 color entries if available,
this can be a good way to avoid “stealing” your whole colormap for a raster layer. Normally values in the
range 2-6 will give good results.

Example:

PROCESSING "COLOR_MATCH_THRESHOLD=3"

DITHER=YES This turns on error diffusion mode, used to convert 24bit images to 8bit with error diffusion to
get better color results.

Example:

PROCESSING "DITHER=YES"

414 Chapter 7. Input

MapServer Documentation, Release 6.4.1

EXTENT_PRIORITY=WORLD Override GDAL with a world file.

Example:

PROCESSING "EXTENT_PRIORITY=WORLD"

LOAD_FULL_RES_IMAGE=YES/NO This option affects how image data is loaded for the resampler when
reprojecting or otherwise going through complex resampling (as opposed to the fast default image decima-
tion code path). This forces the source image to be loaded at full resolution if turned on (default is NO).
This helps work around problems with default image resolution selection in when radical warping is being
done. It can result in very slow processing if the source image is large.

LOAD_WHOLE_IMAGE=YES/NO This option affects how image data is loaded for the resampler (as above).
This option, if turned on, will cause the whole source image to be loaded and helps make up for prob-
lem identifying the area required, usually due to radical image reprojection near a dateline or projection
“horizon”. The default is NO. Turning this on can dramatically affect rendering performance and memory
requirements.

LUT[_n]=<lut_spec> This directive (MapServer 4.9+) instructs the GDAL reader to apply a custom LUT
(lookup table) to one or all color bands as a form of on the fly color correction. If LUT is used, the LUT is
applied to all color bands. If LUT_n is used it is applied to one color band (n is 1 for red, 2 for green, 3 for
blue, 4 for alpha).

The LUT can be specified inline in the form:

<lut_spec> = <in_value>:<out_value>[,<in_value>:<out_value>]*

This essentially establish particular input values which are mapped to particular output values. The list
implicitly begins with 0:0, and 255:255. An actual 256 entry lookup table is created from this specification,
linearly interpolating between the values. The in values must be in increasing order. The LUT specification
may also be in a text file with the <lut_spec> being the filename. The file contents should be in the same
syntax, and the file is searched relative to the mapfile.

Example:

PROCESSING "LUT_1=red.lut"
PROCESSING "LUT_2=green.lut"
PROCESSING "LUT_3=blue.lut"
or

PROCESSING "LUT=100:30,160:128,210:200"

As a special case there is also support for GIMP format curve files. That is the text files written out by the
Tools->Color->Curves tool. If this is specified as the filename then it will be internally converted into linear
segments based on the curve control points. Note that this will not produce exactly the same results as the
GIMP because linear interpolation is used between control points instead of curves as used in the GIMP.
For a reasonable number of control points the results should be similar. Also note that GIMP color curve
files include an overall “value” curve, and curves for red, green, blue and alpha. The value curve and the
appropriate color curve will be composed internally to produce the final LUT.

Example:

PROCESSING "LUT=munich.crv"

OVERSAMPLE_RATIO=double Default is 2.5. Rendering time will increase with increasing OVERSAM-
PLE_RATIO.

Example:

PROCESSING "OVERSAMPLE_RATIO=1.0"

RESAMPLE=NEAREST/AVERAGE/BILINEAR This option can be used to control the resampling kernel
used sampling raster images. The default (and fastest) is NEAREST. AVERAGE will perform compute the
average pixel value of all pixels in the region of the disk file being mapped to the output pixel (or possibly
just a sampling of them). BILINEAR will compute a linear interpolation of the four pixels around the target
location. This topic is discussed in more detail in rfc4.

7.1. Data Input 415

MapServer Documentation, Release 6.4.1

Resampling options other than NEAREST result in use of the generalized warper and can dramatically slow
down raster processing. Generally AVERAGE can be desirable for reducing noise in dramatically down-
sampled data, and can give something approximating antialiasing for black and white linework. BILINEAR
can be helpful when oversampling data to give a smooth appearance.

Example (chose one):

PROCESSING "RESAMPLE=NEAREST"
PROCESSING "RESAMPLE=AVERAGE"
PROCESSING "RESAMPLE=BILINEAR"

SCALE[_n]=AUTO or min,max This directive instructs the GDAL reader to pre-scale the incoming raster data.
It is primarily used to scale 16bit or floating point data to the range 0-255, but can also be used to constrast
stretch 8bit data. If an explicit min/max are provided then the input data is stretch (or squished) such
that the minimum value maps to zero, and the maximum to 255. If AUTO is used instead, a min/max is
automatically computed. To control the scaling of individual input bands, use the SCALE_1, SCALE_2 and
SCALE_3 keywords (for red, green and blue) instead of SCALE which applies to all bands.

Example:

PROCESSING "SCALE=AUTO"
or
PROCESSING "SCALE_1=409,1203"
PROCESSING "SCALE_2=203,296"
PROCESSING "SCALE_3=339,1004"

WORLDFILE=<file> Specifies an alternative world file (for georeferencing). If a path only is specified, the base
name of the dataset will be appended. The suffix (.wld / .tfw / ...) can be omitted.

Example:

PROCESSING "WORLDFILE=/path/"
or
PROCESSING "WORLDFILE=/path/file.wld"
or
PROCESSING "WORLDFILE=/path/file"

Raster Query

A new feature added in MapServer 4.4 is the ability to perform queries on rasters in a manner similar to queries
against vector layers. Raster queries on raster layers return one point feature for each pixel matching the query.
The point features will have attributes indicating the value of different bands at that pixel, the final rendering color
and the class name. The resulting feature can be directly access in MapScript, or processed through templates
much like normal vector query results. Only raster layers with a query TEMPLATE associated can be queried,
even for the query methods that don’t actually use the query template (much like vector data).

Raster query supports QueryByPoint, QueryByRect, and QueryByShape. QueryByPoint supports single and mul-
tiple result queries. Other query operations such as QueryByIndex, QueryByIndexAdd, QueryByAttributes and
QueryByFeature are not supported for raster layers.

Raster layers do not support saving queries to disk, nor query maps.

Raster queries return point features with some or all of the following attributes:

x georeferenced X location of pixel.

y georeferenced Y location of pixel.

value_list a comma separated list of the values of all selected bands at the target pixel.

value_n the value for the n’th band in the selected list at this pixel (zero based). There is one value_n
entry for each selected band.

class Name of the class this pixel is a member of (classified layers only).

red red component of the display color for this pixel.

416 Chapter 7. Input

MapServer Documentation, Release 6.4.1

green green component of the display color for this pixel.

blue blue component of the display color for this pixel.

The red, green and blue attribute are intended to be the final color the pixel would be rendered with, but in some
subtle cases it can be wrong (ie. classified floating point results). The selected bands are normally the band that
would be used to render the layer. For a pure query-only layer BANDS PROCESSING directive can be used to
select more bands than could normally be used in a render operation. For instance for a 7 band landsat scene a
PROCESSING “BANDS=1,2,3,4,5,6,7” directive could be used to get query results for all seven bands in results
to a query operation.

Care should be taken to avoid providing a large query area (selecting alot of pixels) as each selected pixel requires
over 100 bytes of memory for temporary caching. The RASTER_QUERY_MAX_RESULT PROCESSING item
can be used to restrict the maximum number of query results that will be returned. The default is one million
which would take on the order of 100MB of RAM.

Query results can be returned as HTML via the normal substitution into query template HTML. Query results are
also accessible via WMS GetFeatureInfo calls, and from MapScript. The following example shows executing a
feature query from Python MapScript and fetching back the results:

map = mapscript.Map(’rquery.map’)
layer = map.getLayer(0)

pnt = mapscript.Point()
pnt.x = 440780
pnt.y = 3751260

layer.queryByPoint(map, pnt, mapscript.MS_MULTIPLE, 180.0)

layer.open()
for i in range(1000):
result = layer.getResult(i)
if result is None:
break

s = layer.getShape(result)
for i in range(layer.numitems):
print ’%s: %s’ % (layer.getItem(i), s.getValue(i))

layer.close()

This following is a simple example query TEMPLATE file. The raster pixel attributes will be substituted in before
the query result is returned to the user as HTML.

Pixel:

values=[value_list]

value_0=[value_0]

value_1=[value_1]

value_2=[value_2]

RGB = [red],[green],[blue]<p>
Class = [class]

Internally raster query results are essentially treated as a set of temporary features cached in RAM. Issuing a new
query operation clears the existing query cache on the layer. The transitory in-memory representation of raster
query results is also responsible for the inability to save raster query results since saved query results normally
only contain the feature ids, not the entire features. Some addition information is available in the RasterQuery
Wiki topic.

Raster Display Performance Tips

• Build overview levels for large rasters to ensure only a reasonable amount of data needs to be touched to
display an overview of a large layer. Overviews can be implemented as a group of raster layers at different

7.1. Data Input 417

https://github.com/mapserver/mapserver/wiki/RasterQuery

MapServer Documentation, Release 6.4.1

resolutions, using MINSCALEDENOM, and MAXSCALEDENOM to control which layers are displayed at
different resolutions. Another, perhaps easier way, is to build overviews for GDAL supported formats using
the gdaladdo utility.

• When using tileindexes to manage many raster files as a single file, it is especially important to have an
overview layer that kicks in at high scales to avoid having to open a large number of raster files to fulfill the
map request.

• Preprocess RGB images to eightbit with a colormap to reduce the amount of data that has to be read, and
the amount of computation to do on the fly.

• For large images use tiling to reduce the overhead for loading a view of a small area. This can be accom-
plished using the TILEINDEX mechanism of the mapfile, or by creating a tiled format file (ie. TIFF with
GDAL).

• Ensure that the image is kept on disk in the most commonly requested projection to avoid on-the-fly image
warping which is fairly expensive.

• If you are getting debug output from MapServer in your web server log file, check to see if the message
msResampleGDALToMap in effect appears. If so, the raster layer is being resampled. If you don’t think it
should be resampled carefully review your map file to ensure that the layer projection exactly matches the
map projection or that the layer has no projection definition.

Preprocessing Rasters

The following operations use GDAL commandline utilities, some of which are python scripts. They are generally
available on any GDAL installation with python support.

Producing Tiled Datasets

The TIFF and Erdas Imagine formats support internal tiling within files, and will generally give better display
speed for local map requests from large images. To produce a GeoTIFF file in internally tiled format using the
TILED=YES creation option with the gdal_translate utility:

gdal_translate -co TILED=YES original.tif tiled.tif

Erdas Imagine (HFA) files are always tiled, and can be larger than 4GB (the GeoTIFF limit). Use a command like
the following to translate a raster to Imagine format:

gdal_translate -of HFA original.tif tiled.img

Reducing RGB to 8bit

Rendering and returning 24bit images (especially as PNG) can be quite expensive in render/compress time and
bandwidth. Pre-reducing raster data to 8bit can save disk space, processing time, and bandwidth. However, such
a color reduction also implicitly reduces the quality of the resulting map. The color reduction can be done on the
fly by MapServer but this requires even more processing. A faster approach is to pre-reduce the colors of 24bit
imagery to 8bit. This can be accomplished with the GDAL rgb2pct.py script like this:

rgb2pct.py original.tif 8bit.tif

By default images will be reduced to 256 colors but this can mean there are not enough colors to render other
colors in the map. So it may be desired to reduce to even less colors:

rgb2pct.py -n 200 original.tif 8bit.tif

Downsampling to 8bit should be done before internal tiling and overview building. The rgb2pct.py script tries to
compute an optimal color table for a given image, and then uses error diffusion during the 24bit to 8bit reduction.
Other packages (such as ImageMagick or Photoshop) may have alternative color reduction algorithms that are
more appropriate for some uses.

418 Chapter 7. Input

http://www.gdal.org/gdal_utilities.html
http://www.gdal.org/gdal_utilities.html

MapServer Documentation, Release 6.4.1

Building Internal Overviews

Most GDAL supported raster formats can have overviews pre-built using the gdaladdo utility. However, a few
formats, such as JPEG2000, MrSID, and ECW already contain implicit overviews in the format themselves and
will not generally benefit from external overviews. For other formats (such as GeoTIFF, and Erdas Imagine
format) use a command like the following to build overviews:

gdaladdo tile.tif 2 4 8 16 32 64 128

The above would build overviews at x2 through x128 decimation levels. By default it uses “nearest neighbour”
downsampling. That is one of the pixels in the input downsampled area is selected for each output pixel. For some
kinds of data averaging can give much smoother overview results, as might be generated with this command:

gdaladdo -r average tiled.tif 2 4 8 16 32 64 128

Note that overview building should be done after translating to a final format. Overviews are lost in format
conversions using gdal_translate. Also, nothing special needs to be done to make MapServer use GDAL generated
overviews. They are automatically picked up by GDAL when mapserver requests a reduced resolution map.

Building External Overviews

When working with large collections of raster files using a MapServer tileindex, it is desirable to build reduced
resolution overview layers that kick in at high scales (using MINSCALEDENOM / MAXSCALEDENOM to control
which layer activates). Preparing the overviews can be a somewhat complex process. One approach is to use the
gdal_merge.py script to downsample and mosaic all the images. For instance if we want to produce an overview
of many 1meter ortho photos with 250 meter pixels we might do something like:

gdal_merge.py -o overview.tif -ps 250 250 ortho_*.tif

The gdal_merge.py utility suffers from a variety of issues, including no support for different resampling kernels.
With GDAL 1.3.2 or later it should be able to accomplish something similar with the more flexible gdalwarp
utility:

gdalwarp -rc -tr 250 250 ortho_*.tif overview.tif

In some cases the easiest way of generating an overview is to let MapServer do it using the shp2img utility. For
instance if the tileindex layer is called ‘’orthos” we could do something like:

shp2img -m ortho.map -l orthos -o overview.png

Note that the overview will be generated with the extents and size in the .map file, so it may be necessary to
temporarily adjust the map extents and size values to match the raster extents and the desired output size. Also,
if using this method, don’t leave large files in PNG (or GIF or JPEG) format as they are slow formats to extract
subareas from.

Georeference with World Files

World files are a simple mechanism for associating georeferencing (world coordinates) information with raster
files. ESRI was the first company to propagate the use of world files, and they are often used with TIFF instead of
embedding georeferencing information in the file itself.

The world file contents look like the following. The first coefficient is the X pixel size. The second and third
are rotational/shear coefficients (and should normally be 0.0). The fourth is the Y pixel size, normally negative
indicating that Y decreases as you move down from the top left origin. The final two values are the X and Y
location of the center of the top left pixel. This example is for an image with a 2m x 2m pixel size, and a top left
origin at (356800E, 5767999N):

2
0.0000000000
0.0000000000

7.1. Data Input 419

http://www.gdal.org/gdal_utilities.html

MapServer Documentation, Release 6.4.1

-2
356800.00
5767999.00

The name of the world file is based on the file it relates to. For instance, the world file for aerial.tif might be
aerial.tfw. Conventions vary for appropriate endings, but with MapServer the extension .wld is always OK for
world files.

Since the GDAL/OGR library is used for vector and raster access in MapServer, many more formats are supported,
so please see the OGR (vector) and GDAL (raster) formats pages.

420 Chapter 7. Input

http://www.gdal.org/ogr/ogr_formats.html
http://www.gdal.org/formats_list.html

CHAPTER

EIGHT

OUTPUT

8.1 Output Generation

8.1.1 AGG Rendering Specifics

Author Thomas Bonfort

Contact thomas.bonfort at gmail

Revision $Revision$

Date $Date$

Last Updated 2008/11/24

Table of Contents

• AGG Rendering Specifics
– Introduction
– Setting the OutputFormat
– New Features
– Modified Behavior

Introduction

MapServer 5.0 released with a new rendering backend. This howto details the changes and new functionality that
this adds to map creation. This howto assumes you already now the basics of mapfile syntax. If not, you should
probably be reading the mapfile syntax.

Setting the OutputFormat

24 bit png (high quality, large file size):

OUTPUTFORMAT
NAME ’AGG’
DRIVER AGG/PNG
IMAGEMODE RGB

END

24 bit png, transparent background:

OUTPUTFORMAT
NAME ’AGGA’
DRIVER AGG/PNG

421

MapServer Documentation, Release 6.4.1

IMAGEMODE RGBA
END

24 bit jpeg (jpeg compression artifacts may appear, but smaller file size):

OUTPUTFORMAT
NAME ’AGG_JPEG’
DRIVER AGG/JPEG
IMAGEMODE RGB

END

png output, with number of colors reduced with quantization.

OUTPUTFORMAT
NAME ’AGG_Q’
DRIVER AGG/PNG
IMAGEMODE RGB
FORMATOPTION "QUANTIZE_FORCE=ON"
FORMATOPTION "QUANTIZE_DITHER=OFF"
FORMATOPTION "QUANTIZE_COLORS=256"

END

New Features

• All rendering is now done antialiased by default. All ANTIALIAS keywords are now ignored, as well as
TRANSPARENCY ALPHA. Pixmaps and fonts are now all drawn respecting the image’s internal alpha
channel (unless a backgroundcolor is specified).

• As with GD in ver. 4.10, using a SYMBOL of type ELLIPSE to draw thick lines isn’t mandatory anymore.
To draw a thick line just use:

STYLE
WIDTH 5
COLOR 0 0 255

END

• A line symbolizer has been added, that works with vector or pixmap symbols, to draw textured lines. This
happens by default if a line’s style is given a symbol of type vector or pixmap. To enable “shield” sym-
bolization, i.e. a marker placed only on some points of the line, you must add a GAP parameter to your
symbol definition. This GAP value is scaled w.r.t the style’s SIZE parameter. Specify a positive gap value
for symbols always facing north (optionally rotated by the ANGLE of the current style), or a negative value
for symbols that should follow the line orientation

• This happens by default if a line’s style is given a symbol of type vector or pixmap. To enable “shield”
symbolization, i.e. a marker placed only on some points of the line, you must add a GAP parameter to your
symbol definition. This GAP value is scaled w.r.t the style’s SIZE parameter - specify a positive gap value
for symbols always facing north (optionally rotated by the ANGLE of the current style), or a negative value
for symbols that should follow the line orientation

• Pixmap and font symbols can now be rotated without loosing their transparency

• For POLYGON layers with no specific SYMBOL, the WIDTH keyword specifies the width of the outline,
if an OUTLINECOLOR was specified. This is a shorthand that avoids having to create multiple styles for

422 Chapter 8. Output

MapServer Documentation, Release 6.4.1

basic rendering, and will provide a marginal performance gain. Note that in this case, the width of the
outline is /not/ scale dependent.

Modified Behavior

• When specifying a SYMBOL for a polygon shape, the GAP parameter of the symbol is used as a separation
between each rendered symbol. This works for symbols of type vector, pixmap and ellipse. For example a
symbol defined by

SYMBOL
NAME ’triangle’
TYPE VECTOR
FILLED TRUE
POINTS
0 1
.5 0
1 1
0 1

END
GAP 1

END

that is rendered in a class where SIZE is 15 will be rendered like

• layers of type CIRCLE support hatch type symbol filling

• the ENCODING keyword for labels is now enforced. If unset, MapServer will treat your label text byte-by-
byte (resulting in corrupt special characters).

8.1.2 AntiAliasing with MapServer

Author Pericles Nacionales

Contact naci0002 at umn.edu

Revision $Revision$

Date $Date$

Last Updated 2009/01/17

Warning: This document is outdated. Since version 6.0, MapServer will produce aliased output for the “gd/”
drivers, and antialiased output for the “agg/” and “cairo/” ones

Note: For quality antialiased output from mapserver, it is highly recommended to use the AGG rendering. This
document applies only if you whish to stick to the GD rendering, or if you are using a version predating the 5.0
release of mapserver.

Table of Contents

• AntiAliasing with MapServer
– What needs to be done

8.1. Output Generation 423

MapServer Documentation, Release 6.4.1

What needs to be done

1. Change (or add) IMAGETYPE keyword in MAP object to PNG24 (24-bit PNG output) or JPEG

MAP
...
IMAGETYPE P N G 24
...

END

2. Add TRANSPARENCY to the LAYER object and set value to ALPHA

MAP
...
IMAGETYPE P N G 24
...

LAYER
...
TRANSPARENCY ALPHA
...

END
END

3. Add ANTIALIAS keyword to the STYLE object within the CLASS object within the LAYER and set value
to TRUE

MAP
...
IMAGETYPE P N G 24
...

LAYER
...
TRANSPARENCY ALPHA
...
CLASS

...
STYLE

...
ANTIALIAS TRUE
...

END
\ . \ . \ .

END # end class
END # end layer

END # end map

Note: Don’t use the SYMBOL or the SIZE keywords within the CLASS object, instead use WIDTH to specify
width of line or polygon outline. Don’t use WIDTH unless you have to. If you must define a SYMBOL, use
symbol of type ELLIPSE–it supports antialiasing.

Here’s an example of a real-world mapfile:

Note: From MapServer 6, symbol type CARTOLINE is no longer supported. You have to use AGG rendering
and STYLE PATTERN to achieve dashed lines. Therefore, the following example does not work anymore.

1 MAP
2 NAME ’ms101’
3 EXTENT -2198022.00 -2444920.25 2707932.00 1234545.25 # CONUS LAEA (US)
4 SIZE 640 480

424 Chapter 8. Output

MapServer Documentation, Release 6.4.1

5 SHAPEPATH ’data’
6 SYMBOLSET ’symbols/symbols.txt’
7

8 IMAGETYPE P N G 24
9

10 PROJECTION
11 "init=epsg:2163"
12 END
13

14 # The layer below will be rendered as 1-pixel wide, antialiased line
15 # If you’d like to change the line thickness add the WIDTH keyword
16 # in the STYLE object with a value of 3 or greater.
17 LAYER # begin antialiased country boundary (line) layer
18 NAME ’country_line’
19 DATA ’shapefile/WorldCountryBorders’
20 TYPE LINE
21 STATUS ON
22 TRANSPARENCY ALPHA
23

24 PROJECTION
25 "init=epsg:4326"
26 END
27

28 CLASS
29 NAME ’Country Boundary’
30 STYLE
31 COLOR 96 96 96
32 ANTIALIAS TRUE
33 END
34 END
35 END # end country boundary layer
36

37 # The layer below shows one way to draw a polygon with antialiased outline
38 LAYER # begin antialiased country boundary (polygon) layer
39 NAME ’country_line’
40 DATA ’shapefile/Countries_area’
41 TYPE POLYGON
42 STATUS ON
43 TRANSPARENCY ALPHA
44

45 PROJECTION
46 "init=epsg:4326"
47 END
48

49 CLASS
50 NAME ’Country Boundary’
51 STYLE
52 COLOR 212 212 212
53 OUTLINECOLOR 96 96 96
54 WIDTH 3
55 ANTIALIAS TRUE
56 END
57 END
58 END # end country boundary polygon layer
59

60 # The layer below shows one way to draw a polygon with antialiased outline
61 LAYER # begin antialiased state boundary (line) layer
62 NAME ’state_line’
63 DATA ’shapefile/us_states’
64 TYPE LINE
65 STATUS ON
66 TRANSPARENCY ALPHA
67

8.1. Output Generation 425

MapServer Documentation, Release 6.4.1

68 PROJECTION
69 "init=epsg:4326"
70 END
71

72 CLASS
73 NAME ’State Boundary’
74 STYLE
75 COLOR 144 144 144
76 SYMBOL ’cartoline’
77 ANTIALIAS TRUE
78 END
79 END
80 END # end state line layer
81 END # end of map file

Here’s how the ‘cartoline’ symbol is defined:

Note: From MapServer 6, symbol type CARTOLINE is not available. You have to use AGG rendering and
STYLE PATTERN to achieve dashed lines. Therefore, the following symbol can not be used anymore.

SYMBOL
NAME ’cartoline’
TYPE CARTOLINE
LINECAP "round"
LINEJOIN "round"
LINEJOINMAXSIZE 3

END

Note: The examples provided here are for illustrative purposes only–keep your map file definitions simple.
Antialiasing adds computing overhead on the server and could slow/degrade its performance. Don’t use it unless
you must and certainly don’t use symbols with it unless you really have to.

..index:: single: Dynamic charting

8.1.3 Dynamic Charting

Author Thomas Bonfort

Contact thomas.bonfort at gmail.com

Last Updated 2012/05/24

Table of Contents

• Dynamic Charting
– Setup
– Adding a Chart Layer to a Mapfile
– Pie Charts
– Bar Graphs

Starting with version 5.0, MapServer included the ability to automatically draw pie or bar graphs whose values
are taken and adjusted from attributes of a datasource.

This document assumes that you are already familiar with MapServer application development and especially
setting up Mapfile s. You can also check out the Vector Data Access Guide, which has lots of examples of how to
access specific data sources.

426 Chapter 8. Output

MapServer Documentation, Release 6.4.1

Setup

Supported Renderers

Dynamic charts are supported solely with the GD and AGG renderers.

Attempting to add a chart layer with any other renderer (e.g. PDF or SVG) will result in undefined behavior.
Rendering quality with the GD renderer is less than optimal, especially with small graphs, due to the lack of
subpixel rendering functions.

Output from AGG and GD Renderers

MapServer AGG Rendering

MapServer GD Rendering

Adding a Chart Layer to a Mapfile

Layer Type

A new type of layer has been added to the mapfile syntax. To specify a chart layer, use

LAYER
...

TYPE CHART
...

END

No other specific keywords have been added in order to keep the number of different keywords to a minimum in
the mapfile syntax, therefore all the chart specific configuration is determined by PROCESSING directives.

Specifying the Size of each Chart

..index:: triple: PROCESSING; CHART_SIZE; LAYER

The size of each chart is specified by the CHART_SIZE directive. If two values are given for this parameter, this
will specify the width and height of each chart (this only applies for bar graphs). By default, the charts are 20x20
pixels.

LAYER
TYPE CHART
PROCESSING "CHART_SIZE=21" # specify size of the chart for pie or bar graphs
#PROCESSING "CHART_SIZE=20 10" # specify width and height for bar graphs

8.1. Output Generation 427

MapServer Documentation, Release 6.4.1

...
END

..index:: triple: PROCESSING; CHART_SIZE_RANGE; LAYER

The diameter of a pie chart can be bound to an attribute,using the CHART_SIZE_RANGE PROCESSING at-
tribute:

PROCESSING "CHART_SIZE_RANGE = itemname minsize maxsize minval maxval exponent"

or just

PROCESSING "CHART_SIZE_RANGE = itemname"

where:

• itemname is the name of the attribute that drives the chart size (e.g. total_sales)

• minsize and maxsize are the minimum and maximum chart size values in pixels (e.g. “10 100”)

• minval and maxval are the minimum values of the attribute that correspond to chart sizes of minsize and
maxsize (e.g. 10000 1000000).

• exponent (optional) applies an exponential factor to the diameter, calculated with:

diameter=mindiameter +
pow((attribute_value-minvalue)/(maxvalue-minvalue),1.0/exponent)*
(maxdiameter-mindiameter);

If the attribute value is smaller than ‘minval’ then the chart size will be minsize pixels, and if the attribute value is
larger than maxval, the chart size will be maxsize pixels.

Specifying the Values to be Plotted

Each value to be plotted (i.e. a slice in a pie chart, or a bar in a par graph) is specified in a CLASS of the chart
layer. The value to be plotted is taken from the SIZE keyword from the first STYLE block of the class. This is
semantically a bit awkward, but keeps the number of different keywords to a minimum in the mapfile syntax. The
value given to the SIZE keyword could of course be given a static value, but dynamic charting really only makes
sense with attribute binding.

LAYER
...

CLASS
include a NAME keyword if you want this class to be included
in the legend
NAME "value 1"
STYLE

specify which value from the data source will be used as the
value for the graph
SIZE [attribute]
...

END
END
CLASS

...
END

...
END

At least 2 CLASS blocks must be specified before charting can occur (but you already knew this if you want your
charts to convey at least some information ;)).

..index:: triple: PROCESSING; CHART_TYPE; LAYER

428 Chapter 8. Output

MapServer Documentation, Release 6.4.1

Specifying Style

The styling of each value in the charts is specified by the usual MapServer syntax. Only one style per class is
supported, any other STYLE block will be silently ignored. Only a subset of the styling keywords are supported:

STYLE
SIZE [attribute]
specify the fill color
COLOR r g b

if present will draw an outline around the corresponding bar or slice
OUTLINECOLOR r g b

#specify the width of the outline if OUTLINECOLOR is present (defaults to 1)
WIDTH w

only for pie charts. ’a’ is the number of pixels the corresponding
slice will be offset relative to the center of the pie. This is useful
for emphasizing a specific value in each chart. ’b’ is required by the
mapfile parser but is ignored.
OFFSET a b

END

..index:: single: Pie chart

Pie Charts

This is the default type of chart that is rendered. This can also be specifically set with a PROCESSING keyword
in the layer attributes:

PROCESSING "CHART_TYPE=PIE"

For each shape in the layer’s datasource, the STYLE SIZE is used to set the relative size (value) of each pie slice,
with the angles of the slices that are automatically computed so as to form a full pie. For example:

1 LAYER
2 NAME "Ages"
3 TYPE CHART
4 CONNECTIONTYPE postgis
5 CONNECTION "blabla"
6 DATA "the_geom from demo"
7 PROCESSING "CHART_TYPE=pie"
8 PROCESSING "CHART_SIZE=30"
9 STATUS ON

10 CLASS
11 NAME "Population Age 0-19"
12 STYLE
13 SIZE [v1006]
14 COLOR 255 244 237
15 END
16 END
17 CLASS
18 NAME "Population Age 20-39"
19 STYLE
20 SIZE [v1007]
21 COLOR 255 217 191
22 END
23 END
24 CLASS
25 NAME "Population Age 40-59"
26 STYLE
27 SIZE [v1008]

8.1. Output Generation 429

MapServer Documentation, Release 6.4.1

28 COLOR 255 186 140
29 END
30 END
31 END

In the example above, if for a given shape we have v1006=1000, v1007=600 and v1008=400 then the actual pie
slices for each class will be respectively 50%, 30% and 20% of the total pie size.

..index:: single: Bar graph

Bar Graphs

Bar graph drawing is set with a PROCESSING keyword in the layer attributes:

PROCESSING "CHART_TYPE=BAR"

For each shape in the layer’s datasource, the STYLE SIZE is used to set the relative size (value) of each bar in the
graph. By default, the vertical axis of each bar graph is scaled for the values of the corresponding shape, and will
always include the origin (=0). For example

• a shape whose STYLE SIZEs contains values {5,8,10,3} will be plotted on a graph whose vertical axis
spans 0 to 10.

• a shape whose STYLE SIZEs contains values {-5,-8,-10,-3} will be plotted on a graph whose vertical axis
spans -10 to 0.

• a shape whose STYLE SIZEs contains values {-5,-8,10,3} will be plotted on a graph whose vertical axis
spans -8 to 10.

..index:: triple: PROCESSING; CHART_BAR_MINVAL; LAYER

..index:: triple: PROCESSING; CHART_BAR_MAXVAL; LAYER

Additional PROCESSING directives are used to optionally specify the bounds of vertical axes so that the graphs
for all the shapes can be plotted with the same scale:

PROCESSING "CHART_BAR_MINVAL=val"
PROCESSING "CHART_BAR_MAXVAL=val"

Values in the datasource that are above CHART_BAR_MAXVAL or below CHART_BAR_MINVAL will be
clipped respectively to these values. If only one of these directives is included, the other will be automatically
adjusted for each shape to include at least the origin, i.e. the graphs for all the shapes will be in the same scale
only if all the values are of the same sign (positive or negative).

..index:: single: Stacked bar graph

Stacked bar Graphs

Stacked bar graphs can be drawn using:

PROCESSING "CHART_TYPE=VBAR"

8.1.4 Flash Output

Author Jeff McKenna

Contact jmckenna at gatewaygeomatics.com

Author Yewondwossen Assefa

Contact assefa at dmsolutions.ca

Revision $Revision$

430 Chapter 8. Output

MapServer Documentation, Release 6.4.1

Date $Date$

Last Updated 2008/07/15

Table of Contents

• Flash Output
– Introduction
– Installing MapServer with Flash Support
– How to Output SWF Files from MapServer
– What is Currently Supported and Not Supported

Introduction

Since MapServer 4.0, MapServer can output Flash files, in SWF format (or “Shockwave Flash Format”). The
following document outlines how to enable Flash output in MapServer.

Note: SWF is no longer supported in version 6.0.

Links to Flash-Related Information

• Open Source Flash Viewer

• Flash maps demo

Installing MapServer with Flash Support

To check that your mapserv executable includes Flash support, use the “-v” command-line switch and look for
“OUTPUT=SWF”.

$./mapserv -v
MapServer version 5.2.0-rc1 OUTPUT=GIF OUTPUT=PNG OUTPUT=JPEG OUTPUT=WBMP
OUTPUT=PDF OUTPUT=SWF OUTPUT=SVG SUPPORTS=PROJ SUPPORTS=AGG
SUPPORTS=FREETYPE SUPPORTS=ICONV SUPPORTS=WMS_SERVER SUPPORTS=WMS_CLIENT
SUPPORTS=WFS_SERVER SUPPORTS=WFS_CLIENT SUPPORTS=WCS_SERVER
SUPPORTS=SOS_SERVER SUPPORTS=FASTCGI SUPPORTS=THREADS
SUPPORTS=GEOS SUPPORTS=RGBA_PNG INPUT=JPEG INPUT=POSTGIS
INPUT=ORACLESPATIAL INPUT=OGR INPUT=GDAL INPUT=SHAPEFILE

Using Pre-compiled Binaries

Windows users can use MS4W, which supports SWF output.

Compiling MapServer with Flash Support

The library chosen to output SWF files is the Ming library. Ming is a C library for generating SWF (“Flash”)
format movies, and it contains a set of wrappers for using the library from C++ and popular scripting languages
like PHP, Python, and Ruby.

Building on Windows

• download the Ming library (the version currently supported is 0.2a)

8.1. Output Generation 431

http://aris.cseas.kyoto-u.ac.jp/fmv/
http://mapserver.gis.umn.edu/docs/tutorial/demoflashmap/demoflashmaps
http://www.maptools.org/ms4w/
http://www.libming.org/
http://www.libming.org/

MapServer Documentation, Release 6.4.1

• as of Ming 0.3 there was no makefile for Windows available in the distribution yet, but you can download a
MS VC++ makefile (makefile.vc) from here (contains makefile and also libming.lib)

• copy makefile.vc under the src directory (ming-0.2/src)

• execute:

nmake /f makefile.vc

• at this point you should have a libming.lib that will be linked with MapServer

• edit the nmake.opt in your MapServer directory and uncomment the MING=-DUSE_MING_FLASH flag,
and point MING_DIR to your Ming directory.

• build MapServer as usual

Building on Unix Use the “–with-ming” configure flag to enable MING support on Unix. “–with-ming=dir”
will try to find the include files and library in the indicated directory.

Note: compiling MapServer 4.4.2 with flash support (mingbeta version 0.3) requires
the -DMING_VERSION_03 option otherwise the make fails. This option should be included
in the configure.in after -DUSE_MING_FLASH as below:

MING ENABLED= "-DUSE_MING_FLASH -DMING_VERSION_03"

How to Output SWF Files from MapServer

SWF output is specified by using the OUTPUTFORMAT object. There are 2 possible output types:

1. A single movie containing the raster output for all the layers. To enable this, declare the following in the
map file:

OUTPUTFORMAT
NAME swf
MIMETYPE "application/x-shockwave-flash"
DRIVER swf
IMAGEMODE PC256
FORMATOPTION "OUTPUT_MOVIE=SINGLE"

END

2. A movie for every layer (vector movies for vector layers and raster movies for raster layers). To enable this,
declare the following in the map file:

OUTPUTFORMAT
NAME swf
MIMETYPE "application/x-shockwave-flash"
DRIVER swf
IMAGEMODE PC256
FORMATOPTION "OUTPUT_MOVIE=MULTIPLE"

END

Other OutputFormat Options

• FORMATOPTION “FULL_RESOLUTION=FALSE”

The FULL_RESOLUTION applies only for vector layers. If set to FALSE, filtering will be applied to the
vector elements. It results in a smaller SWF file. The default value is TRUE.

• FORMATOPTION “LOAD_AUTOMATICALLY=OFF”

Setting this option to OFF will not load the SWF files for each layer. The default value is ON.

432 Chapter 8. Output

http://dl.maptools.org/dl/ming-0.2a.zip

MapServer Documentation, Release 6.4.1

Composition of the Resulting SWF Files

Several SWF Files will be produced from a single map file: there will be one SWF file for each layer defined in
the map file and one ‘main’ SWF file containing critical information on the map file and the layers produced.

• The ‘main’ SWF File will contain Action Script (AS) code that gives critical information on the map file
and the SWF layers produced. Basically there will be an object called mapObj containing the height, width,
extent, scale, number of layers, etc. Here is an example (in AS) of the contents of this main movie:

mapObj = new Object ();
mapObj.name = "DEMO_SWF";
mapObj.width = 400;
mapObj.height = 300;
mapObj.extent = "-2594561.353333,3467361.353333,3467361.353333,3840000.000000"; ;
mapObj.numlayers = 4;
mapObj.layers = new Array ();
function LayerObj (name, type, fullname, relativename) {
this.name = name;
this.type = type;
this.fullname = fullname;
this.relativename = relativename;
}
mapObj.layers[0] = new LayerObj ("park", "2", "c:/tmp/ms_tmp/102389536132841_layer_0.swf", "102389536132841_layer_0.swf");
mapObj.layers[1] = new LayerObj ("popplace", "4", "c:/tmp/ms_tmp/102389536132841_layer_1.swf", "102389536132841_layer_1.swf");
mapObj.layers[2] = new LayerObj ("rail", "1", "c:/tmp/ms_tmp/102389536132841_layer_2.swf", "102389536132841_layer_2.swf");
mapObj.layers[3] = new LayerObj ("road", "1", "c:/tmp/ms_tmp/102389536132841_layer_3.swf", "102389536132841_layer_3.swf");

This example is produced based on a mapfile with two layers defined in it. We create a layer class object
containing useful information on a layer. The parameters are:

– Name : the name found in the map file

– Type : the type of layer (0 = Point Layer; 1=Line; 2=Polygon; 3=Raster; 4=Annotation; 6=Circle)

– Fullname : Full name of the file with path included

– Relative name : Relative Name

For example you can use mapObj.layers[0].name to extract the name of the first layer.

Note: All map parameters from MapServer are not exported at this time. We should come up with a list of
information of what we want to output. Note that this information can be used in a Flash application to load
the SWF file, to build a legend, to build a scale bar, etc.

• SWF Files for each layer

Each layer defined in the mapfile will have an associated SWF file created. The names of these SWF files
are based on the name of the main file with an addition of ‘layer_X’ at the end of the name (where X is the
layer index).

These SWF files will contain vector and raster data as well as some Action Script depending on the layer
and some configurations in the map file. We will see these configurations in detail in the following section.

Exporting Attributes

Exporting attributes works on a layer basis (it is only available for Vector Layers). To be able to export attributes
to the SWF files, you have to define a metadata item called SWFDUMPATTRIBUTES in the layer section of the
mapfile. Here is an example :
...
LAYER
NAME park
METADATA

"DESCRIPTION""Parks"
"RESULT_FIELDS" "NAME_E YEAR_EST AREA_KMSQ"

8.1. Output Generation 433

MapServer Documentation, Release 6.4.1

"SWFDUMPATTRIBUTES" "NAME_E,AREA_KMSQ "
END
TYPE POLYGON
STATUS ON
DATA park
...

In the above example, the values for the attributes NAME_E and AREA_KMSQ will be exported for each element
in the layer.

The resulting SWF File will have the values of these attributes (written in Action Script). Here is an example
related to the above layer:

nAttributes= 2;
Attributes = new Array();
Attributes[0] = "NAME_E";
Attributes[1] = "AREA_KMSQ";
Element = new Array ();
Element[0] = new Array();
Element[0][0] = "Ellesmere Island National Park Reserve";
Element[0][1] = "1500";
Element[1][0] = " Aulavik National park";
Element[1][1] = "1500";

Events and Highlights

Here is what is currently implemented concerning events (events here refer to mouse events happening on an
element. The available events are MOUSEUP, MOUSEDOWN, MOUSEOVER, MOUSEOUT):

• Events are only available for layers that have defined attributes exported (using SWFDUMPATTRIBUTES).
This is like defining that a certain layer is queryable.

• When a mouse event happens on one of the elements, there is an Action Script call that is made:
_root.ElementSelecetd(LayerId, ShapeId, Event) . The Flash application who wants to receive these events
should define the function ElementSelected and use the information received to do actions like retrieving
the attribute values from the specific SWF for the specified shape and display it.

In order to have highlighting, it has to be defined when the SWF is produced (basically highlighting means that
the shape is redrawn using a different color).

As of MapServer 5.0, highlighting is available on queryable layers by using the QueryMap object in the map file
to extract the color and do a highlight when on MOUSEOVER. The current implementation will highlight all
objects that are in a layer that uses SWFDUMPATTRIBUTES, using the COLOR set in the QueryMap object in
the mapfile.

Before MapServer 5.0, all objects that are in a layer that uses SWFDUMPATTRIBUTES are highlighted using a
red color.

Fonts

Ming uses a special type of font called FDB files. It does not yet support Truetype fonts. Please refer to ming
documentation on how to produce FDB files.

Outputting Raster SWF for Vector Layers

One mechanism would be to use the metadata for layer objects to define a raster output for vector layers. We could
use something like “SWFOUTPUT” “RASTER”. If this sounds desirable, please file an enhancement ticket with
this request, specifying the “Output-SWF” component.

434 Chapter 8. Output

http://www.opaque.net/wiki/index.php?MingFAQ
http://trac.osgeo.org/mapserver/

MapServer Documentation, Release 6.4.1

What is Currently Supported and Not Supported

1. Vector layers

• Layer Point (case MS_LAYER_POINT) : done

– msDrawMarkerSymbol

– msDrawLabel

• Layer line (case MS_LAYER_LINE) : done

– msDrawLineSymbol

– msDrawLabel

• Layer circle (case MS_LAYER_CIRCLE) : not done (should be done easily but missing data for
testing)

– omsCircleDrawLineSymbol

– omsCircleDrawShadeSymbol

• Layer annotation (case MS_LAYER_ANNOTATION): done

– omsDrawMarkerSymbol

– omsDrawLabel

• Layer Polygon (MS_SHAPE_POLYGON): done

– omsDrawShadeSymbol

– omsDrawLineSymbol

– omsDrawLabel

• Vector Low Level functions

– omsDrawMarkerSymbol

* case(MS_SYMBOL_TRUETYPE) : done

* case(MS_SYMBOL_PIXMAP) : done

* case(MS_SYMBOL_ELLIPSE) : done

* case(MS_SYMBOL_VECTOR) : done

– omsDrawLineSymbol

* case : simple line : done

• drawing with the symbols : not done

– omsDrawShadeSymbol

* case : solid fill polygon : done

* case : filled with symbols : cannot be implemented for now (tried to create a GD image to fill
the shape but files created were huge)

– omsCircleDrawLineSymbol : not done

– omsCircleDrawShadeSymbol : not done

– omsDrawLabel : done

– omsDrawLabelCache : done

– obillboard (shadow for texts) : not done

2. Raster Layer

• msDrawRasterLayer: done

8.1. Output Generation 435

MapServer Documentation, Release 6.4.1

3. WMS Layer

• msDrawWMSLayer: done

4. Surround components (Legend, scalebar) : not supported

8.1.5 HTML Legends with MapServer

Author Jeff McKenna

Contact jmckenna at gatewaygeomatics.com

Last Updated 2012-03-23

Table of Contents

• HTML Legends with MapServer
– Introduction

* Implementation
* Legend Object of Mapfile
* CGI [legend] tag
* HTML Legend Template File

– Sample Site Using the HTML Legend

Introduction

The HTML legend is an alternative to the traditional GIF legend in MapServer. The following document describes
the process for implementing an HTML legend in MapServer CGI applications (NOTE: MapServer version > 3.5
is required).

This document assumes that you are already familiar with certain aspects of MapServer:

• Setting up MapServer mapfiles and templates.

Implementation

Key components for generating HTML legends are 1) a template parameter in the legend object, 2) a CGI [legend]
tag in the HTML file, and 3) an HTML legend template file. So that means that if the HTML page has the CGI
[legend] parameter set, and the mapfile has a LEGEND object with its TEMPLATE set to a valid HTML legend
file then an HTML legend will be returned. The following sections discuss these components.

Legend Object of Mapfile

The HTML legend is enabled by a new TEMPLATE parameter in the Legend Object of the mapfile. If TEMPLATE
is set in the Legend Object, then the HTML legend template file is read and used to generate an HTML legend
which will be inserted at the location of the [legend] tag in the main HTML template. Similar to other MapServer
templates, the HTML legend template filename MUST end with an ”.html” extension.

Example 1. Sample Legend Object with the new TEMPLATE parameter
...
LEGEND object
LEGEND

STATUS ON
KEYSIZE 18 12
LABEL object
LABEL
TYPE BITMAP

436 Chapter 8. Output

MapServer Documentation, Release 6.4.1

SIZE MEDIUM
COLOR 0 0 89

END
TEMPLATE "legend.html" ### HTML template file

END
...

If TEMPLATE is not set, then the [legend] tag produces a regular image in a GIF/PNG image (the traditional
behaviour).

CGI [legend] tag

The traditional CGI [legend] tag returns the URL of an image, so it is usually used inside an
tag in the HTML file. The new HTML [legend] tag returns a block of HTML, so when converting an existing
application template from using a traditional image legend to the new HTML legend, you have to remove the IMG
tag in the main application template. Also note that if legend mode is specified in the URL, then MapServer will
return a gif containing the whole legend if no template is specified.

See the CGI Reference doc for more information on CGI parameters.

Example 2. [legend] tag in the main HTML template (with TEMPLATE set)
...
Legend
<HR>[legend]<HR>
...

Example 3. [legend] tag in the main HTML template (with TEMPLATE not set)
...
Legend
<HR><HR>
...

HTML Legend Template File

The HTML legend template file is a separate file that contains 0 or 1 of each of the following tags that define
blocks of HTML to use in building the legend:

[leg_group_html] ... [/leg_group_html]
[leg_layer_html <OPTIONAL PARAMS>] ... [/leg_layer_html]
[leg_class_html <OPTIONAL PARAMS>] ... [/leg_class_html]

Note

Any text or HTML tags outside the [leg_*_html] tag pairs in the legend template file are ignored by the template
parser.

The following example shows what an HTML legend TEMPLATE file could look like:

Example 4. An HTML legend TEMPLATE file

[leg_group_html]
<tr>

<td colspan=3 bgcolor=#cccccc>[leg_group_name]</td>
</tr>
[/leg_group_html]

[leg_layer_html order_metadata=legend_order opt_flag=5]
<tr>

<td>
<input type=checkbox name="map_[leg_layer_name]_status"

value=1 [if name=layer_status oper=eq value=2]CHECKED[/if]>
</td>

<td colspan=2>

8.1. Output Generation 437

MapServer Documentation, Release 6.4.1

[metadata name=layer_title]
</td>

</tr >
[/leg_layer_html]

[leg_class_html]
<tr>

<td width=15> </td>
<td>

</td>
<td>

[leg_class_name]
</td>

</tr>
[/leg_class_html]

Supported Tags for the TEMPLATE file:

HEADER block

Tag [leg_header_html]...[/leg_header_html]

Description HTML block to use as the header of the legend.

FOOTER block

Tag [leg_footer_html]...[/leg_footer_html]

Description HTML block to use as the footer of the legend.

Example 5. HTML Legend File Using Header/Footer Blocks

[leg_header_html]
<p>my header</p>

[/leg_header_html]

[leg_layer_html]
...

[/leg_layer_html]

[leg_footer_html]
<p>my footer</p>

[/leg_footer_html]

GROUP block

Tag [leg_group_html <OPTIONAL PARAMS>]...[/leg_group_html]

Description HTML block to use for layer group headers if layers should be grouped in the legend.
If not set then layers are not grouped in the legend.

When the [leg_group_html] tag is used, then layers that don’t belong to any group (i.e. LAYER GROUP not set in
the mapfile) and their classes will not show up at all in the legend. The group list is decided by the order_metadata
parameter, which is explained later.

SUPPORTED PARAMETERS:

Parameter opt_flag=<bit_mask>

Description Control the group’s display, by adding the following values (default is 15). The opt_flag
is applied on all layers in the group. If at least one layer matches the flag, the group will show
up in the legend.

438 Chapter 8. Output

MapServer Documentation, Release 6.4.1

1 If set, show group even if all layers in group are out of scale (default: hide
groups out of scale).

2 If set, show group even if all layers in group have status OFF (default: hide
groups with STATUS OFF).

4 If set, show group even if all layers in group are of type QUERY (default:
hide group of TYPE QUERY)

8 If set, show group even if all layers in group are of type ANNOTATION
(default: hide groups of TYPE ANNOTATION) Deprecated since version
6.2.

e.g. opt_flag=12 (shown below) means show all layer types, including QUERY and
ANNOTATION layers (4 + 8)

[leg_group_html opt_flag=12]
...

[/leg_group_html]

SUPPORTED TAGS:

Tag [leg_group_name]

Description Returns the group’s name.

Tag [layer_status]

Description Returns the status of the first layer in the group.

Tag [leg_icon width=<optional_width> height=<optional_height>]

Description In the group context, the [leg_icon] tag returns the URL of a legend icon for the first
class in the first layer that’s part of this group.

Tag [metadata name=<metadata_field_to_display>]

Description Returns specified metadata value from web’s metadata.

e.g. the group block below simply displays the name of the group in the legend:

[leg_group_html]
<tr><td colspan=2>[leg_group_name]</td></tr>

[/leg_group_html]

LAYER block

Tag [leg_layer_html <OPTIONAL PARAMS>] ... [/leg_layer_html]

Description HTML block to use for layer header. If not set then no layer headers are displayed
(could allow a legend with only classes in it).

SUPPORTED PARAMETERS:

Parameter order_metadata=<field_to_order_by>

Description Specifies that the value of the layer metadata <field_to_order_by> controls the order
and visibility of the layers in the legend.

• Layers with <field_to_order_by> >= 0 are sorted in order of this value, with multiple layers
with same value being accepted, in which case the map layer orderapplies between those
layers.

• Layers with <field_to_order_by> < 0 are always hidden in the legend.

Parameter opt_flag=<bit_mask>

Description Control the layer display process. Add the values below to acquire the desired options
(default is 15):

8.1. Output Generation 439

MapServer Documentation, Release 6.4.1

1 If set, show layer even if out of scale (default: hide layers out of scale).

2 If set, show layer even if status is OFF (default: hide layers with STATUS
OFF).

4 If set, show layer even if type is QUERY (default: hide layers of TYPE
QUERY)

8 If set, show layer even if type is ANNOTATION (default: hide layers of
TYPE ANNOTATION) Deprecated since version 6.2.

e.g. opt_flag=14 (shown below) means do not show layers in the legend that are out of
scale.

[leg_layer_html opt_flag=14]
...

[/leg_layer_html]

SUPPORTED TAGS:

Tag [leg_layer_group]

Description Returns the group name of the layer. This was added to MapServer v4.8.

Tag [leg_layer_index]

Description Returns the mapfile index value of the layer, which is useful for ordering. This was
added to MapServer v4.8.

Tag [leg_layer_maxscale]

Description Returns the maximum scale set for the layer. This was added to MapServer v4.8.

Tag [leg_layer_minscale]

Description Returns the minimum scale set for the layer. This was added to MapServer v4.8.

Tag [leg_layer_name]

Description Returns the current LAYER NAME value.

Tag [leg_icon width=<optional_width> height=<optional_height>]

Description In the layer context, the [leg_icon] tag returns the URL of a legend icon for the first
class in this layer.

Tag [metadata name=<metadata_field_to_display>]

Description Returns specified metadata value from this layer’s metadata and web’s metadata.

e.g. the layer block below simply displays an icon of the layer’s class and the layer name:

[leg_layer_html]
<tr><td>[leg_layer_name]</td></tr>

[/leg_layer_html]

CLASS block

Tag [leg_class_html <OPTIONAL PARAMS>] ... [/leg_class_html]

Description HTML block to use for classes. If not set then no classes are displayed (could allow a
legend with only layer headers in it). Note that classes with NULL (i.e. empty) NAMEs are not
displayed.

SUPPORTED PARAMETERS:

Parameter opt_flag=<bit_mask>

440 Chapter 8. Output

MapServer Documentation, Release 6.4.1

Description Control the layer (i.e. class) display process. Add the values below to acquire the desired
options (default is 15). Note that using this parameter for the CLASS block has the same effect
as using the opt_flag parameter in the LAYER block.

1 If set, show layer even if out of scale (default: hide layers out of scale).

2 If set, show layer even if status is OFF (default: hide layers with STATUS
OFF).

4 If set, show layer even if type is QUERY (default: hide layers of TYPE
QUERY)

8 If set, show layer even if type is ANNOTATION (default: hide layers of
TYPE ANNOTATION) Deprecated since version 6.2.

e.g. opt_flag=14 (shown below) means do not show classes in the legend that are out
of scale.

[leg_class_html opt_flag=14]
...

[/leg_class_html]

SUPPORTED TAGS:

Tag [leg_class_index]

Description Returns the mapfile index value of the class, which is useful for ordering and legend
icon creation. This was added to MapServer v4.8.

Tag [leg_class_maxscale]

Description Returns the maximum scale set for the class. This was added to MapServer v4.8.

Tag [leg_class_minscale]

Description Returns the minimum scale set for the class. This was added to MapServer v4.8.

Tag [leg_class_name]

Description Returns the CLASS NAME value.

Tag [leg_class_title]

Description Returns the CLASS TITLE value.

Tag [leg_layer_name]

Description Returns the parent layer name. This was added to MapServer v4.8.

Tag [leg_icon width=<optional_width> height=<optional_height>]

Description In the layer context, the [leg_icon] tag returns the URL of a legend icon for the first
class in this layer.

Tag [metadata name=<metadata_field_to_display>]

Description Returns specified metadata value from the metadata of the layer to which this class
belongs and web’s metadata.

e.g. the class block below simply displays an icon of the layer’s class and the class name:

[leg_class_html]
<tr><td>[leg_class_name]</td></tr>

[/leg_class_html]

8.1. Output Generation 441

MapServer Documentation, Release 6.4.1

CONDITIONAL text [if] tags can be used in any of the [leg_*_html] tags above to place conditional text. The
syntax is:

[if name=<field_to_check> oper=<eq|neq|isset|isnull> value=<to_compare_with_field>] ... [/if]

Note:

Nested IF’s are supported. Parameter “oper” can be “eq” for equal, “neq” for not equal, “isset” (self-explanatory),
or “isnull” (self-explanatory). The default value is equal.

Example 6. [if] tag can be used to maintain the state of a layer checkbox

[leg_layer_html order_metadata=legend_order opt_flag=5]
<tr>

<td>
<input type=checkbox name="map_[leg_layer_name]_status"
value=1 [if name=layer_status oper=eq value=2]CHECKED[/if] >

</td>
<td colspan=2>

[metadata name=layer_title]
</td>

</tr >
[/leg_layer_html]

The possible values that can be tested in an [if] tag depend on the context in which the [if] tag is used. At the
moment, the number of values that can be tested is limited, but new values may be added as needed.

Note that the order of the items in the following [if] contexts are listed by their order of precedence. The rule
is always that special keywords have top priority (e.g. layer_status, etc.), followed by layer-level metadata, and
ending with map-level metadata. The possible values that can be tested are as follows:

In a [leg_group_html] context:

• [if name=layer_status value=...] ... [/if]

value is the layer status of the first layer that belongs to the group in integer format: 0=OFF,
1=ON, 2=DEFAULT

• [if name=layer_visible value=...] ... [/if]

value is the visibility of the first layer in the group: 0=NOT VISIBLE, 1=VISIBLE

• [if name=group_name value=...] ... [/if]

• [if name=any_layer_metadata value=...] ... [/if]

Uses metadata value from the first layer in the mapfile that belongs to that group

• [if name=any_web_metadata value=...] ... [/if]

• [if name=layer_queryable value=...] ... [/if]

value is the queryability of the first layer in the group: 0=NOT QUERYABLE, 1=QUERYABLE
New in version 5.6.

In a [leg_layer_html] context:

• [if name=layer_status value=...] ... [/if]

value is the layer’s status in integer format: 0=OFF, 1=ON, 2=DEFAULT

• [if name=layer_type value=...] ... [/if]

value is the layer’s type in integer format: 0=POINT, 1=LINE, 2=POLYGON, 3=RASTER,
4=ANNOTATION (deprecated since 6.2), 5=QUERY, 6=CIRCLE

• [if name=layer_name value=...] ... [/if]

value is the layer’s name in string format

• [if name=layer_group value=...] ... [/if]

442 Chapter 8. Output

MapServer Documentation, Release 6.4.1

value is the layer’s group name in string format

• [if name=layer_visible value=...] ... [/if]

value is the visibility of the layer: 0=NOT VISIBLE, 1=VISIBLE

• [if name=any_layer_metadata value=...] ... [/if]

• [if name=any_web_metadata value=...] ... [/if]

• [if name=layer_queryable value=...] ... [/if]

value is the queryability of the layer: 0=NOT QUERYABLE, 1=QUERYABLE New in version
5.6.

In a [leg_class_html] context:

• [if name=layer_status value=...] ... [/if]

value is the status of the layer in which the class is located

• [if name=layer_type value=...] ... [/if]

value is the layer’s type in integer format: 0=POINT, 1=LINE, 2=POLYGON, 3=RASTER,
4=ANNOTATION (deprecated since 6.2), 5=QUERY, 6=CIRCLE

• [if name=layer_name value=...] ... [/if]

value is the layer’s name in string format

• [if name=layer_group value=...] ... [/if]

value is the layer’s group name in string format

• [if name=layer_visible value=...] ... [/if]

value is the visibility of the layer: 0=NOT VISIBLE, 1=VISIBLE

• [if name=class_name value=...] ... [/if]

• [if name=any_layer_metadata value=...] ... [/if]

• [if name=any_web_metadata value=...] ... [/if]

• [if name=layer_queryable value=...] ... [/if]

value is the queryability of the layer: 0=NOT QUERYABLE, 1=QUERYABLE New in version
5.6.

Sample Site Using the HTML Legend

http://demo.mapserver.org/itasca_legend/

This demo is based on the MapServer Itasca demo and contains several variations of HTML Legends, some of
which are listed below:

• “HTML Legend 1” - displays classes only, similar to the traditional legends:

[leg_class_html opt_flag=15]
 [leg_class_name]

[/leg_class_html]

• “HTML Legend 2” - displays layer titles with HREF links and classes:

[leg_layer_html order_metadata=WMS_ORDER visibility_flag=15]
[metadata name=WMS_TITLE]

[/leg_layer_html]

[leg_class_html visibility_flag=15]
 [leg_class_name]

[/leg_class_html]

8.1. Output Generation 443

http://demo.mapserver.org/itasca_legend/

MapServer Documentation, Release 6.4.1

• “HTML Legend 3” - displays layers by group, with checkboxes to turn layers on/off:

[leg_group_html]
<tr><td colspan=2>[leg_group_name]</td></tr>

[/leg_group_html]

[leg_layer_html order_metadata=WMS_ORDER opt_flag=15]
<tr>

<td><input type=checkbox name=layer value=[leg_layer_name]
[if name=layer_status value=1]CHECKED[/if]>
[if name=layer_type value=4]

[/if]
[if name=layer_type oper=neq value=4][/if]

</td>
<td>

[metadata name=WMS_TITLE]
</td>

</tr>
[/leg_layer_html]

8.1.6 HTML Imagemaps

Author David Fawcett

Contact david.fawcett at gmail.com

Last Updated 2008-10-08

Contents

• HTML Imagemaps
– Introduction
– Mapfile Layer Definition
– Templates
– Request URL
– Additional Notes
– More Information

Introduction

The shpxy method of creating imagemaps uses MapServer query functionality to build a html imagemap. Just like
a regular MapServer query, you send a query request and MapServer uses the templates to build a block of html
that it sends back to the browser. The first example shows you how to build an imagemap based on a point layer.
An example template for a polygon layer is also included.

Components

• MapServer mapfile

• query template file

• query header template

• query footer template

Mapfile Layer Definition

Here is a simple mapfile for our example

444 Chapter 8. Output

MapServer Documentation, Release 6.4.1

MAP
NAME "myMapFile
STATUS ON
SIZE 200 200
EXTENT 178784 4804000 772653 5483346

UNITS METERS
STATUS ON
SHAPEPATH "/web/maps/data"
IMAGECOLOR 255 255 255

WEB
IMAGEPATH "/web/maps/tmp/"
IMAGEURL "/maps/tmp/"

END

QUERYMAP
STATUS ON
STYLE NORMAL

END

LAYER
NAME "sites"
STATUS DEFAULT
TYPE point
DATA ’aqiAreas’

TEMPLATE "bodytemplate.html"
HEADER "imapheader.html"
FOOTER "imapfooter.html"

END
END

You can see that we have a mapfile with one point layer, and that it contains references to three query templates.

Templates

In MapServer, the query header and footers get processed only once. The main query template, ‘bodytem-
plate.html’ in this example, gets processed once for each record in the record set returned by the query.

Point Layers

Here is the query header, ‘imapheader.html’. It creates the opening tag for your html imagemap.

<map id="mymap" name="mymap">

Here is the query template, ‘bodytemplate.html’. It creates the body of the html imagemap.

<area shape="circle" coords="[shpxy precision=0 proj=image yf=",7" xf=","]" href="http://my.url/mypage.cfm?region=[NAME]" title="[NAME]" alt="[NAME]">

This template is used to create circular imagemap elements for a point layer. NAME is a fieldname in the data
source, the value for NAME for each individual record gets substituted as the template is processed. The href
specifies the URL link if the element is clicked. Title and alt will display the value when an element is moused
over.

The resulting html element looks like

<area shape="circle" coords="80,103,7" href="http://my.url/mypage.cfm?region=Northern" >

The key part here is

8.1. Output Generation 445

MapServer Documentation, Release 6.4.1

coords="[shpxy precision=0 proj=image xf="," yf=",7"]"

This is where MapServer will substitute the image coordinates for that query record. With Precision=0, the
coordinates will be integers.

You also see shpxy template formatting options ‘xf’ and ‘yf’. ‘xf=”,” tells MapServer to place a comma after the x
coordinate. ‘yf=”,7” after the y coordinate. This is done to specify a radius of 7 pixels for the circle. More options
can be found in the Template Reference.

The query footer template simply adds the closing tag for the html imagemap

</map>

Polygon Layers

Here is a query template for a polygon layer

<area shape="poly" coords="[shpxy precision=0 proj=image]" href="http://my.url/mypage.cfm?ID=[SITE_ID]" title="[NAME]" alt="[NAME]">

Request URL

To get the imagemap, you need to send a GET or POST request to MapServer with several URL variables defined.
The below URL tells MapServer where the mapfile is located, what layer we are querying, and that we are using
nquery mode to return multiple results.

http://myurl/cgi-bin/mapserv?map=/web/maps/demoimap.map&qlayer=sites&mode=nquery&searchmap=true

Additional Notes

If you use separate map files to generate your imagemap and your map image, make sure that the EXTENT and
SIZE specified in both mapfiles are identical. If they are not, your features will not align properly.

More Information

Steve Lime’s SHPXY Example

8.1.7 OGR Output

Author Frank Warmerdam

Contact warmerdam at pobox.com

Last Updated 2011-11-15

Table of Contents

• OGR Output
– Introduction
– OUTPUTFORMAT Declarations
– LAYER Metadata
– MAP / WEB Metadata
– Geometry Types Supported
– Attribute Field Definitions
– Return Packaging
– Test Suite Example

446 Chapter 8. Output

http://maps.dnr.state.mn.us/cgi-bin/mapserv56?map=/usr/local/www/docs_maps/eco/rsg/search/search_example.map&qlayer=county&mode=nquery&searchmap=true

MapServer Documentation, Release 6.4.1

Introduction

OGR output support was added to MapServer 6.0. It provides an output driver to produce feature style output
suitable as a return result from WMS GetFeatureInfo or WFS GetFeature requests. OGR feature output depends
on MapServer being built against the GDAL/OGR library. The OGR output driver should be enabled in MapServer
6.0 or newer when INPUT=OGR appears in the version string.

OUTPUTFORMAT Declarations

Details of OGR output formats allowed are controlled by an OUTPUTFORMAT declaration. The declarations
define the OGR format driver to be used, creation options specific to that driver, and more general instructions to
MapServer on how to package multi-file results and whether to try and build the result on disk or in memory.

Examples:

OUTPUTFORMAT
NAME "CSV"
DRIVER "OGR/CSV"
MIMETYPE "text/csv"
FORMATOPTION "LCO:GEOMETRY=AS_WKT"
FORMATOPTION "STORAGE=memory"
FORMATOPTION "FORM=simple"
FORMATOPTION "FILENAME=result.csv"

END

OUTPUTFORMAT
NAME "OGRGML"
DRIVER "OGR/GML"
FORMATOPTION "STORAGE=filesystem"
FORMATOPTION "FORM=multipart"
FORMATOPTION "FILENAME=result.gml"

END

OUTPUTFORMAT
NAME "SHAPEZIP"
DRIVER "OGR/ESRI Shapefile"
FORMATOPTION "STORAGE=memory"
FORMATOPTION "FORM=zip"
FORMATOPTION "FILENAME=result.zip"

END

The OGR format driver to be used is determined by the name appearing after “OGR/” in the DRIVER argument.
This name should match one of the formats listed as supported for the “-f” argument to ogr2ogr in the ogr2ogr
usage message.

The IMAGEMODE for OGR output is FEATURE, but this is implicit and does not need to be explicitly stated for
OGR output driver declarations.

The OGR renderer will support the following FORMATOPTION declarations:

DSCO:* Anything prefixed by DSCO: is used as a dataset creation option with the OGR driver. See the OGR
web page for the particular format driver to see layer creation options available.

LCO:* Anything prefixed by LCO: is used as a layer creation option. See the OGR web page for the particular
format driver to see layer creation options available.w

FORM=simple/zip/multipart Indicates whether the result should be a simple single file (single), a mime multi-
part attachment (multipart) or a zip file (zip). “zip” is the default.

STORAGE=memory/filesystem/stream Indicates where the datasource should be stored while being written.
“file” is the default.

If “memory” then it will be created in /vsimem/ - but this is only suitable for drivers supporting VSI*L
which we can’t easily determine automatically.

8.1. Output Generation 447

MapServer Documentation, Release 6.4.1

If “filesystem”, then a directory for temporary files (specified using WEB TEMPPATH or MS_TEMPPATH)
will be used for writing and reading back the file(s) to stream to the client.

If “stream” then the datasource will be created with a name “/vsistdout” as an attempt to write directly to
stdout. Only a few OGR drivers will work properly in this mode (ie. CSV, perhaps kml, gml).

FILENAME=name Provides a name for the datasource created, default is “result.dat”.

LAYER Metadata

The OGR output driver utilizes several items from the LAYER level METADATA object. Some of these were
originally intended for GML output or are primarily intended to support WFS.

wfs_getfeature_formatlist (Optional) A comma delimited list of formats supported for WFS GetFeature re-
sponses. The OUTPUTFORMAT NAME values should be listed.

"wfs_getfeature_formatlist" "OGRGML,SHAPEZIP,CSV"

gml_include_items (Optional) A comma delimited list of items to include, or keyword “all”. You can enable full
exposure by using the keyword “all”.

"gml_include_items" "all"

You can specify a list of attributes (fields) for partial exposure, such as:

"gml_include_items" "Name,ID"

The new default behaviour is to expose no attributes at all.

gml_[item name]_alias (Optional) An alias for an attribute’s name. The resulting file will refer to this attribute
by the alias. Here is an example:

"gml_province_alias" "prov"

gml_[item name]_type (Optional) Specifies the type of the attribute. Valid values are Inte-
ger|Real|Character|Date|Boolean.

gml_[item name]_width (Optional) Specifies the width of the indicated field for formats where this is significant,
such as Shapefiles.

gml_[item name]_precision (Optional) Specifies the precision of the indicated field for formats where this is
significant, such as Shapefiles. Precision is the number of decimal places, and is only needed for “Real”
fields.

gml_types (Optional) If this field is “auto” then some input feature drivers (ie. OGR, and native shapefiles) will
automatically populate the type, width and precision metadata for the layer based on the source file.

"gml_types" "auto"

ows/wfs_geomtype (Optional) Set the geometry type of OGR layers created from this MapServer LAYER. One
of “Point”, “LineString”, “Polygon”, “MultiPoint”, “MultiLineString”, “MultiPolygon”, “GeometryCollec-
tion”, “Geometry”, or “None”. Most are fairly obvious, but “Geometry” can be used to represent a mix
of geometry types, and “None” is sometimes suitable for layers without geometry. Note that layers which
are a mix of polygon and multipolygon would normally have to be described as “Geometry”. To produce
2.5D output append “25D” to the geometry type (ie. “Polygon25D”). Note that Z values are only carried by
MapServer if built with USE_POINT_Z_M support.

"ows_geomtype" "Polygon"

MAP / WEB Metadata

wms_feature_info_mime_type In order for WMS GetFeatureInfo to allow selection of OGR output formats, the
mime type associated with the OUTPUTFORMAT must be listed in this metadata item.

448 Chapter 8. Output

MapServer Documentation, Release 6.4.1

"wms_feature_info_mime_type" "text/csv"

Geometry Types Supported

In MapServer we have POINT, LINE and POLYGON layers which also allow for features with multiple points,
lines or polygons. However, in the OGC Simple Feature geometry model used by OGR a point and multipoint
layer are quite distinct. Likewise for a LineString and MultiLineString and Polygon an MultiPolygon layer type.

To work around the mismatches between the MapServer and OGR geometry models, there is a mechanism to
specify the geometry type to be used when exporting through OGR. This is the “wfs/ows_geomtype” metadata
item on the layer. It may be one of one of “Point”, “LineString”, “Polygon”, “MultiPoint”, “MultiLineString”,
“MultiPolygon”, “GeometryCollection”, “Geometry”, or “None”.

If this item is not specified, then “Point”, “LineString” or “Polygon” will be used depending on the TYPE of the
LAYER. In cases of mixed geometry types (ie. polygons and multipolygons) the geometry type should be set to
“Geometry” which means any geometry type.

"ows_geomtype" "Geometry"

Attribute Field Definitions

For OGR output it is highly desirable to be able to create the output fields with the appropriate datatype, width
and precision to reflect the source feature definition.

It is possible to set the gml_[item]_type, gml_[item]_width and gml_[item]_precision metadata on the layer to
provide detailed field definitions:

METADATA
"gml_ID_type" "Integer"
"gml_ID_width" "8"
"gml_AREA_type" "Real"
"gml_AREA_width" "15"
"gml_AREA_precision" "6"
"gml_NAME_type" "Character"
"gml_NAME_width" "64"
...

However, doing this manually is tedious and error prone. For that reason some feature sources (at least OGR,
Shapefiles, POSTGIS and ORACLESPATIAL) support a mechanism to automatically populate this information
from the source datastore. To accomplish this specify:

"gml_types" "auto"

If no effort is made to set type, width and precision information for attribute fields, they will all be treated as
variable length character fields when writing through OGR.

Return Packaging

One of the challenges returning generalized feature formats is that many such formats consists of multiple files
which must be returned in the result. There are three approaches taken to this based on the FORM FORMATOP-
TION in the OUTPUTFORMAT declaration.

simple In this case a single result is returned. This is suitable for format drivers that produce a single file. The
return result will have the mimetype listed in the OUTPUTFORMAT declaration. Note that if the OGR
driver actually returns multiple files, only the primary one (the one with a name matching the filename
passed into the OGR CreateDataSource call) will be returned. The return result will have a suggested
filename based on the FILENAME FORMATOPTION.

8.1. Output Generation 449

MapServer Documentation, Release 6.4.1

multipart In this case all the files produced are returned as a multipart mime result. In this case the MIMETYPE
of the OUTPUTFORMAT is ignored. All component files are returned with a mime type of “applica-
tion/binary” and the whole package is “multipart/mixed”.

zip In this case all the files produced are bundled into one .zip file and this zip file is returned with a mimetype of
“application/zip”. The OUTPUTFORMAT MIMETYPE is ignored.

One caveat with “zip” results is that this option is only available if the GDAL/OGR version is 1.8 or newer (or
a 1.8 development later than approximately Oct 15, 2010). Earlier versions of GDAL/OGR lacked the zipping
capability needed.

Test Suite Example

The MSAutoTest test suite contains a test case for use of OGR Output from WFS. The mapfile is at:

https://github.com/mapserver/msautotest/blob/master/wxs/wfs_ogr.map

The comments at the start of the file have a variety of sample requests that can be run against the map, as long
as [MAPFILE] is replaced with the mapfile name. They requests should be run against mapserv sitting in the
msautotest/wxs directory.

8.1.8 PDF Output

Author Yewondwossen Assefa

Contact yassefa at dmsolutions.ca

Revision $Revision$

Date $Date$

Last Updated 2006/01/12

Table of Contents

• PDF Output
– Introduction
– What is currently supported and not supported
– Implementing PDF Output
– PHP/MapScript and PDF Output

Introduction

PDF output support was added to MapServer 3.7. Previous versions of MapServer had support for pdf output
using a utility program (shp2pdf) to output a pdf file given a MapServer mapfile.

The difference in this new version is that the output to PDF can now be directly specified in the mapfile using the
IMAGETYPE or the OUTPUTFORMAT parameters in the mapfile. Additionally, raster layers are now supported
for pdf output.

Note: From version 6.0, PDF output is supported through Cairo. This is not reflected in the current documenta-
tion.

What is currently supported and not supported

1. Vector Layers

• Layer Point: supported

450 Chapter 8. Output

https://github.com/mapserver/msautotest/blob/master/wxs/wfs_ogr.map

MapServer Documentation, Release 6.4.1

• Layer Line: supported

• Layer Polygon: supported

• Layer Circle : not supported

Note: Note: Dashed lines are supported with PDFlib version 6 or greater.

Note: Polygons filled with symbols are not supported.

2. Raster Layers

Raster layers are supported. Note that at this point all raster layers are transformed to jpeg format
before being written to the PDF file.

3. WMS Layers

Not yet supported

4. Surround components

Legend, scalebar are not supported.

5. Fonts

Standard PostScript fonts are supported. For use of other fonts (such as truetype), see the pdflib
documentation for use of UPR description files (some notes on it are here).

Implementing PDF Output

Note that the following instructions were developed for MapServer 3.7 and pdflib 4.0.3, but the general steps
should be similar for recent versions of both.

Build the PDF Library

In order to have access to the PDF support in MapServer, you should download and build the PDF library from
http://www.pdflib.com/products/pdflib/. Please follow the instructions on the PDFLib site to build on your specific
platforms.

Here are some quick notes on how to build on windows:

• download and extract the source code from http://www.pdflib.com/products/pdflib/

• open the project PDFlib.dsw in MS Visual C++

• build the project pdflib_dll

• after a sucessful build, you should have a pdflib.lib and pdblib.dll under the pdflib directory

• copy the pdflib.dll under your system directory (ex : c:/winnt/system32)

• the pdflib.lib will be used while building mapserver with the PDF support

Build MapServer with PDF support

Windows platform

Edit the makefile.vc and uncomment the following lines (make sure that the paths are adapted to your installation):

8.1. Output Generation 451

http://www.modwest.com/help/kb5-261.html
http://www.pdflib.com/products/pdflib/
http://www.pdflib.com/products/pdflib/

MapServer Documentation, Release 6.4.1

PDF_LIB=../pdflib-4.0.3/pdflib/pdflib.lib

PDF_INC=-I../pdflib-4.0.3/pdflib

PDF=-DUSE_PDF

See the Windows Compilation document for general MapServer compile instructions.

Unix platforms

Add with-pdf to your configure command line before compiling.

See the Unix Compilation document for general MapServer compile instructions.

Mapfile definition

The IMAGETYPE parameter in the Mapfile should be set to pdf in order to output to PDF:

NAME pdf-test
STATUS ON
...
IMAGETYPE pdf
..

WEB
...

END

LAYER
...

END

END

You can also specify the output using the OUTPUTFORMAT tag (this tag was introduced in mapserver 3.7) :

OUTPUTFORMAT
NAME pdf
MIMETYPE "application/x-pdf"
DRIVER pdf
FORMATOPTION "OUTPUT_TYPE=RASTER" ##not mandatory

END

If the OUTPUT_TYPE=RASTER all the layers will be rendered as rasters. Note that when WMS layers are
included in the mapfile, this option should be set since there is a problem with transparency and wms layers. See
the OUTPUTFORMAT object in the Mapfile reference for parameter explanations.

Testing

The easiest way to test your pdf output mapfile is with the MapServer shp2img utility. Windows users can find
this utility in MS4W, as well as FWTools.

You simply pass a mapfile to the executable and a name for the output pdf, and a pdf file is generated:

shp2img -m gmap_pdf.map -o test.pdf

Possible Errors

PDFlib I/O error: Resource configuration file ’pdflib.upr’ not found

452 Chapter 8. Output

http://www.maptools.org/ms4w/
http://fwtools.maptools.org/

MapServer Documentation, Release 6.4.1

This is related to fonts. If you remove the LABEL object from your mapfile you will see this error go away. The
pdf error is described here. Basically, until this issue is ‘fixed’, if you want to use a font other than the included
standard PostScript fonts in pdf output (such as truetype fonts), consult the PDFlib documentation.

PHP/MapScript and PDF Output

MapServer can render to PDF directly, another option is to render to a PNG and insert that into a PDF document.
This is not the only way to create a PDF document of course. You will need to have support for PDFLib compiled
into your PHP install.

This example shows the key parts of the process, you will need to furnish parts of the script yourself (depending
on your app) and repeat the process for each map element that you want to include.

Refer to the PHP/MapScript Reference wherever necessary.

How does it work?

In brief, we will pass parameters required to render a map to a PHP script that will:

• create a PDF document

• render a PNG view at a suitably higher resolution

• insert the PNG

• buffer it and send it to the user

Create the PDF document

Here is an example similiar to the one given on the PHP website to create a new PDF document:

$my_pdf = pdf_new();
...

Get this stage and section 4.5 working before you try inserting MapServer elements.

Render PNG views at a suitable resolution

Work back from the assumption that you will need no more than 300 dpi on your page for your map to look
presentable. For an A4 map, I am using 150 dpi for an 8’ x 8’ main map, which is 1200 x 1200 pixels.

$map->set(width,1200);
$map->set(height,1200);

Of course, our map will not be very useful unless it is zoomed in to the extent our user requested, and the layers
they selected are switched on. Maintain arrays in your application that record:

- The current extent (say $ext[])
- Layer status (say $layer[])

Open your map file and pass these back through to set the map file into the state the user is expecting, something
like:

$map->setextent($ext[0], $ext[1], $ext[2], $ext[3]);

while($layer[]) {
$layer=$map->getLayer($n);
if($layer[$n]==1) {

$layer->set(status,1);
} else {

$layer->set(status,0);

8.1. Output Generation 453

http://www.modwest.com/help/kb5-261.html
http://www.pdflib.com/products/pdflib/
http://www.php.net/manual/en/ref.pdf.php

MapServer Documentation, Release 6.4.1

}
}

Now you will need to save a rendered view to a PNG file.

$img = $map->draw();
$url = $img->saveWebImage(MS_PNG, 0, 0, 0);

Use the same method for all your map elements, such as drawReferenceMap?(), drawScaleBar?() and drawLe-
gend().

Insert the PNG elements into your PDF document

This is really easy, use the pdf_open_image_file() function to import the map elements into your PDF document:

$element = pdf_open_image_file($my_pdf, "png", "$webroot/$url");
pdf_place_image($my_pdf, $element, $xpos, $ypos);
pdf_close_image($my_pdf, $element);

Repeat as needed for any map elements you created.

Buffer the PDF and send it to the user

Assuming we have been creating the document $my_pdf, when we are done, we merely buffer it and send it to the
user using echo():

<?php

....
pdf_close($my_pdf);

$data = pdf_get_buffer($my_pdf);

header(’Content-type: application/pdf’);
header(’Content-disposition: inline; filename=my_pdf.pdf’);
header(’Content-length: ’ . strlen($data));

echo $data;

?>

Gotcha: remember that you cannot send headers if you have at any stage outputed text to the browser.

Additional stuff to try

Rendering everything as PNG can look ugly, so I step through the key and extract labels so I can render them
using PDF’s text functions.

This can be done for other map element, such as map titles, layer descriptions, or anything else that can be read
from the mapfile.

8.1.9 SVG

Author Jeff McKenna

Contact jmckenna at gatewaygeomatics.com

Revision $Revision$

Date $Date$

454 Chapter 8. Output

MapServer Documentation, Release 6.4.1

Last Updated 2005/12/13

Table of Contents

• SVG
– Introduction
– Feature Types and SVG Support Status
– Testing your SVG Output
– goSVG

Introduction

SVG (or Scalable Vector Graphics) is a standardized XML language for describing 2D graphics via vector graph-
ics, text and raster graphics. As of version 4.5, MapServer can output SVG v1.1 maps. The following documen-
tation is based on the World Wide Web Consortium’s (W3C) Scalable Vector Graphics (SVG) 1.1 Specification.

This document assumes that you are already familiar with certain aspects of MapServer:

• MapServer application development and setting up map files.

Note: From version 6.0, SVG output is supported through Cairo. This is not reflected in the current documenta-
tion.

Links to SVG-Related Information

• SVG 1.1 specification

• SVG Discussion Paper

• G-XML Project Page

• SVG Tiny Profile

• MapFile Reference Doc

Feature Types and SVG Support Status

Circle Layers

Circle layers are not yet supported.

Line Layers

The following items describe how line layers are handled by MapServer for SVG output:

• Lines are converted to SVG polyline elements.

• The STYLE object’s WIDTH parameter is used for SYMBOL 0 for line thickness.

• The STYLE object’s SIZE parameter is used for other symbols for line thickness.

• All lines are drawn without symbols - only line thickness changes.

• If a style uses a symbol and this symbol has a dashed style, it will be transformed into an SVG stroke-
dasharray element.

8.1. Output Generation 455

http://www.w3.org/TR/SVG/
http://www.w3.org/TR/SVG/
http://www.carto.net/papers/svg/index_e.shtml
http://gisclh.dpc.or.jp/gxml/contents-e/index.htm
http://www.w3.org/TR/2003/REC-SVGMobile-20030114/
http://www.w3.org/TR/SVG/shapes.html#PolylineElement
http://www.w3.org/TR/SVG/painting.html
http://www.w3.org/TR/SVG/painting.html

MapServer Documentation, Release 6.4.1

Point Layers

The following items describe how point layers are handled by MapServer for SVG output:

• VECTOR, ELLIPSE, and TRUETYPE symbols are supported.

• PIXMAP symbols are not currently supported.

• Labels attached with the symbols are supported (see the Text Features section below for details).

Polygon Layers

The following items describe how polygon layers are handled by MapServer for SVG output:

• Polygons are converted to SVG polygon elements.

• The STYLE’s COLOR is used for the fill.

• The STYLE’s OUTLINECOLOR is used for the stroke.

• SVG patterns are not currently supported.

Raster Layers

The following items describe how raster layers are handled by MapServer for SVG output:

• Temporary image is created through the GD library, and GD functions are used to draw the layer.

• You must have at least PNG or JPEG support compiled in MapServer.

• You must have the WEB object’s IMAGEPATH and IMAGEURL set properly in your mapfile.

Text Features

The following items describe how text features are handled by MapServer for SVG output:

• Text is converted to SVG text element.

• Only TRUETYPE fonts are supported.

• Supports labels with ENCODING (output as UTF-8 hexadecimal values).

• The FONT name used in MapServer is parsed to form the SVG font-family, font-style, and font-weight.

WMS Layers

WMS layers are not yet supported.

Setting up a Mapfile for SVG Output

• You must have valid IMAGEPATH and IMAGEURL parameters set in the WEB object of the mapfile.

• To be able to output a valid SVG file, the user needs to define an OUTPUTFORMAT object in the map file
and set the IMAGETYPE parameter to svg. Here is an example:

MAP
...
IMAGETYPE svg
...
OUTPUTFORMAT

NAME svg
MIMETYPE "image/svg+xml"
DRIVER svg
FORMATOPTION "COMPRESSED_OUTPUT=TRUE"

456 Chapter 8. Output

http://www.w3.org/TR/SVG/shapes.html#PolygonElement
http://www.w3.org/TR/SVG/pservers.html#Patterns
http://www.w3.org/TR/SVG/text.html#TextElement
http://www.w3.org/TR/SVG/text.html#FontFamilyProperty
http://www.w3.org/TR/SVG/text.html#FontStyleProperty
http://www.w3.org/TR/SVG/text.html#FontWeightProperty

MapServer Documentation, Release 6.4.1

FORMATOPTION "FULL_RESOLUTION=TRUE"
END
...
WEB

IMAGEPATH "/tmp/ms_tmp/"
IMAGEURL "/ms_tmp/"

END
...
LAYER

...
END

END

Note:

If FORMATOPTION “COMPRESSED_OUTPUT=TRUE” is set MapServer will produce a compressed
SVG file (svgz). By default this option is FALSE. Note that to be able to create compressed output,
MapServer must be built with the compile flag USE_ZLIB.

If FORMATOPTION “FULL_RESOLUTION=TRUE” is set MapServer will not eliminate duplicate points
and collinear lines when outputting SVG. By default this option is set to FALSE.

Testing your SVG Output

• The easiest way to test your SVG mapfile is to use MapServer CGI. For example, you might enter the
following URL in a browser:

http://127.0.0.1/cgi-bin/mapserv.exe?map=my/path/to/my-svg.map&mode=map&layers=layer1 layer2

• You can also use PHP/MapScript to test your SVG mapfile. Your php file might look like the following:

<?php

dl("php_mapscript_45.dll");

$oMap = ms_newmapObj("my/path/to/my-svg.map");

$img = $oMap->draw();

header("Content-type: image/svg+xml");

$url = $img->saveImage("");

?>

An SVG file should be created in your IMAGEPATH directory. If you open the SVG file in a text editor you can
see that it is an XML file. Below is a sample SVG file of a point layer with labels:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11-flat.dtd">
<svg version="1.1" width="400" height="300" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">

<!-- START LAYER popplace -->
<ellipse cx="252" cy="130" rx="3" ry="3" fill="#000000" />
<ellipse cx="37" cy="227" rx="3" ry="3" fill="#000000" />
<ellipse cx="127" cy="239" rx="3" ry="3" fill="#000000" />
<ellipse cx="255" cy="282" rx="3" ry="3" fill="#000000" />
<polygon fill="#000000" stroke-width="1" points=" 267,263 270,263 271,260 272,263 275,263 273,265 274,268 271,266 268,268 269,265"/>
<ellipse cx="288" cy="247" rx="3" ry="3" fill="#000000" />
<ellipse cx="313" cy="243" rx="3" ry="3" fill="#000000" />
<ellipse cx="328" cy="233" rx="3" ry="3" fill="#000000" />
<ellipse cx="331" cy="245" rx="3" ry="3" fill="#000000" />
<ellipse cx="366" cy="196" rx="3" ry="3" fill="#000000" />

8.1. Output Generation 457

MapServer Documentation, Release 6.4.1

<ellipse cx="161" cy="246" rx="3" ry="3" fill="#000000" />
<ellipse cx="92" cy="208" rx="3" ry="3" fill="#000000" />
<ellipse cx="40" cy="125" rx="3" ry="3" fill="#000000" />
<ellipse cx="108" cy="146" rx="3" ry="3" fill="#000000" />
<text x="40" y="143" font-family="fritqat" font-size="8pt" fill="#000000" stroke="#ffffff" stroke-width="0.5" >Yellowknife</text>
<text x="43" y="121" font-family="fritqat" font-size="8pt" fill="#000000" stroke="#ffffff" stroke-width="0.5" >Whitehorse</text>
<text x="34" y="205" font-family="fritqat" font-size="8pt" fill="#000000" stroke="#ffffff" stroke-width="0.5" >Edmonton</text>
<text x="164" y="258" font-family="fritqat" font-size="8pt" fill="#000000" stroke="#ffffff" stroke-width="0.5" >Winnipeg</text>
<text x="316" y="190" font-family="fritqat" font-size="8pt" fill="#000000" stroke="#ffffff" stroke-width="0.5" >St. John’s</text>
<text x="334" y="258" font-family="fritqat" font-size="8pt" fill="#000000" stroke="#ffffff" stroke-width="0.5" >Halifax</text>
<text x="249" y="230" font-family="fritqat" font-size="8pt" fill="#000000" stroke="#ffffff" stroke-width="0.5" >Charlottetown</text>
<text x="241" y="242" font-family="fritqat" font-size="8pt" fill="#000000" stroke="#ffffff" stroke-width="0.5" >Quebec</text>
<text x="223" y="260" font-family="fritqat-italic" font-size="8pt" fill="#ff0000" stroke="#ffffff" stroke-width="0.5" >Ottawa</text>
<text x="210" y="279" font-family="fritqat" font-size="8pt" fill="#000000" stroke="#ffffff" stroke-width="0.5" >Toronto</text>
<text x="82" y="234" font-family="fritqat" font-size="8pt" fill="#000000" stroke="#ffffff" stroke-width="0.5" >Regina</text>
<text x="40" y="223" font-family="fritqat" font-size="8pt" fill="#000000" stroke="#ffffff" stroke-width="0.5" >Victoria</text>
<text x="214" y="125" font-family="fritqat" font-size="8pt" fill="#000000" stroke="#ffffff" stroke-width="0.5" >Iqaluit</text>
</svg>

You can now view the SVG file in a supported browser (see the official list of SVG implementations for possible
SVG viewers). The Adobe Viewer plugin is very popular.

goSVG

goSVG is now supported as a vector output format in MapServer 4.5 (and later).

Definition

This definition of goSVG was obtained from here.

goSVG is short for “G-XML over SVG” and “g-contents over SVG”. This is a subset for mobiles specified within
the G-XML (a Japanese Spatial Information Format which is an XML based protocol with the ability to describe,
communicate and exchange Spatial Information and Electric Maps), and is a Spatial Information Exchanging
format that determines the method to expand spatial information and connect to the backend system(G-XML
standard mark format). goSVG is an expanded SVG Tiny profile (a Mobile profile of SVG 1.1. suited for cellular
phones) that adds functions that are useful for Spatial Information Services (SVG Map Service).

Support for Specific goSVG Elements

• Name space extension: supported

• Content Area Definition (bounding box): supported

• Geographic Coordinate System: supported

• Map Request Protocol: supported

Setting up a Mapfile for goSVG Output

Requirements

• A valid MapServer Mapfile.

• Valid IMAGEPATH and IMAGEURL parameters set in the WEB object of the mapfile.

• A PROJECTION object defined beneath the MAP object, using an EPSG code. For example:

458 Chapter 8. Output

http://www.w3.org/Graphics/SVG/SVG-Implementations
http://www.adobe.com/svg/viewer/install/main.html
http://www.svgopen.org/2004/papers/goSVGauthoringtool-1/
http://gisclh.dpc.or.jp/gxml/contents-e/index.htm
http://www.w3.org/TR/2003/REC-SVGMobile-20030114/
http://www.w3.org/TR/SVG/

MapServer Documentation, Release 6.4.1

MAP
...
WEB

IMAGEPATH "/tmp/ms_tmp/"
IMAGEURL "/ms_tmp/"

END
...
PROJECTION

"init=epsg:42304"
END
...
LAYER
...
END

END

Setting the OUTPUTFORMAT To be able to output a valid goSVG file, you must define an OUTPUTFOR-
MAT object in the mapfile and set the IMAGETYPE to svg. Here is an example:

MAP
...
IMAGETYPE svg
...
OUTPUTFORMAT
NAME svg
MIMETYPE "image/svg+xml"
DRIVER svg
FORMATOPTION "GOSVG=TRUE"
FORMATOPTION "GOSVG_ZoomInTH=20"
FORMATOPTION "GOSVG_ZoomOutTH=40"
FORMATOPTION "GOSVG_ScrollTH=60"

END
...
WEB
IMAGEPATH "/tmp/ms_tmp/"
IMAGEURL "/ms_tmp/"

END
...
PROJECTION
"init=epsg:42304"

END
...
LAYER
...
END

END

Specific FORMATOPTIONs Related to goSVG

GOSVG should be set to TRUE. The default is false.

GOSVG_ZoomInTH controls the zoomin threshold when outputting the Map Request Protocol. If it is not
defined the default value is set to 70.

GOSVG_ZoomOutTH controls the zoomout threshold when outputting the Map R equest Protocol. If it is not
defined the default value is set to 100.

GOSVG_ScrollTH controls the scrolling threshold when outputting the Map Request Protocol. If it is not defined
the default value is set to 10.

8.1. Output Generation 459

MapServer Documentation, Release 6.4.1

Testing your goSVG Output

Refer to the section Testing your SVG Output to generate and test your goSVG output. goSVG can be read by
regular SVG viewers (they will just ignore the goSVG headers).

Sample goSVG File Produced by MapServer

Below is a sample goSVG file of a point layer with labels:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11-flat.dtd">
<svg version="1.1" width="400" height="300" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:au="http://www.svgmovile.jp/2004/kddip" au:boundingBox="0 0 400 300">
<title>DEMO</title>
<metadata>
<rdf:RDF xmlns:rdf = "http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:crs = "http://www.ogc.org/crs" xmlns:svg="http://wwww.w3.org/2000/svg">
<rdf:Description>
<crs:CoordinateReferenceSystem svg:transform="matrix(0.000066,0.000000,0.000000,-0.000066,171.243002,253.040495)"
rdf:resource="http://www.opengis.net/gml/srs/epsg.xml#42304"/>
</rdf:Description>
</rdf:RDF>

<au:lbs protocol="maprequest">
<au:zoomin th="20" xlink:href="."/>
<au:zoomout th="40" xlink:href="."/>
<au:scroll th="60" xlink:href="."/>
</au:lbs>
</metadata>

<!-- START LAYER popplace -->
<ellipse cx="252" cy="130" rx="3" ry="3" fill="#000000" />
<ellipse cx="37" cy="227" rx="3" ry="3" fill="#000000" />
<ellipse cx="127" cy="239" rx="3" ry="3" fill="#000000" />
<ellipse cx="255" cy="282" rx="3" ry="3" fill="#000000" />
<polygon fill="#000000" stroke-width="1" points=" 267,263 270,263 271,260 272,263 275,263 273,265 274,268 271,266 268,268 269,265"/>
<ellipse cx="288" cy="247" rx="3" ry="3" fill="#000000" />
<ellipse cx="313" cy="243" rx="3" ry="3" fill="#000000" />
<ellipse cx="328" cy="233" rx="3" ry="3" fill="#000000" />
<ellipse cx="331" cy="245" rx="3" ry="3" fill="#000000" />
<ellipse cx="366" cy="196" rx="3" ry="3" fill="#000000" />
<ellipse cx="161" cy="246" rx="3" ry="3" fill="#000000" />
<ellipse cx="92" cy="208" rx="3" ry="3" fill="#000000" />
<ellipse cx="40" cy="125" rx="3" ry="3" fill="#000000" />
<ellipse cx="108" cy="146" rx="3" ry="3" fill="#000000" />
<text x="40" y="143" font-family="fritqat" font-size="8pt" fill="#000000" stroke="#ffffff" stroke-width="0.5" >Yellowknife</text>
<text x="43" y="121" font-family="fritqat" font-size="8pt" fill="#000000" stroke="#ffffff" stroke-width="0.5" >Whitehorse</text>
<text x="34" y="205" font-family="fritqat" font-size="8pt" fill="#000000" stroke="#ffffff" stroke-width="0.5" >Edmonton</text>
<text x="164" y="258" font-family="fritqat" font-size="8pt" fill="#000000" stroke="#ffffff" stroke-width="0.5" >Winnipeg</text>
<text x="316" y="190" font-family="fritqat" font-size="8pt" fill="#000000" stroke="#ffffff" stroke-width="0.5" >St. John’s</text>
<text x="334" y="258" font-family="fritqat" font-size="8pt" fill="#000000" stroke="#ffffff" stroke-width="0.5" >Halifax</text>
<text x="249" y="230" font-family="fritqat" font-size="8pt" fill="#000000" stroke="#ffffff" stroke-width="0.5" >Charlottetown</text>
<text x="241" y="242" font-family="fritqat" font-size="8pt" fill="#000000" stroke="#ffffff" stroke-width="0.5" >Quebec</text>
<text x="223" y="260" font-family="fritqat-italic" font-size="8pt" fill="#ff0000" stroke="#ffffff" stroke-width="0.5" >Ottawa</text>
<text x="210" y="279" font-family="fritqat" font-size="8pt" fill="#000000" stroke="#ffffff" stroke-width="0.5" >Toronto</text>
<text x="82" y="234" font-family="fritqat" font-size="8pt" fill="#000000" stroke="#ffffff" stroke-width="0.5" >Regina</text>
<text x="40" y="223" font-family="fritqat" font-size="8pt" fill="#000000" stroke="#ffffff" stroke-width="0.5" >Victoria</text>
<text x="214" y="125" font-family="fritqat" font-size="8pt" fill="#000000" stroke="#ffffff" stroke-width="0.5" >Iqaluit</text>
</svg>

460 Chapter 8. Output

MapServer Documentation, Release 6.4.1

8.1.10 Tile Mode

Author Paul Ramsey

Contact pramsey at cleverelephant.ca

Revision $Revision$

Date $Date$

Last Updated 2008/04/30

Table of Contents

• Tile Mode
– Introduction
– Configuration
– Utilization

Introduction

MapServer can feed tile-based map clients directly using the CGI “tile mode”. Tile-based map clients work
by dividing the map of the world up into a discrete number of zoom levels, each partitioned into a number of
identically sized “tiles”. Instead of accessing a map by requesting a bounding box, a tile client builds a map by
accessing individual tiles.

Configuration

Tile requests are handled by the ‘mapserv’ CGI program. In order to return tiles in the correct projection,
MapServer must be built with the –use-proj option turned on. You can check if your version of ‘mapserv’ has
projection support by running it with the ‘-v’ option and looking for ‘SUPPORTS=PROJ’.

Example 1. On Unix:

$./mapserv -v
MapServer version 4.6.1 OUTPUT=GIF OUTPUT=PNG OUTPUT=JPEG OUTPUT=WBMP OUTPUT=PDF
OUTPUT=SWF OUTPUT=SVG SUPPORTS=PROJ SUPPORTS=FREETYPE SUPPORTS=WMS_SERVER
SUPPORTS=WMS_CLIENT SUPPORTS=WFS_SERVER SUPPORTS=WFS_CLIENT SUPPORTS=WCS_SERVER
INPUT=JPEG INPUT=POSTGIS INPUT=OGR INPUT=GDAL INPUT=SHAPEFILE DEBUG=MSDEBUG

Example 2. On Windows:

C:\apache\cgi-bin> mapserv -v
MapServer version 4.6.1 OUTPUT=GIF OUTPUT=PNG OUTPUT=JPEG OUTPUT=WBMP OUTPUT=PDF
OUTPUT=SWF OUTPUT=SVG SUPPORTS=PROJ SUPPORTS=FREETYPE SUPPORTS=WMS_SERVER
SUPPORTS=WMS_CLIENT SUPPORTS=WFS_SERVER SUPPORTS=WFS_CLIENT SUPPORTS=WCS_SERVER
INPUT=JPEG INPUT=POSTGIS INPUT=OGR INPUT=GDAL INPUT=SHAPEFILE DEBUG=MSDEBUG

MapServer requires that each LAYER in your map file have a valid PROJECTION block to support reprojection.
Because the tile mode uses reprojection, you will have to ensure each LAYER has a valid PROJECTION block.

Configuration checklist:

• MapServer compiled with PROJ support

• Map file with a PROJECTION defined for every LAYER

As of MapServer 6.0, there are two extra parameters available for configuring tile mode.

• tile_map_edge_buffer renders the tile into a buffered rendering frame, then clips out the final tile. This
will reduce edge effects when large symbols or wide lines are drawn. Recommended value: the size of the
largest symbol or line width in your map file.

8.1. Output Generation 461

MapServer Documentation, Release 6.4.1

• tile_metatile_level renders the into into a fixed metatile, then clips out the final tile. This will reduce label
repetition, at the expense of much higher rendering cost. Recommended value: 1 if you are doing labelling
of large features in your layer. 0 otherwise.

If you use both tile_map_edge_buffer and tile_metatile_level at the same time, the buffer will be applied at the
meta-tile level.

Utilization

The MapServer tile support adds three new directives to the CGI interface:

• mode=tile tells the server to generate tiles based on the other tile mode parameters

• tilemode=gmap tells the server use the Google Maps tile scheme for the tiles

• tile=x+y+z tells the server what tile you want to retrieve, using the Google Maps tile addressing system

• tilemode=ve tells the server use the Virtual Earth tile naming scheme for the tiles

• tile=10231 tells the server what tile you want to retrieve, using the Virtual Earth tile addressing system

About Spherical Mercator

Spherical Mercator (also called “web mercator” by some) is a world projection. All the major tile-based map
interfaces (Google Maps, Microsoft Virtual Earth, Yahoo Maps, OpenLayers) use the spherical mercator system
to address tiles.

A spherical mercator set of tiles has the following properties:

• The map has been reprojected to mercator using a spherical mercator algorithm

• There is one tile in the top zoom level, zoom level zero

• Each successive zoom level (z) has 2^z tiles along each axis

• Tiles are 256x256 in size

Google Maps and Virtual Earth both use spherical mercator as their underlying tile projection, but use different
formats to address the individual tiles.

Google Maps uses an “x”, “y”, “zoom” format. The zoom indicates which level to pull tiles from, and the “x” and
“y” indicate while tile in that zoom level to pull.

Virtual Earth uses a single string to address each tile. The top zoom level in Virtual Earth has four tiles (equivalent
to Google’s zoom level 1). The top left tile in the Virtual Earth top zoom level is addessed as “0”, top right as
“1”, bottom left as “2” and bottom right as “3”. Each tile the next level is addressed by first referencing the top
level tile that contains it, then its address relative to that tile. So the top left tile in the second zoom level is
“00” and the bottom right one is “33”. See the Virtual Earth site for more details: http://msdn.microsoft.com/en-
us/library/bb545006.aspx

Using Google Maps

The Google Maps API includes support for using alternative tile sets as overlays, or as alternate base maps. Here
is an example of an GTileLayerOverlay

1 <!DOCTYPE html
2 PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4 <html xmlns="http://www.w3.org/1999/xhtml">
5 <head>
6 <meta http-equiv="content-type" content="text/html; charset=utf-8"/>
7 <title>Google/MapServer Tile Example</title>
8 <script src="http://maps.google.com/maps?file=api&v=2&key=[YOUR KEY HERE]"

462 Chapter 8. Output

http://msdn.microsoft.com/en-us/library/bb545006.aspx
http://msdn.microsoft.com/en-us/library/bb545006.aspx
http://code.google.com/apis/maps/
http://code.google.com/apis/maps/documentation/reference.html#GTileLayer

MapServer Documentation, Release 6.4.1

9 type="text/javascript"></script>
10 <script type="text/javascript">
11

12 function load() {
13 if (GBrowserIsCompatible()) {
14 var urlTemplate = ’http://localhost/cgi-bin/mapserv?’;
15 urlTemplate += ’map=/var/map.map&’;
16 urlTemplate += ’layers=layer1 layer2&’;
17 urlTemplate += ’mode=tile&’;
18 urlTemplate += ’tilemode=gmap&’;
19 urlTemplate += ’tile={X}+{Y}+{Z}’;
20 var myLayer = new GTileLayer(null,0,18,{
21 tileUrlTemplate:urlTemplate,
22 isPng:true,
23 opacity:1.0 });
24 var map = new GMap2(document.getElementById("map"));
25 map.addControl(new GLargeMapControl());
26 map.addControl(new GMapTypeControl());
27 map.setCenter(new GLatLng(35.35, -80.55), 15);
28 map.addOverlay(new GTileLayerOverlay(myLayer));
29 }
30 }
31

32 </script>
33 </head>
34 <body onload="load()" onunload="GUnload()">
35 <div id="map" style="width: 500px; height: 500px"></div>
36 </body>
37 </html>

Note the format of the tileUrlTemplate: a valid URL, with {X}, {Y} and {Z} substitution tokens that Google
Maps will replace with the tile coordinates and zoom level on the fly to retrieve tiles from your server.

You can also use a MapServer tile layer as an alternate base map:

1 <!DOCTYPE html
2 PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4 <html xmlns="http://www.w3.org/1999/xhtml">
5 <head>
6 <meta http-equiv="content-type" content="text/html; charset=utf-8"/>
7 <title>Google/MapServer Tile Example</title>
8 <script src="http://maps.google.com/maps?file=api&v=2&key=[YOUR KEY HERE]"
9 type="text/javascript"></script>

10 <script type="text/javascript">
11

12 function load() {
13 if (GBrowserIsCompatible()) {
14 var urlTemplate = ’http://localhost/cgi-bin/mapserv?’;
15 urlTemplate += ’map=/var/map.map&’;
16 urlTemplate += ’layers=layer1 layer2&’;
17 urlTemplate += ’mode=tile&’;
18 urlTemplate += ’tilemode=gmap&’;
19 urlTemplate += ’tile={X}+{Y}+{Z}’;
20 var myLayer = new GTileLayer(null,0,18,{
21 tileUrlTemplate:urlTemplate,
22 isPng:true,
23 opacity:0.3 });
24 var map = new GMap2(document.getElementById("map"));
25 map.addControl(new GLargeMapControl());
26 map.addControl(new GMapTypeControl());
27 map.setCenter(new GLatLng(35.35, -80.55), 15);
28 var myMapType = new GMapType([myLayer], new GMercatorProjection(18), ’MapServer’);

8.1. Output Generation 463

MapServer Documentation, Release 6.4.1

29 map.addMapType(myMapType);
30 }
31 }
32

33 </script>
34 </head>
35 <body onload="load()" onunload="GUnload()">
36 <div id="map" style="width: 500px; height: 500px"></div>
37 </body>
38 </html>

The only change from the previous example is that we don’t create a GTileLayerOverlay, we create a GMapType,
and use addMapType(), instead of addOverlay().

Using Virtual Earth

The Virtual Earth API also includes support for using alternative tile sets as overlays, or as alternate base maps.
Here is an example:

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
2 <html xmlns="http://www.w3.org/1999/xhtml">
3 <head>
4 <meta http-equiv="content-type" content="text/html; charset=utf-8"/>
5 <title>Virtual Earth Example</title>
6 <script type="text/javascript" src="http://dev.virtualearth.net/mapcontrol/mapcontrol.ashx?v=6.1"></script>
7 <script type="text/javascript">
8

9 var map = null;
10

11 function OnLoadMap () {
12 map = new VEMap("myMap");
13 map.LoadMap();
14

15 var url = "http://localhost/cgi-bin/mapserv?";
16 url += "map=/var/map.map&";
17 url += "mode=tile&";
18 url += "layers=layer1 layer2&";
19 url += "tilemode=ve&";
20 url += "tile=%4";
21

22 var tileSourceSpec = new VETileSourceSpecification("myLayer", url);
23 tileSourceSpec.Opacity = 0.3;
24 map.AddTileLayer(tileSourceSpec, true);
25 }
26

27 </script>
28 </head>
29 <body onload="OnLoadMap();">
30 <div id="myMap" style="position:relative; width:500px; height:500px;"></div>
31 </body>
32 </html>

8.1.11 Template-Driven Output

Author Chris Hodgson

Contact chodgson at refractions.net

Last Updated 2011-04-13

464 Chapter 8. Output

http://dev.live.com/virtualearth/sdk/

MapServer Documentation, Release 6.4.1

Table of Contents

• Template-Driven Output
– Introduction
– OUTPUTFORMAT Declarations
– Template Substitution Tags
– Examples

Introduction

RFC 36 added support for defining template-driven OUTPUTFORMATs for use with feature queries, includ-
ing WMS GetFeatureInfo and WFS GetFeature. This allows for custom text-oriented output such as GeoJ-
SON, KML, or XML. The templates are essentially the same as with the standard MapServer query Templating,
however there are some additional tags to allow for template definition in a single file instead of the standard
header/template/footer.

Note: There are other, simpler, ways to output some of these formats using MapServer. However, template-
driven output provides maximal flexibility and customization of the output, at the cost of additional complexity
and configuration.

Note: In order for template-driven output to work, layers that are to be output need to have the TEMPLATE key
word included:

TEMPLATE "dummy"

Note: In order for template-driven output to work through WFS, the format needs to be listed in
wfs_getfeature_formatlist in the WEB METATDATA section or the LAYER METATDATA section (the geojson
format from the example below):

"wfs_getfeature_formatlist" "gml,geojson"

OUTPUTFORMAT Declarations

Details of template-driven output formats are controlled by an OUTPUTFORMAT declaration. The declarations
define the template file to be used, as well as other standard OUTPUTFORMAT options.

Examples:

OUTPUTFORMAT
NAME "kayml"
DRIVER "TEMPLATE"
MIMETYPE "application/vnd.google-earth.kml+xml"
FORMATOPTION "FILE=myTemplate.kml"
FORMATOPTION "ATTACHMENT=queryResults.kml"

END

OUTPUTFORMAT
NAME "geojson"
DRIVER "TEMPLATE"
FORMATOPTION "FILE=myTemplate.js"

END

OUTPUTFORMAT
NAME "customxml"

8.1. Output Generation 465

MapServer Documentation, Release 6.4.1

DRIVER "TEMPLATE"
FORMATOPTION "FILE=myTemplate.xml"

END

The template file to be used is determined by the “FILE=...” FORMATOPTION. The template filename is rela-
tive to the mapfile’s path. As is standard with MapServer template files, the file must containt the magic string
‘mapserver template’ in the first line of the file, usually within a comment, but this line is not output to the client.

Note: Valid suffixes for the template file are: .xml, .wml, .html, .htm, .svg, .kml, .gml, .js, .tmpl.

The MIMETYPE and FORMATOPTION “ATTACHMENT=...” parameters are very useful for controlling how a
web browser handles the output file.

Template Substitution Tags

These tags only work in query result templates, and their purpose is primarily to simplify the templating to a single
file for custom ouput formats.

[include src=”otherTemplate.txt”] Includes another template file; the path to the template file is relative to the
mapfile path.

Attributes:

• src: The file to be included.

[resultset layer=layername]...[/resultset] Defines the location of the results for a given layer.

Attributes:

• layer: The layer to be used

• nodata: (optional) A string to return if no results are returned.

[feature]...[/feature] Defines the loop around the features returned for a given layer.

Attributes:

• limit: (optional) Specifies the maximum number of features to output for this layer.

• trimlast: (optional) Specifies a string to be trimmed off of the end of the final feature that is output.
This is intended to allow for trailing record delimiters to be removed. See the examples below.

[join name=join1]...[/join] defines the loop around the features join from another layer.

See Also:

Templating

Examples

This example shows how to emulate the old 3-file system using the new system, to compare the usage:

<!-- mapserver template -->
[include src="templates/header.html"]
[resultset layer=lakes]

... old layer HEADER stuff goes here, if a layer has no results
this block disappears...

[feature]
...repeat this block for each feature in the result set...
[join name=join1]

...repeat this block for each joined row...
[/join]

[/feature]
...old layer FOOTER stuff goes here...

466 Chapter 8. Output

MapServer Documentation, Release 6.4.1

[/resultset]
[resulset layer=streams]

... old layer HEADER stuff goes here, if a layer has no results
this block disappears...

[feature]
...repeat this block for each feature in the result set...

[/feature]
...old layer FOOTER stuff goes here...

[/resultset]
[include src="templates/footer.html"]

A specific GML3 example:

<!-- mapserver template -->
<?xml version="1.0" encoding="ISO-8859-1"?>
[resultset layer=mums]
<MapServerUserMeetings xmlns="http://localhost/ms_ogc_workshop"

xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:gml="http://www.opengis.net/gml"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://localhost/ms_ogc_workshop ./mums.xsd">

<gml:description>This is a GML document which provides locations of
all MapServer User Meeting that have taken place</gml:description>

<gml:name>MapServer User Meetings</gml:name>
<gml:boundedBy>
<gml:Envelope>
<gml:coordinates>-93.093055556,44.944444444 -75.7,45.4166667</gml:coordinates>
</gml:Envelope>

</gml:boundedBy>
[feature]
<gml:featureMember>
<Meeting>
<gml:description>[desc]</gml:description>
<gml:name>[name]</gml:name>
<gml:location>
<gml:Point srsName="http://www.opengis.net/gml/srs/epsg.xml#4326">
<gml:pos>[x] [y]</gml:pos>

</gml:Point>
</gml:location>
<year>[year]</year>
<venue>[venue]</venue>
<website>[url]</website>
</Meeting>

</gml:featureMember>
[/feature]
<dateCreated>2007-08-13T17:17:32Z</dateCreated>

</MapServerUserMeetings>
[resultset]

A GeoJSON example.

Could be called using ...&layer=mums&mode=nquery&qformat=geojson

Or by adding &outputformat=geojson to a WFS getfeature request:

// mapserver template
[resultset layer=mums]
{

"type": "FeatureCollection",
"features": [
[feature trimlast=","]
{

"type": "Feature",
"id": "[myuniqueid]",
"geometry": {

8.1. Output Generation 467

MapServer Documentation, Release 6.4.1

"type": "PointLineString",
"coordinates": [
{
"type": "Point",
"coordinates": [[x], [y]]

}
]

},
"properties": {

"description": "[description]",
"venue": "[venue]",
"year": "[year]"

}
},
[/feature]

]
}
[/resultset]

A more complicated KML example. Note the use of [shpxy] to support multipolygons with holes, and also that a
point placemark is included with each feature using [shplabel]:

<!--MapServer Template-->
<?xml version="1.0" encoding="UTF-8"?>
<kml xmlns="http://www.opengis.net/kml/2.2"

xmlns:gx="http://www.google.com/kml/ext/2.2"
xmlns:kml="http://www.opengis.net/kml/2.2"
xmlns:atom="http://www.w3.org/2005/Atom">

<Document>
<Style id="parks_highlight">
<IconStyle>

<scale>1.4</scale>
<Icon>

<href>http://maps.google.com/mapfiles/kml/shapes/parks.png</href>
</Icon>
<hotSpot x="0.5" y="0" xunits="fraction" yunits="fraction"/>

</IconStyle>
<LineStyle>

<color>ffff5500</color>
<width>4.2</width>

</LineStyle>
<PolyStyle>

<color>aaaaaaaa</color>
</PolyStyle>
<BalloonStyle>

<text>
<![CDATA[
<p ALIGN="center">$[name]</p>
$[description]

]]>
</text>

</BalloonStyle>
</Style>
<Style id="parks_normal">
<IconStyle>

<scale>1.2</scale>
<Icon>

<href>http://maps.google.com/mapfiles/kml/shapes/parks.png</href>
</Icon>
<hotSpot x="0.5" y="0" xunits="fraction" yunits="fraction"/>

</IconStyle>
<LineStyle>

<color>ffff5500</color>

468 Chapter 8. Output

MapServer Documentation, Release 6.4.1

<width>4.2</width>
</LineStyle>
<PolyStyle>

<color>ff7fff55</color>
</PolyStyle>
<BalloonStyle>

<text>
<![CDATA[
<p ALIGN="center">$[name]</p>
$[description]

]]>
</text>

</BalloonStyle>
</Style>
<StyleMap id="parks_map">
<Pair>

<key>normal</key>
<styleUrl>#parks_normal</styleUrl>

</Pair>
<Pair>

<key>highlight</key>
<styleUrl>#parks_highlight</styleUrl>

</Pair>
</StyleMap>

[resultset layer=parks]
<Folder>
<name>Parks</name>

[feature trimlast="," limit=1]
<Placemark>

<name>[NAME]</name>
<Snippet/>
<description>

<![CDATA[
<p>Year Established: [YEAR_ESTABLISHED]</p>
<p>Area: [AREA_KILOMETERS_SQUARED] sq km</p>

]]>
</description>
<styleUrl>#parks_map</styleUrl>
<ExtendedData>

<Data name="Year Established">[YEAR_ESTABLISHED]</Data>
<Data name="Area">[AREA_KILOMETERS_SQUARED]</Data>

</ExtendedData>
<MultiGeometry>

<Point>
<coordinates>[shplabel proj=epsg:4326 precision=10],0</coordinates>

</Point>
[shpxy ph="<Polygon><tessellate>1</tessellate>" pf="</Polygon>"

xf="," xh=" " yh=" " yf=",0 "
orh="<outerBoundaryIs><LinearRing><coordinates>"
orf="</coordinates></LinearRing></outerBoundaryIs>"
irh="<innerBoundaryIs><LinearRing><coordinates>"
irf="</coordinates></LinearRing></innerBoundaryIs>"
proj=epsg:4326 precision=10]

</MultiGeometry>
</Placemark>

[/feature]
</Folder>

[/resultset]
</Document>
</kml>

8.1. Output Generation 469

MapServer Documentation, Release 6.4.1

Warning: For templates (Templating), there are a number of reserved words. If you have want to expose
an attribute with a name that is equal to a reserved word, you can not use the shorthand [attribute_name], but
will have to use construct [item name=attribute_name] instead. For example, in a template, [id] is a system
generated unique session id (see Templating). So if you have an attribute named “id” that you want to expose,
you will either have to rename it or use the construct [item name=id].

8.1.12 Kml Output

Last Updated 2010/11/26

Authors Dvaid Kana (david.kana at gmail.com)

Authors Thomas.Bonfort (thomas.bonfort at gmail.com)

Authors Yewondwossen Assefa (yassefa at dmsolutions.ca)

Authors Michael Smith (michael.smith at usace.army.mil)

Version MapServer 6.0

Id $

Introduction

This purpose of this docuement is to describethe KML/KMZ output support in MapServer 6.0.

The main goal of the KML driver is to generate KML output used mainly by Google Earth application.

General Functionnality

Kml support is provided by using a kml or kmz image type in the map file. Output can then be generated using
MapServer cgi (example mode=map) or through a WMS request.

Output format

The default name of the output format is kml or kmz, and this name can be used to set the imagetype parameter in
the map file.

The format can also be defined in the map file:

OUTPUTFORMAT
NAME kml
DRIVER "KML"
MIMETYPE "application/vnd.google-earth.kml+xml"
IMAGEMODE RGB
EXTENSION "kml"
FORMATOPTION ’ATTACHMENT=gmap75.kml’ #name of kml file returned
FORMATOPTION "maxfeaturestodraw=100"

END

OUTPUTFORMAT
NAME kmz
DRIVER "KMZ"
MIMETYPE "application/vnd.google-earth.kmz"
IMAGEMODE RGB
EXTENSION "kmz"
FORMATOPTION ’ATTACHMENT=gmap75.kmz’ #name of kmz file returned

END

470 Chapter 8. Output

MapServer Documentation, Release 6.4.1

Build

• On windows: there is a flag KML in nmake.opt

• On Linux: –with-kml

• AGG driver is necessary for the kml driver

• To be able to get kmz support, MapServer needs to be build aginst GDAL 1.8

Limiting the number of features

The number of vector features drawn by default is set to 1000 per layer. To control the number of features, users
can set:

• layer level metadata that only applies to the layer: “maxfeaturestodraw” “100”

• map level metada that applies to all layers: “maxfeaturestodraw” “100”

• output format option that applies to all layers: FORMATOPTION “maxfeaturestodraw=100”

Map

In terms for Kml object, the MapServer KML output will produce a <Document> element to include all the layers
that are part of the MapServer map file. Features supported for the Document are:

Docu-
ment
element

Sup-
ported

MapServer equivalence/Notes

name Yes Name in the map file
visibility No Can be supported if needed. Default is 1
open No Can be supported if needed. Default is 0
address No Could be supported for example using ows_address if available
AdressDe-
tails

No

pho-
neNumber

No Could be supported using ows_contactvoicetelephone is available

Snippet No
descrip-
tion

No

Ab-
stractView

No

TimePrim-
itive

No

styleURL No
StyleSe-
lector

Yes Style element will be supported. All different styles from the layers will be stored here
and referenced from the folders using a styleUrl.In addition to the Styles related to
features, there is a ListStyle element added at the document level. This allows to
control the way folders are presented.See Layers section (styleUrl) setting for more
details.

Region No
Metadata No
Extended-
Data

No

Layers

Each layer of the MapServer map file will be inside a Kml <Folder> element. Supported Folder elements are:

8.1. Output Generation 471

MapServer Documentation, Release 6.4.1

Folder element Sup-
ported

MapServer equivalence/Notes

name Yes Name of the layer. If not available the name will be Layer
concatenated with the layer’s index (Layer1)

visibility Yes Always set to 1
open No Default is 0
atom:authoratom:linkaddressAddressDetailsphoneNumberSnippetNo
description No Could be supported using ows_description
AbstarctView No
TimePrimitive No
styleUrl Yes The user can use the kml_folder_display layer or map level metedata

to choose a setting. Possible values are ‘check’ (default),
‘radioFolder’, ‘checkOffOnly’, ‘checkHideChildren’.

RegionMetadataExtended-
Data

No

Each element in the Layer will be inside a Kml <Placemark> element. As described in the Kml reference : “A
Placemark is a Feature with associated Geometry. In Google Earth, a Placemark appears as a list item in the Places
panel. A Placemark with a Point has an icon associated with it that marks a point on the Earth in the 3D viewer.
(In the Google Earth 3D viewer, a Point Placemark is the only object you can click or roll over. Other Geometry
objects do not have an icon in the 3D viewer. To give the user something to click in the 3D viewer, you would
need to create a MultiGeometry object that contains both a Point and the other Geometry object.)”

For Polygon and Line layers, when a feature is associated with a label, a MultiGeometry element containing a
point geometry and the geometry of the feature is created. The point feature will be located in the middle of the
polygon or line

<Folder>
<name>park</name>
<visibility>1</visibility>
<styleUrl>#LayerFolder_check</styleUrl>
<Placemark>

<name>Ellesmere Island National Park Reserve</name>
<styleUrl>#style_line_ff787878_w4.0_polygon_ff00ffc8_label_ff0000ff</styleUrl>
<MultiGeometry>

<Polygon>
<outerBoundaryIs>
<LinearRing>
<coordinates>
...

<Point>
<coordinates>

-70.86810858,82.12291871
</coordinates>

</Point>
</MultiGeometry>

</Placemark>
</Folder>

Supported Features in the Placemark element are:

472 Chapter 8. Output

MapServer Documentation, Release 6.4.1

Place-
mark
element

Sup-
ported

MapServer equivalence/Notes

name Yes Label attached with the feature. If there is no label a default name is assigned using the
layer name and the shape id (ex. park.1)

visibility No Is is by default set to true
open No
address No
Addess-
Details

No

pho-
neNum-
ber

No

Snippet No This is a short description the feature. If needed It could be supported.
descrip-
tion

Yes This information is what appears in the description balloon when the user clicks on the
feature. The <description> element supports plain text as well as a subset of HTML
formatting elements. Used when KML/OWS_DESCRIPTION is defined

Ab-
stractView

No

TimePrim-
itive

No

styleUrl Yes Refers to a Style defined in the Document
StyleSe-
lector

No

Region No
Metadata No
Ex-
tended-
Data

Yes Used when KML/OWS_INCLUDE_ITEMS is defined

Geometry Yes Depends on the layer type

General notes on layers

• Labelcache is turned off on each layer

• Projection block should be set. If not set It will be assumed that the data is in lat/lon projection (a debug
message will be sent to the user: Debug Message 1)

• Possible to output vector layers as raster using metadata: “KML_OUTPUTASRASTER” “true”

• The user can use the KML_FOLDER_DSIPLAY layer or map level metedata to choose a setting. Possible
values are ‘check’ (default), ‘radioFolder’, ‘checkOffOnly’, ‘checkHideChildren’.

• The user can use metadata KML/OWS_DESCRIPTION or KML/OWS_INCLUDE_ITEMS to define the
description attached to each feature. If KML/OWS_DESCRIPTION are defined, the <description> tag of
the Placemark will be used. If KML/OWS_INCLUDE_ITEMS, the <ExtendedData> tag will be used.

• The user can use the metadata KML_NAME_ITEM to indicate the field name to be used a a name tag for
each feature.

• The user can use metadata KML_ALTITUDEMODE to specify how altitude components in the <co-
ordinates> element are interpreted. Possible values are: absolute, relativeToGround, clampToGround.
http://code.google.com/apis/kml/documentation/kmlreference.html#altitudemode

• The user can use metedata KML_EXTRUDE to specify whether to connect the LinearRing to the ground.
http://code.google.com/apis/kml/documentation/kmlreference.html#tessellate

• The user can use metedata KML_TESSELLATE to specify whether to allow the LinearRing to follow the
terrain. http://code.google.com/apis/kml/documentation/kmlreference.html#extrude

8.1. Output Generation 473

http://code.google.com/apis/kml/documentation/kmlreference.html#altitudemode
http://code.google.com/apis/kml/documentation/kmlreference.html#tessellate
http://code.google.com/apis/kml/documentation/kmlreference.html#extrude

MapServer Documentation, Release 6.4.1

• The user can specify an attribute to be used as the elevation value using a layer level metedata:
‘kml_elevation_attribute’ ‘<Name of attribute>’. The value will be used as the z value when the coordi-
nates are written.

Point Layers

• Each layer will be inside a Folder element.

• Each feature will be represented by a Placemark.

• The Geometry element for a Point layer would be represented as a Point geometry element in Kml. Sup-
ported elements are:

Line Layers

• Each layer will be inside a Folder element.

• Each feature in the layer would be represented by a Placemark.

• If a label is attached to the line, the Geometry element would be represented as a MultiGeometry that
includes a LineString element and a Point element representing the position of the label. If no label is
attached to a feature, the Geometry element will be a LineString.

Polygon Layers

• Each layer will be inside a Folder element.

• Each feature will be represented by a Placemark.

• If a label is attached to the polygon, the Geometry element would be represented as a MultiGeometry that
includes a Polygon element and a Point element representing the position of the label.

Raster Layers

• Each layer will be inside a Folder element.

• A GroundOverlay feature is created for the layer, that includes an href link to the raster image generated
and LatLongBox for the extents (map extents).

• The href is generated using the imagepath and imageurl settings in the map file.

Styling

As described in Section 4, all different styles from the layers will be stored at the Document level and referenced
from the folders using a styleUrl.

Point Layers

Point layers will be styled using the IconStyle styling element of kml. An image representing the symbol will be
created and referenced from the IconStyle object. If a label is attached to the point, a LabelStyle element will also
be used. The LabelStyle will have the color parameter set.

<Style id="style_label_ff0000ff_symbol_star_13.0_ff000000">
<IconStyle>

<Icon>
<href>>http://localhost/ms_tmp/4beab862_19bc_0.png</href>

</Icon>

474 Chapter 8. Output

MapServer Documentation, Release 6.4.1

</IconStyle>
<LabelStyle>

<color>ff0000ff</color>
</LabelStyle>

</Style>

Line Layers

Line layers will be styled using the LineStyle styling element of kml. Color and width parameters of the LineStyle
will be used. If a label is attached to the layer, a LabelStyle element will also be used.

Polygon Layers

Polygon layers will be styled using the PolyStyle styling element of kml. Color parameter of the PolyStyle will
be used. If an outline is defined in the map file, an addition LineStyle will be used. If a label is attached to the
layer, a LabelStyle element will also be used.

Attributes

As described in section on Layers, two ways of defining the description:

• kml/ows_description

• kml/ows_include_items

Coordinate system

The map level projection should be set to epsg:4326. If not set, the driver will automatically set it. Layers are
expected to have projection block if their projection is different from epsg:4326.

Warning and Error Messages

• When the projection of the map file is not set or is different from a a lat/lon projection, the driver auto-
matically sets the projection to espg:4326. If the map is is debug mode, the following message is sent:
“KmlRenderer::checkProjection: Mapfile projection set to epsg:4326”

• If imagepath and imageurl are not set in the web object, the following message is sent in debug mode:
“KmlRenderer::startNewLayer: imagepath and imageurl should be set in the web object”

8.1. Output Generation 475

MapServer Documentation, Release 6.4.1

476 Chapter 8. Output

CHAPTER

NINE

OGC

9.1 OGC Support and Configuration

Interoperability is increasingly becoming a focus point for organizations that distribute and share data over the
Internet. The Open Geospatial Consortium (OGC) focuses on the development of publicly available geospatial
web standards. MapServer supports numerous OGC standards, allowing users to publish and consume data and
services in an application neutral implementation manner.

9.1.1 MapServer OGC Specification support

• Web Map Service (OGC:WMS)

– Server: 1.0.0, 1.0.7, 1.1.0, 1.1.1, 1.3.0

– Client: 1.0.0, 1.0.7, 1.1.0, 1.1.1

• Web Feature Service (OGC:WFS) 1.0.0, 1.1.0

• Web Coverage Service (OGC:WCS) 1.0.0, 1.1.0, 2.0.0, 2.0.1

• Geography Markup Language (OGC:GML) 2.1.2, 3.1.0 Level 0 Profile, 3.2.1

• GML Application Schema - Coverages (OGC:GMLCOV) 1.0.0, 1.0.1

• Web Map Context Documents (OGC:WMC) 1.0.0, 1.1.0

• Styled Layer Descriptor (OGC:SLD) 1.0.0

• Filter Encoding Specification (OGC:FES) 1.0.0

• Sensor Observation Service (OGC:SOS) 1.0.0

• Observations and Measurements (OGC:OM) 1.0.0

• SWE Common (OGC:SWE) 1.0.1

• OWS Common (OGC:OWS) 1.0.0, 1.1.0, 2.0.0

9.1.2 WMS Server

Author Jeff McKenna

Contact jmckenna at gatewaygeomatics.com

Last Updated 2013-06-20

477

http://www.opengeospatial.org/

MapServer Documentation, Release 6.4.1

Table of Contents

• WMS Server
– Introduction
– Setting Up a WMS Server Using MapServer
– Changing the Online Resource URL
– WMS 1.3.0 Support
– Reference Section
– FAQ / Common Problems

Introduction

A WMS (or Web Map Server) allows for use of data from several different servers, and enables for the creation of
a network of Map Servers from which clients can build customized maps. The following documentation is based
on the Open Geospatial Consortium’s (OGC) Web Map Server Interfaces Implementation Specification v1.1.1.

MapServer v3.5 or more recent is required to implement WMS features. At the time this document was written,
MapServer supports the following WMS versions: 1.0.0, 1.0.7, 1.1.0 (a.k.a. 1.0.8), 1.1.1 and 1.3.0

This document assumes that you are already familiar with certain aspects of MapServer:

• MapServer application development and setting up .map files.

• Familiarity with the WMS spec would be an asset. A link to the WMS specification document is included
in the “WMS-Related Information” section below.

Links to WMS-Related Information

• MapServer WMS Client Howto

• WMS 1.1.1 specification

• WMS 1.3.0 specification

• Open Geospatial Consortium (OGC) home page

• WMS Cookbook

• MapServer OGC Web Services Workshop package

• MapServer Styled Layer Descriptor (SLD) Howto

• MapServer WMS Time Support Howto

How does a WMS Work

WMS servers interact with their clients via the HTTP protocol. In most cases, a WMS server is a CGI program.
This is also the case with MapServer.

The WMS specification defines a number of request types, and for each of them a set of query parameters and
associated behaviors. A WMS-compliant server MUST be able to handle at least the following 2 types of WMS
requests:

1. GetCapabilities: return an XML document with metadata of the Web Map Server’s information

2. GetMap: return an image of a map according to the user’s needs.

And support for the following types is optional:

1. GetFeatureInfo: return info about feature(s) at a query (mouse click) location. MapServer supports 3 types
of responses to this request:

• text/plain output with attribute info.

478 Chapter 9. OGC

http://portal.opengeospatial.org/files/?artifact_id=1081&version=1&format=pdf
http://portal.opengeospatial.org/files/?artifact_id=1081&version=1&format=pdf
http://portal.opengeospatial.org/files/?artifact_id=14416
http://www.opengeospatial.org/
http://www.intl-interfaces.com/cookbook/WMS/
http://mapserver.github.io/ms-ogc-workshop/

MapServer Documentation, Release 6.4.1

• text/html output using MapServer query templates (see Templating) specified in the CLASS
TEMPLATE parameter (the filename has to have an .html extension). The MIME type re-
turned by the Class templates defaults to text/html and can be controlled using the metadata
“wms_feature_info_mime_type”.

• application/vnd.ogc.gml, GML.1 or GML for GML features.

2. DescribeLayer: return an XML description of one or more map layers. To execute this:

• for vector layers: to have a valid return the user needs to setup wfs_onlineresource (or
ows_onlineresource) metadata either at the map level or at the layer level (the layer level metadata
is the one which is used if both are defined) - for raster layers: the metadata is wcs_onlineresource
with the same logic as above.

3. GetLegendGraphic: returns a legend image (icon) for the requested layer, with label(s). More information
on this request can be found in the GetLegendGraphic section later in this doc.

With respect to MapServer specifically, it is the “mapserv” CGI program that knows how to handle WMS requests.
So setting up a WMS server with MapServer involves installing the mapserv CGI program and a setting up a
mapfile with appropriate metadata in it. This is covered in the rest of this document.

Setting Up a WMS Server Using MapServer

Install the Required Software

WMS requests are handled by the mapserv CGI program. Not all versions of the mapserv program do include
WMS support (it is included by default when you compile together with the PROJ library), so the first step is to
check that your mapserv executable includes WMS support. One way to verify this is to use the “-v” command-line
switch and look for “SUPPORTS=WMS_SERVER”.

(Unix users should refer to the Compiling on Unix document for any compiling instructions, and Windows users
might want to use MS4W, which comes ready with WMS/WFS support)

Example 1. On Unix:

$./mapserv -v
MapServer version 6.3-dev OUTPUT=GIF OUTPUT=PNG OUTPUT=JPEG OUTPUT=KML
SUPPORTS=PROJ SUPPORTS=GD SUPPORTS=AGG SUPPORTS=FREETYPE SUPPORTS=CAIRO
SUPPORTS=ICONV SUPPORTS=FRIBIDI SUPPORTS=WMS_SERVER SUPPORTS=WMS_CLIENT
SUPPORTS=WFS_SERVER SUPPORTS=WFS_CLIENT SUPPORTS=WCS_SERVER
SUPPORTS=SOS_SERVER SUPPORTS=GEOS INPUT=JPEG INPUT=POSTGIS INPUT=OGR
INPUT=GDAL INPUT=SHAPEFILE

Example 2. On Windows:

C:\apache\cgi-bin> mapserv -v
MapServer version 6.3-dev OUTPUT=GIF OUTPUT=PNG OUTPUT=JPEG OUTPUT=KML
SUPPORTS=PROJ SUPPORTS=GD SUPPORTS=AGG SUPPORTS=FREETYPE SUPPORTS=CAIRO
SUPPORTS=ICONV SUPPORTS=FRIBIDI SUPPORTS=WMS_SERVER SUPPORTS=WMS_CLIENT
SUPPORTS=WFS_SERVER SUPPORTS=WFS_CLIENT SUPPORTS=WCS_SERVER
SUPPORTS=SOS_SERVER SUPPORTS=GEOS INPUT=JPEG INPUT=POSTGIS INPUT=OGR
INPUT=GDAL INPUT=SHAPEFILE

Setup a Mapfile For Your WMS

Each instance of WMS server that you setup needs to have its own mapfile. It is just a regular MapServer mapfile
in which some parameters and some metadata entries are mandatory. Most of the metadata is required in order to
produce a valid GetCapabilites output.

Here is the list of parameters and metadata items that usually optional with MapServer, but are required (or
strongly recommended) for a WMS configuration:

At the MAP level:

9.1. OGC Support and Configuration 479

http://www.maptools.org/ms4w/

MapServer Documentation, Release 6.4.1

• Map NAME

• Map PROJECTION

• Map Metadata (in the WEB Object):

– wms_title

– wms_onlineresource

– wms_srs (unless PROJECTION object is defined using “init=epsg:...”)

– wms_enable_request

And for each LAYER:

• Layer NAME

• Layer PROJECTION

• Layer METADATA

– wms_title

– wms_srs (optional since the layers inherit the map’s SRS value)

• Layer STATUS

– Layers set to STATUS DEFAULT will always be sent to the client.

– Layers set to STATUS ON or STATUS OFF can be requested by the client.

• Layer TEMPLATE (required for GetFeatureInfo requests - see Templating)

Let’s go through each of these parameters in more detail:

• Map Name and wms_title:

WMS Capabilities requires a Name and a Title tag for every layer. The Map’s NAME and wms_title
metadata will be used to set the root layer’s name and title in the GetCapabilities XML output. The root
layer in the WMS context corresponds to the whole mapfile.

• Layer Name and wms_title metadata:

Every individual layer needs its own unique name and title. Layer names are also used in GetMap and
GetFeatureInfo requests to refer to layers that should be included in the map output and in the query. Layer
names must start with a letter when setting up a WMS server (layer names should not start with a digit or
have spaces in them).

• Map PROJECTION and wms_srs metadata:

WMS servers have to advertise the projection in which they are able to serve data using EPSG projection
codes (see The EPSG web page for more background on EPSG codes). Recent versions of the PROJ4
library come with a table of EPSG initialization codes and allow users to define a projection like this:

PROJECTION
"init=epsg:4269"

END

(Note that “epsg” has to be in lowercase when used in the PROJ4 ‘init’ directive.)

If the MAP PROJECTION block is provided in the format “init=epsg:xxxx” then MapServer will also use
this information to generate a <BoundingBox> tag for the top-level layer in the WMS capabilities document.
BoundingBox is a mandatory element of WMS capabilities for WMS 1.3.0 (for WMS 1.1.0 it is optional,
but it is good practice to allow MapServer to include it when possible).

The above is sufficient for MapServer to recognize the EPSG code and include it in SRS tags in the capa-
bilities output (wms_srs metadata is not required in this case). However, it is often impossible to find an
EPSG code to match the projection of your data. In those cases, the “wms_srs” metadata is used to list one
or more EPSG codes that the data can be served in, and the PROJECTION object contains the real PROJ4
definition of the data’s projection.

480 Chapter 9. OGC

http://www.epsg.org/

MapServer Documentation, Release 6.4.1

Here is an example of a server whose data is in an Lambert Conformal Conic projection (42304). It’s
capabilities output will advertize EPSG:4269 and EPSG:4326 projections (lat/lon), but the PROJECTION
object is set to the real projection that the data is in:

NAME "DEMO"
...

WEB
...
METADATA

"wms_title" "WMS Demo Server"
"wms_onlineresource" "http://my.host.com/cgi-bin/mapserv?map=wms.map&"
"wms_srs" "EPSG:4269 EPSG:4326"

END
END

PROJECTION
"init=epsg:42304"

END
...
END

In addition to EPSG:xxxx projections, a WMS server can advertize projections in the AUTO:xxxx names-
pace. AUTO projections 42001 to 42005 are internally supported by MapServer. However, AUTO projec-
tions are useful only with smart WMS clients, since the client needs to define the projection parameters in
the WMS requests to the server. For more information see Annex E of the WMS 1.1.1 specification and
section 6.5.5.2 of the same document. See also the FAQ on AUTO projections at the end of this document.

• Layer PROJECTION and wms_srs metadata:

By default layers inherit the SRS of their parent layer (the map’s PROJECTION in the MapServer case).
For this reason it is not necessary (but still strongly recommended) to provide PROJECTION and wms_srs
for every layer. If a layer PROJECTION is not provided then the top-level map projecion will be assumed.

Layer PROJECTION and wms_srs metadata are defined exactly the same way as the map’s PROJECTION
and wms_srs metadata.

For vector layers, if a PROJECTION block is provided in the format “init=epsg:xxxx” then MapServer will
also use this information to generate a <BoundingBox> tag for this layer in the WMS capabilities document.
BoundingBox is a mandatory element of WMS capabilities for WMS 1.3.0 (for WMS 1.1.0 it is optional,
but it is good practice to allow MapServer to include it when possible).

• “wms_onlineresource” metadata:

The wms_onlineresource metadata is set in the map’s web object metadata and specifies the URL that should
be used to access your server. This is required for the GetCapabilities output. If wms_onlineresource is not
provided then MapServer will try to provide a default one using the script name and hostname, but you
shouldn’t count on that too much. It is strongly recommended that you provide the wms_onlineresource
metadata.

See section 6.2.2 of the WMS 1.1.1 specification for the whole story about the online resource URL. Basi-
cally, what you need is a complete HTTP URL including the http:// prefix, hostname, script name, poten-
tially a “map=” parameter, and and terminated by ”?” or “&”.

Here is a valid online resource URL:

http://my.host.com/cgi-bin/mapserv?map=mywms.map&

By creating a wrapper script on the server it is possible to hide the “map=” parameter from the URL and
then your server’s online resource URL could be something like:

http://my.host.com/cgi-bin/mywms?

This is covered in more detail in the section “More About the Online Resource URL” below.

• “wms_enable_request” metadata:

9.1. OGC Support and Configuration 481

http://portal.opengeospatial.org/files/?artifact_id=1081&version=1&format=pdf
http://portal.opengeospatial.org/files/?artifact_id=1081&version=1&format=pdf
http://

MapServer Documentation, Release 6.4.1

Specify which requests to enable. If not specified, no requests will be enabled! See the explanation below.

• Configuring for GetFeatureInfo Requests:

You must set the layer TEMPLATE parameter for the layer to be queryable by GetFeatureInfo requests
(see Templating). For requests of type “text/html” you should also set the layer HEADER and FOOTER
parameters.

As of MapServer 4.6 you must set the gml_* metadata for the layer attributes to be served (see the Layer
Object metadata in the Reference Section later in this document). To include geometry, gml_geometries
and gml_[geometry name]_type has to be specified.

Here are working examples of GetFeatureInfo requests: text/plain / text/html / gml (for gml, your browser
might ask you to save the file, if so save it locally as a .gml file and view it in a text editor)

Test Your WMS Server

Validate the Capabilities Metadata OK, now that we’ve got a mapfile, we have to check the XML capabilities
returned by our server to make sure nothing is missing.

Using a web browser, access your server’s online resource URL to which you add the parameters “SER-
VICE=WMS&VERSION=1.1.1&REQUEST=GetCapabilities” to the end, e.g.

http://my.host.com/cgi-bin/mapserv?map=mywms.map&SERVICE=WMS&VERSION=1.1.1
&REQUEST=GetCapabilities

Here is a working GetCapabilities request (note that the SERVICE parameter is required for all GetCapabilities
requests):

http://demo.mapserver.org/cgi-bin/wms?SERVICE=WMS&VERSION=1.1.1&REQUEST=GetCapabilities

This should return a document of MIME type application/vnd.ogc.wms_xml, so your browser is likely going to
prompt you to save the file. Save it and open it in a text editor (Emacs, Notepad, etc.), and you will see the returned
XML from the WMS server.

If you get an error message in the XML output then take necessary actions. Common problems and solutions are
listed in the FAQ at the end of this document.

If everything went well, you should have a complete XML capabilities document. Search it for the word “WARN-
ING”... MapServer inserts XML comments starting with “<!–WARNING: ” in the XML output if it detects
missing mapfile parameters or metadata items. If you notice any warning in your XML output then you have to fix
all of them before you can register your server with a WMS client, otherwise things are likely not going to work.

Note that when a request happens, it is passed through WMS, WFS, and WCS in MapServer (in that order) until
one of the services respond to it.

Test With a GetMap Request OK, now that we know that our server can produce a valid XML GetCapabilities
response we should test the GetMap request. MapServer only checks for a few of the required GetMap parameters,
so both of the minimum MapServer parameters and a valid GetMap request will be explained below.

The following is a list of the required GetMap parameters according to the WMS spec:

VERSION=version: Request version

REQUEST=GetMap: Request name

LAYERS=layer_list: Comma-separated list of one or more map layers. Optional if SLD parameter
is present.

STYLES=style_list: Comma-separated list of one rendering style per requested layer. Optional if
SLD parameter is present. Set “STYLES=” with an empty value to use default style(s). Named styles
are also supported and are controlled by CLASS GROUP names in the mapfile.

SRS=namespace:identifier: Spatial Reference System.

BBOX=minx,miny,maxx,maxy: Bounding box corners (lower left, upper right) in SRS units.

482 Chapter 9. OGC

http://demo.mapserver.org/cgi-bin/wms?SERVICE=WMS&VERSION=1.1.1&REQUEST=GetFeatureInfo&BBOX=-11.332970,24.121208,47.584718,57.965035&SRS=EPSG:4326&WIDTH=1001&HEIGHT=575&LAYERS=cities&STYLES=&FORMAT=image/png&TRANSPARENT=true&QUERY_LAYERS=cities&INFO_FORMAT=text/plain&X=229&Y=280
http://demo.mapserver.org/cgi-bin/wms?SERVICE=WMS&VERSION=1.1.1&REQUEST=GetFeatureInfo&BBOX=-11.332970,24.121208,47.584718,57.965035&SRS=EPSG:4326&WIDTH=1001&HEIGHT=575&LAYERS=cities&STYLES=&FORMAT=image/png&TRANSPARENT=true&QUERY_LAYERS=cities&INFO_FORMAT=text/html&X=229&Y=280
http://demo.mapserver.org/cgi-bin/wms?SERVICE=WMS&VERSION=1.1.1&REQUEST=GetFeatureInfo&BBOX=-11.332970,24.121208,47.584718,57.965035&SRS=EPSG:4326&WIDTH=1001&HEIGHT=575&LAYERS=cities&STYLES=&FORMAT=image/png&TRANSPARENT=true&QUERY_LAYERS=cities&INFO_FORMAT=gml&X=229&Y=280
http://demo.mapserver.org/cgi-bin/wms?SERVICE=WMS&VERSION=1.1.1&REQUEST=GetCapabilities

MapServer Documentation, Release 6.4.1

WIDTH=output_width: Width in pixels of map picture.

HEIGHT=output_height: Height in pixels of map picture.

FORMAT=output_format: Output format of map.

Note: WMS Servers only advertise supported formats that are part of the gd / gdal libraries.

A valid example would therefore be:

http://my.host.com/cgi-bin/mapserv?map=mywms.map&SERVICE=WMS&VERSION=1.1.1
&REQUEST=GetMap&LAYERS=prov_bound&STYLES=&SRS=EPSG:4326
&BBOX=-173.537,35.8775,-11.9603,83.8009&WIDTH=400&HEIGHT=300
&FORMAT=image/png

Here is a working valid request.

Test with a Real Client If you have access to a WMS client, then register your new server’s online resource
with it and you should be off and running.

If you don’t have your own WMS client installed already, here are a few pointers:

• MapServer itself can be used as a WMS client, see the MapServer WMS Client Howto.

• Quantum GIS is a full GIS package which includes WMS client support. (recommended)

• OpenJUMP is a desktop GIS package which includes WMS client support.

• uDig is a desktop package that allows users to add WMS layers.

• Deegree provides a WMS client.

This list is not exhaustive, there are several Open Source or proprietary packages that offer WMS support and
could be used to interact with your new MapServer WMS server instance.

GetLegendGraphic Request

This request returns a legend image (icon) for the specified layer. The request will draw an icon and a label for all
classes defined on the layer. If the requested layername is a GROUP-name, all included layers will be returned in
the legend-icon.

Requirements The following are required in the WMS server mapfile to enable this request:

• a LEGEND object.

• a CLASS object for each layer.

• a NAME in the CLASS object.

• the STATUS of each LAYER must be set to ON.

Parameters The following are valid parameters for this request:

• LAYER - (Required) Name of the WMS layer to return the legend image of. Note that this is the <Name>
parameter of the Layer in the GetCapabilities.

• FORMAT - (Required) Format of the legend image (e.g. “image/png”).

• WIDTH - (Optional) Width of the legend image. Note that the Width parameter is only used when the Rule
parameter is also used in the request.

• HEIGHT - (Optional) Height of the legend image. Note that the Height parameter is only used when the
Rule parameter is also used in the request.

9.1. OGC Support and Configuration 483

http://demo.mapserver.org/cgi-bin/wms?SERVICE=WMS&VERSION=1.1.1&REQUEST=GetMap&BBOX=-180,-90,180,90&SRS=EPSG:4326&WIDTH=953&HEIGHT=480&LAYERS=bluemarble,cities&STYLES=&FORMAT=image/png&TRANSPARENT=true
http://www.qgis.org/
http://www.openjump.org
http://udig.refractions.net/
http://www.deegree.org/

MapServer Documentation, Release 6.4.1

• SLD - (Optional) The URL to the SLD. Applies the SLD on the layer and the legend is drawn after the SLD
is applied (using the classes specfied by the SLD). Note here that you need to put a <Name>class1</Name>
inside the Rule element so that a class name is created from the SLD and therefore a correct legend image.

• SLD_BODY - (Optional) The body (code) of the SLD, instead of specifying a URL (as in the ‘SLD’
parameter).

• SLD_VERSION - (Optional) The SLD version.

• SCALE - (Optional) Specify a scale so that only layers that fall into that scale will have a legend.

• STYLE - (Optional) The style.

• RULE - (Optional) Specify the name of the CLASS to generate the legend image for (as opposed to gener-
ating an icon and label for ALL classes for the layer).

Note: All rules that are used to draw the legend in normal CGI mode apply here. See the CGI Reference doc if
necessary.

The CLASS object’s KEYIMAGE parameter can also be used to specify a legend image for a CLASS. See the
MapFile Reference doc if necessary. Example Request

An example request might look like:

http://127.0.0.1/cgi-bin/mapserv.exe?SERVICE=WMS&VERSION=1.1.1&layer=park&
REQUEST=getlegendgraphic&FORMAT=image/png

Changing the Online Resource URL

As mentioned in the section “Setup a Mapfile / wms_onlineresource metadata” above, the following Online Re-
source URL is perfectly valid for a MapServer WMS according to section 6.2.2 or the WMS 1.1.1 specification:

http://my.host.com/cgi-bin/mapserv?map=mywms.map&

However, some people will argue that the above URL contains mandatory vendor-specific parameters and that this
is illegal. First we would like to point that “map=...” is not considered a vendor-specific parameter in this case
since it is part of the Online Resource URL which is defined as an opaque string terminated by ”?” or “&” (See
WMS 1.1.1 section 6.2.2).

But anyway, even if it’s valid, the above URL is still ugly. And you might want to use a nicer URL for your WMS
Online Resource URL. Here are some suggestions:

Apache ReWrite rules (using Apache mod_rewrite)

One can use Apache’s mod_rewrite to avoid specifying the map, or any other default parameter in the mapserver
URL. This task consist of three steps, specifying the mod_rewrite module to be loaded, enabling the mod_rewrite
module for the selected directories and at last to write a .htaccess file to do the rewriting.

In the httpd.conf file, the mod_rewrite module is per default disabled. To enable it, remove the opening # in the
line

#LoadModule rewrite_module modules/mod_rewrite.so

To be able to use the module, it must be enabled, using the directive AllowOverride. This can be done per server
or per directory. If you just have one server, add an “AllowOverride All” line in the httpd.conf file (see the Apache
documentation to be sure about the security implications of this). Per directory is the easiest way to make it work
on virtual hosts. Within the <virtualHost> section of the httpd.conf insert:

<Directory myhtdocsdir>
AllowOverride All

</Directory>

484 Chapter 9. OGC

http://portal.opengeospatial.org/files/?artifact_id=1081&version=1&format=pdf

MapServer Documentation, Release 6.4.1

Where myhtdocsdir is the directory defined as documentroot for the actual virtual server.

When the directives are set to load and enable the mod_rewrite module, Apache has to be restarted.

In a web-accessible directory make a .htaccess file like the following:

RewriteEngine on
RewriteRule wmsmap?(.*) /cgi-bin/mapserv?map=/home/www/mapserverstuff/mymapfile.map&$1

The rewriteRule says: given a webpage starting with wmsmap, pick out the query parameters, make a new page
request starting with /cgi-bin/mapserv?map=(. . .)? and add on whatever was the query parameters in the original
page request.

e.g, the URL wmsmap?mode=map will be rewritten as

:: /cgi-bin/mapserv?map=/home/www/mapserverstuff/mymapfile.map&mode=map

If just the URL wmsmap is given (without any parameters) a page not found error will show up as that does not
match the wmsmap? expression.

Apache environment variables - MS_MAPFILE

A default mapfile can be specified using the MS_MAPFILE environment variable:

Alias /mywms /usr/lib/cgi-bin/mapserver
<Location /mywms>

SetHandler cgi-script
Options ExecCGI
SetEnv MS_MAPFILE /path/to/mymapfile.map

</Location>

Apache SetEnvIf

Another option is to use the “setenvif” feature of Apache: use symbolic links that all point to a same mapserv
binary, and then for each symbolic link test the URL, and set the MAP environment accordingly.

For Windows and Apache users the steps are as follows (this requires Apache 1.3 or newer):

• Copy mapserv.exe to a new name for your WMS, such as “mywms.exe”.

• In httpd.conf, add:

SetEnvIf Request_URI "/cgi-bin/mywms" MS_MAPFILE=/path/to/mymap.map

ASP script (IIS - Microsoft Windows)

On IIS servers (Windows), you can use the following ASP script:

Note: The script below, while functional, is intended only as an example of using ASP to filter MapServer
requests. Using ASP in a production WMS server will likely require additional ASP especially in the area of error
handling and setting timeouts.*

<%
Server.ScriptTimeout = 360

Select Case Request.ServerVariables("REQUEST_METHOD")
Case "GET" strRequest = Request.QueryString
Case "POST" strRequest = Request.Form

End Select

9.1. OGC Support and Configuration 485

MapServer Documentation, Release 6.4.1

strURL = "http://myserver/cgi-bin/mapserv.exe?
map=C:\Inetpub\wwwroot\workshop\itasca.map&" & strRequest

Dim objHTTP
Set objHTTP = Server.CreateObject("MSXML2.ServerXMLHTTP")
objHTTP.open "GET", strURL, false
objHTTP.send ""

Response.ContentType = objHTTP.getResponseHeader("content-type")
Response.BinaryWrite objHTTP.responseBody

Set objHTTP = Nothing
%>

Mapscript wrapper

Some OGC services (WFS, SOS) support both GET and POST requests. Here, you can use a minimal MapScript
WxS wrapper. Here’s a Python example:

#!/usr/bin/python

import mapscript

req = mapscript.OWSRequest()
req.loadParams()
map = mapscript.mapObj(’/path/to/config.map’)
map.OWSDispatch(req)

Wrapper script (Unix)

On Unix servers, you can setup a wrapper shell script that sets the MS_MAPFILE environment variable and then
passes control to the mapserv executable... that results on a cleaner OnlineResource URL:

#! /bin/sh
MS_MAPFILE=/path/to/demo.map
export MS_MAPFILE
/path/to/mapserv

Note: Using a /bin/sh wrapper script causes an overhead on system resources as two processes have to be spawned
instead of one, and is therefore not recommended.

WMS 1.3.0 Support

MapServer 5.4 adds support for WMS 1.3.0. Although the general mechanism in MapServer to support this new
specification are the same, there are some notable upgrades.

Major features related to the WMS 1.3.0 support

• Support WMS 1.3.0 basic operations: GetCapabilities, GetMap and GetFeatureInfo.

• Implement the Styled Layer Descriptor profile of the Web Map Service Implementation Specification. This
specification extends the WMS 1.3.0 and allows to advertise styling capabilities (Styled Layer Descriptor
(SLD) support). It also defines two addition operations GetLegendGraphic and DescribeLayer

• Implement the Symbology Encoding Implementation Specification, which is the new version of the SLD.
Read support was added for Point, Line, Polygon, Raster symbolizers

486 Chapter 9. OGC

http://portal.opengeospatial.org/files/?artifact_id=22364
http://portal.opengeospatial.org/files/?artifact_id=16700

MapServer Documentation, Release 6.4.1

• Upgrade the generation of SLD to version 1.1.0 (SLD generated through through the GetStyles operation or
through MapScript)

Coordinate Systems and Axis Orientation

The most notable changes introduced in WMS 1.3.0 are the:

• the axis changes

• the introduction of new coordinate reference systems

• the use of CRS parameter (instead of SRS)

The axis order in previous versions of the WMS specifications was to always use easting (x or lon) and northing
(y or lat). WMS 1.3.0 specifies that, depending on the particular CRS, the x axis may or may not be oriented West-
to-East, and the y axis may or may not be oriented South-to-North. The WMS portrayal operation shall account
for axis order. This affects some of the EPSG codes that were commonly used such as ESPG:4326. MapServer
5.x makes sure that coordinates passed to the server (as part of the GetMap BBOX parameter) as well as those
advertised in the capabilities document reflect the inverse axe orders for EPSG codes between 4000 and 5000.

MapServer 6.0 and up holds a list of epsg codes with inverted axis order. It is currently based on EPSG database
version 7.6. It is also possible to define the axis order at build time for a specific ESPG code(see #3582). This
allows for example to use the “normal” axis order for some of EPSG codes between 4000 and 5000.

In addition, the WMS 1.3.0 defines a series of new coordinate system. These are the once that are currently
supported in MapServer:

• CRS:84 (WGS 84 longitude-latitude)

• CRS:83 (NAD83 longitude-latitude)

• CRS:27 (NAD27 longitude-latitude)

• AUTO2:420001 (WGS 84 / Auto UTM)

• AUTO2:420002 (WGS 84 / Auto Tr. Mercator)

• AUTO2:420003 (WGS 84 / Auto Orthographic)

• AUTO2:420004 (WGS 84 / Auto Equirectangular)

• AUTO2:420005 (WGS 84 / Auto Mollweide)

Example of requests

Users can use the CRS:84 coordinate system and order the BBOX coordinates as long/lat:

• ...&CRS=CRS:84&BBOX=-180.0,-90.0,180.0,90.0&... (example request)

Users can also use the ESPG:4326 coordinates and use the axis odering of lat/long:

• ...&EPSG:4326&BBOX=-90.0,-180.0,90,180.0&... (example request)

Other notable changes

• valid values for the EXCEPTIONS parameter in a GetMap request are XML, INIMAGE, BLANK

• valid value for the EXCEPTIONS parameter in a GetFeatureInfo request is XML

• LayerLimit is introduced, allowing a server to advertise and limit the number of layers a client is allowed to
include in a GetMap request

9.1. OGC Support and Configuration 487

http://demo.mapserver.org/cgi-bin/wms?SERVICE=WMS&VERSION=1.3.0&REQUEST=GetMap&BBOX=-180,-90,180,90&CRS=CRS:84&WIDTH=953&HEIGHT=480&LAYERS=bluemarble,cities&STYLES=,&FORMAT=image/png&DPI=96&TRANSPARENT=true
http://demo.mapserver.org/cgi-bin/wms?SERVICE=WMS&VERSION=1.3.0&REQUEST=GetMap&BBOX=-90,-180,90,180&CRS=EPSG:4326&WIDTH=953&HEIGHT=480&LAYERS=bluemarble,cities&STYLES=,&FORMAT=image/png&DPI=96&TRANSPARENT=true

MapServer Documentation, Release 6.4.1

Some Missing features

• WMS 1.3.0 Post request should be an XML document containing the different operations and parameters.

• SLD documents containing elements from the Feature Encoding 1.1 specification could potentially use
ESPG projections with some filters. It is not yet clear nor implemented if the axis ordering should be taken
into account in these specific cases.

OCG compliance tests

As of version 5.4, MapServer passes all the basic and query tests of the OGC CITE test suite for WMS 1.3.0.

Reference Section

The following metadata are available in the setup of the mapfile:

(Note that each of the metadata below can also be referred to as ‘ows_*’ instead of ‘wms_*’. MapServer tries
the ‘wms_*’ metadata first, and if not found it tries the corresponding ‘ows_*’ name. Using this reduces the
amount of duplication in mapfiles that support multiple OGC interfaces since “ows_*” metadata can be used
almost everywhere for common metadata items shared by multiple OGC interfaces.)

Web Object Metadata

ows_allowed_ip_list (or wms_allowed_ip_list)

• Description: (Optional) A list of IP addresses that will be allowed access to the service.

Example:

METADATA
"ows_allowed_ip_list" "123.45.67.89 11.22.33.44"

END

ows_denied_ip_list (or wms_denied_ip_list)

• Description: (Optional) A list of IP addresses that will be denied access to the service.

Example:

METADATA
"ows_denied_ip_list" "123.45.67.89 11.22.33.44"

END

ows_http_max_age

• Description: (Optional) an integer (in seconds) to specify how long a given map response should be
considered new. Setting this directive allows for aware WMS clients to use this resulting HTTP header
value as a means to optimize (and minimize) requests to a WMS Server. More info is available at
http://www.mnot.net/cache_docs/#CACHE-CONTROL

ows_schemas_location

• Description: (Optional) (Note the name ows_schemas_location and not wms_... this is because all OGC
Web Services (OWS) use the same metadata) Root of the web tree where the family of OGC WMS
XMLSchema files are located. This must be a valid URL where the actual .xsd files are located if you
want your WMS output to validate in a validating XML parser. Default is http://schemas.opengis.net.

ows_sld_enabled

• Description: (Optional) A value (true or false) which, when set to “false”, will ignore SLD and SLD_BODY
parameters in order to disable remote styling of WMS layers. Also, SLD is not advertised in WMS Capa-
bilities as a result

488 Chapter 9. OGC

http://www.mnot.net/cache_docs/#CACHE-CONTROL
http://schemas.opengis.net

MapServer Documentation, Release 6.4.1

ows_updatesequence

• Description: (Optional) The updateSequence parameter can be used for maintaining the consistency of a
client cache of the contents of a service metadata document. The parameter value can be an integer, a
timestamp in [ISO 8601:2000] format, or any other number or string.

wms_abstract

• WMS TAG Name: Abstract (WMS1.1.1, sect. 7.1.4.2)

• Description: (Optional) A blurb of text providing more information about the WMS server.

wms_accessconstraints

• WMS TAG Name: AccessConstraints (WMS1.1.1, sect. 7.1.4.2)

• Description: (Optional) Access constraints information. Use the reserved word “none” if there are no access
constraints.

wms_addresstype, wms_address, wms_city, wms_stateorprovince, wms_postcode, wms_country

• WMS TAG Name: ContactAddress and family (WMS1.1.1, sect. 7.1.4.2)

• Description: Optional contact address information. If provided then all six metadata items are required.

wms_attribution_logourl_format

• Description: (Optional) The MIME type of the logo image. (e.g. “image/png”). Note that the other
wms_attribution_logourl_* metadata must also be specified.

• refer to section 7.1.4.5.11 of the WMS 1.1.1 spec.

wms_attribution_logourl_height

• Description: (Optional) Height of the logo image in pixels. Note that the other wms_attribution_logourl_*
metadata must also be specified.

• refer to section 7.1.4.5.11 of the WMS 1.1.1 spec.

wms_attribution_logourl_href

• Description: (Optional) URL of the logo image. Note that the other wms_attribution_logourl_* metadata
must also be specified.

• refer to section 7.1.4.5.11 of the WMS 1.1.1 spec.

wms_attribution_logourl_width

• Description: (Optional) Width of the logo image in pixels. Note that the other wms_attribution_logourl_*
metadata must also be specified.

• refer to section 7.1.4.5.11 of the WMS 1.1.1 spec.

wms_attribution_onlineresource

• Description: (Optional) The data provider’s URL.

• refer to section 7.1.4.5.11 of the WMS 1.1.1 spec.

wms_attribution_title

• Description: (Optional) Human-readable string naming the data provider.

• refer to section 7.1.4.5.11 of the WMS 1.1.1 spec.

wms_bbox_extended:

• Description: (Optional) “true” or “false”. If true, bounding boxes are reported for all supported SRS / CRS
in the capabilities document. If false, only the bounding box of the first SRS / CRS is reported.

• Introduced in 6.0.

wms_contactelectronicmailaddress

• WMS TAG Name: ContactElectronicMailAddress (WMS1.1.1, sect. 7.1.4.2)

9.1. OGC Support and Configuration 489

MapServer Documentation, Release 6.4.1

• Description: Optional contact Email address.

wms_contactfacsimiletelephone

• WMS TAG Name: ContactFacsimileTelephone (WMS1.1.1, sect. 7.1.4.2)

• Description: Optional contact facsimile telephone number.

wms_contactperson, wms_contactorganization, wms_contactposition

• WMS TAG Name: ContactInformation, ContactPerson, ContactOrganization, ContactPosition (WMS1.1.1,
sect. 7.1.4.2)

• Description: Optional contact information. If provided then all three metadata items are required.

wms_contactvoicetelephone

• WMS TAG Name: ContactVoiceTelephone (WMS1.1.1, sect. 7.1.4.2)

• Description: Optional contact voice telephone number.

wms_enable_request (or ows_enable_request)

• Description: Space separated list of requests to enable. The default is none. The following requests can be
enabled: GetCapabilities, GetMap, GetFeatureInfo and GetLegendGraphic. A ”!” in front of a request will
disable the request. “*” enables all requests.

• Examples:

To enable only GetMap and GetFeatureInfo:

"wms_enable_request" "GetMap GetFeatureInfo"

To enable all requests except GetFeatureInfo

"wms_enable_request" "* !GetFeatureInfo"

wms_encoding

• WMS TAG Name: Encoding

• Description: Optional XML capabilities encoding type. The default is ISO-8859-1.

wms_feature_info_mime_type

• WMS TAG Name: Feature_info_mime_type

• Description:

– Used to specify an additional MIME type that can be used when responding to the GetFeature request.

For example if you want to use the layer’s HTML template as a base for its response, you need to add
“WMS_FEATURE_INFO_MIME_TYPE” “text/html”. Setting this will have the effect of advertizing
text/html as one of the MIME types supported for a GetFeature request. You also need to make sure
that the layer points to a valid html template (see Templating). The client can then call the server with
INFO_FORMAT=text/html.

– If not specified, MapServer by default has text/plain and GML implemented.

wms_fees

• WMS TAG Name: Fees (WMS1.1.1, sect. 7.1.4.2)

• Description: (Optional) Fees information. Use the reserved word “none” if there are no fees.

wms_getcapabilities_version

• Description: (Optional) Default version to use for GetCapabilities requests that do not have a version pa-
rameter. If not set, the latest supported version will be returned.

wms_getlegendgraphic_formatlist

• Description: (Optional) A comma-separated list of valid formats for a WMS GetLegendGraphic request.

490 Chapter 9. OGC

MapServer Documentation, Release 6.4.1

wms_getmap_formatlist

• Description: (Optional) A comma-separated list of valid formats for a WMS GetMap request.

wms_keywordlist

• WMS TAG Name: KeywordList (WMS1.1.1, sect. 7.1.4.2)

• Description: (Optional) A comma-separated list of keywords or keyword phrases to help catalog searching.
As of WMS 1.1.0 no controlled vocabulary has been defined.

wms_keywordlist_vocabulary

• WMS Attribute Name: vocabulary of KeywordList -> Keyword

• Description: (Optional) Name of vocabulary used in wms_keywordlist_[vocabulary’s name]_items as
described below.

wms_keywordlist_[vocabulary’s name]_items

• WMS TAG Name: KeywordList -> Keyword

• Description: (Optional) A comma-separated list of keywords or keyword phrases to help catalog searching
for given vocabulary.

wms_languages

• Description: (Optional) A comma-separated list of supported languages. For details please refer to the
section Multi-language support for certain capabilities fields in the INSPIRE View Service documentation.

wms_layerlimit

• WMS TAG Name: LayerLimit (WMS1.3.0, sect. 7.2.4.3)

• Description: (Optional) The maximum number of layers a WMS client can specify in a GetMap request. If
not set, then no limit is imposed.

wms_onlineresource

• WMS TAG Name: OnlineResource (WMS1.1.1, sect. 6.2.2)

• Description: (Recommended) The URL that will be used to access this WMS server. This value is used in
the GetCapabilities response.

See Also:

Sections “Setup a Mapfile / wms_onlineresource metadata” and “More About the Online Resource URL”
above.

wms_remote_sld_max_bytes

• Description: (Optional) Maximum size in bytes authorized when fetching a remote SLD through http.
Defaults to 1 MegaByte (1048596).

wms_resx, wms_resy

• WMS TAG Name: BoundingBox (WMS1.1.1, sect. 6.5.6)

• Description: (Optional) Used in the BoundingBox tag to provide info about spatial resolution of the data,
values are in map projection units.

wms_rootlayer_abstract

• WMS TAG Name: Abstract (WMS1.1.1, sect. 7.1.4.2)

• Description: (Optional) Same as wms_abstract, applied to the root Layer element. If not set, then
wms_abstract will be used.

wms_rootlayer_keywordlist

• WMS TAG Name: KeywordList (WMS1.1.1, sect. 7.1.4.2)

• Description: (Optional) Same as wms_keywordlist, applied to the root Layer element. If not set, then
wms_keywordlist will be used.

9.1. OGC Support and Configuration 491

MapServer Documentation, Release 6.4.1

wms_rootlayer_title

• WMS TAG Name: Title (WMS1.1.1, sect. 7.1.4.1)

• Description: (Optional) Same as wms_title, applied to the root Layer element. If not set, then wms_title
will be used.

wms_service_onlineresource

• Description: (Optional) Top-level onlineresource URL. MapServer uses the onlineresource metadata (if
provided) in the following order:

1. wms_service_onlineresource

2. ows_service_onlineresource

3. wms_onlineresource (or automatically generated URL, see the onlineresource section of this document)

wms_srs

• WMS TAG Name: SRS (WMS1.1.1, sect. 6.5.5)

• Description: (Recommended) Contains a list of EPSG projection codes that should be advertized as being
available for all layers in this server. The value can contain one or more EPSG:<code> pairs separated by
spaces (e.g. “EPSG:4269 EPSG:4326”) This value should be upper case (EPSG:42304.....not epsg:42304)
to avoid problems with case sensitive platforms.

• See Also: section “Setup a Mapfile / Map PROJECTION and wms_srs metadata” above.

wms_timeformat

• Description: The time format to be used when a request is sent. (e.g. “wms_timeformat” “%Y-%m-%d
%H, %Y-%m-%d %H:%M”). Please see the WMS Time Support Howto for more information.

wms_title

• WMS TAG Name: Title (WMS1.1.1, sect. 7.1.4.1)

• Description: (Required) A human-readable name for this Layer.

Layer Object Metadata

gml_exclude_items

• Description: (Optional, applies only to GetFeatureInfo GML requests) A comma delimited list of items to
exclude. As of MapServer 4.6, you can control how many attributes (fields) you expose for your data layer
with metadata. The previous behaviour was simply to expose all attributes all of the time. The default is to
expose no attributes at all. An example excluding a specific field would be:

"gml_include_items" "all"
"gml_exclude_items" "Phonenum"

gml_geometries

• Description: (Optional, applies only to GetFeatureInfo GML requests) Provides a name for geometry ele-
ments. The value is specified as a string to be used for geometry element names. By default, GML geome-
tries are not written in GML GetFeatureInfo output, unless gml_geometries and gml_[geometry name]_type
are both set. By default, only the bounding box is written. If gml_geometries is set to “none”, neither the
bounding box nor the geometry are written.

gml_groups

• Description: (Optional, applies only to GetFeatureInfo GML requests) A comma delimited list of group
names for the layer.

gml_[group name]_group

• Description: (Optional, applies only to GetFeatureInfo GML requests) A comma delimited list of attributes
in the group. Here is an example:

492 Chapter 9. OGC

MapServer Documentation, Release 6.4.1

"gml_include_items" "all"
"gml_groups" "display"
"gml_display_group" "Name_e,Name_f"

gml_include_items

• Description: (Optional, applies only to GetFeatureInfo GML requests) A comma delimited list of items to
include, or keyword “all”. As of MapServer 4.6, you can control how many attributes (fields) you expose
for your data layer with this metadata. The previous behaviour was simply to expose all attributes all of the
time. You can enable full exposure by using the keyword “all”, such as:

"gml_include_items" "all"

You can specify a list of attributes (fields) for partial exposure, such as:

"gml_include_items" "Name,ID"

The new default behaviour is to expose no attributes at all.

gml_[item name]_alias

• Description: (Optional, applies only to GetFeatureInfo GML requests) An alias for an attribute’s name. The
served GML will refer to this attribute by the alias. Here is an example:

"gml_province_alias" "prov"

gml_[item name]_type

• Description: (Optional) Specifies the type of the attribute. Valid values are the OGR data types: Inte-
ger|Real|Character|Date|Boolean. Mapserver translates these to valid GML data types.

gml_[geometry name]_type

• Description: (Optional, applies only to GetFeatureInfo GML requests) When employing gml_geometries,
it is also necessary to specify the geometry type of the layer. This is accomplished by providing a value for
gml_[geometry name]_type, where [geometry name] is the string value specified for gml_geometries, and
a value which is one of:

– point

– multipoint

– line

– multiline

– polygon

– multipolygon

gml_xml_items

• Description: (Optional, applies only to GetFeatureInfo GML requests) A comma delimited list of items that
should not be XML-encoded.

ows_allowed_ip_list Same as ows_allowed_ip_list in the Web Object.

ows_denied_ip_list Same as ows_denied_ip_list in the Web Object.

wms_abstract Same as wms_abstract in the Web Object.

wms_attribution_logourl_format

• Description: (Optional) The MIME type of the logo image. (e.g. “image/png”). Note that the other
wms_attribution_logourl_* metadata must also be specified.

• refer to section 7.1.4.5.11 of the WMS 1.1.1 spec.

wms_attribution_logourl_height

9.1. OGC Support and Configuration 493

MapServer Documentation, Release 6.4.1

• Description: (Optional) Height of the logo image in pixels. Note that the other wms_attribution_logourl_*
metadata must also be specified.

• refer to section 7.1.4.5.11 of the WMS 1.1.1 spec.

wms_attribution_logourl_href

• Description: (Optional) URL of the logo image. Note that the other wms_attribution_logourl_* metadata
must also be specified.

• refer to section 7.1.4.5.11 of the WMS 1.1.1 spec.

wms_attribution_logourl_width

• Description: (Optional) Width of the logo image in pixels. Note that the other wms_attribution_logourl_*
metadata must also be specified.

• refer to section 7.1.4.5.11 of the WMS 1.1.1 spec.

wms_attribution_onlineresource

• Description: (Optional) The data provider’s URL.

• refer to section 7.1.4.5.11 of the WMS 1.1.1 spec.

wms_attribution_title

• Description: (Optional) Human-readable string naming the data provider.

• refer to section 7.1.4.5.11 of the WMS 1.1.1 spec.

wms_authorityurl_name, wms_authorityurl_href

• Description: (Optional) AuthorityURL is used in tandem with Identifier values to provide a means of link-
ing identifier information back to a web service. The wms_identifier_authority should provide a string
that matches a declared wms_authorityurl_name. Both wms_authorityurl_name and wms_authorityurl_href
must be present for an AuthorityURL tag to be written to the capabilities.

• refer to section 7.1.4.5.12 of the WMS 1.1.1 spec.

wms_bbox_extended:

• Description: (Optional) “true” or “false”. If true, bounding boxes are reported for all supported SRS / CRS
in the capabilities document. If false, only the bounding box of the first SRS / CRS is reported.

• Introduced in 6.0.

wms_dataurl_format

• Description: (Optional) Non-standardized file format of the metadata. The layer metadata
wms_dataurl_href must also be specified.

• refer to section 7.1.4.5.14 of the WMS 1.1.1 spec.

wms_dataurl_href

• Description: (Optional) The URL to the layer’s metadata. The layer metadata wms_dataurl_format must
also be specified.

• refer to section 7.1.4.5.14 of the WMS 1.1.1 spec.

wms_enable_request (or ows_enable_request)

• Description: Space separated list of requests to enable. The default is none. The following requests can be
enabled: GetCapabilities, GetMap, GetFeatureInfo and GetLegendGraphic. A ”!” in front of a request will
disable the request. “*” enables all requests.

• Examples:

To enable only GetMap and GetFeatureInfo:

"wms_enable_request" "GetMap GetFeatureInfo"

494 Chapter 9. OGC

MapServer Documentation, Release 6.4.1

To enable all requests except GetFeatureInfo

"wms_enable_request" "* !GetFeatureInfo"

wms_exclude_items

• Description: (Optional, applies only to GetFeatureInfo text/plain requests) A comma delimited list of items
to exclude, or keyword “all”.

See gml_exclude_items above.

wms_extent

• WMS TAG Name: BoundingBox (WMS1.1.1, sect. 6.5.6)

• Description: (Optional) Used for the layer’s BoundingBox tag for cases where it is impossible (or very
inefficient) for MapServer to probe the data source to figure its extents. The value for this metadata is “minx
miny maxx maxy” separated by spaces, with the values in the layer’s projection units. If wms_extent is
provided then it has priority and MapServer will NOT try to read the source file’s extents.

For Rasters served through WMS, MapServer can now use the wms_extent metadata parameter to register
the image. If a .wld file cannot be found, MapServer will then look for the wms_extent metadata parameter
and use the extents of the image and the size of the image for georegistration.

wms_getfeatureinfo_formatlist

• Description: (Optional) Comma-separted list of formats that sould be valid for a GetFeatureInfo request. If
defined, only these formats are advertised through in the Capabilities document.

wms_getlegendgraphic_formatlist

• Description: (Optional) Comma-separted list of image formats that sould be valid for a GetLegendGraphic
request. If defined, only these formats are advertised through in the Capabilities document.

wms_getmap_formatlist

• Description: (Optional) Comma-separted list of image formats that sould be valid for a GetMap request. If
defined, only these formats are advertised through in the Capabilities document.

wms_group_abstract

• Description: (Optional) A blurb of text providing more information about the group. Only one layer for
the group needs to contain wms_group_abstract, MapServer will find and use the value. The value found
for the first layer in the group is used. So if multiple layers have wms_group_abstract set then only the first
value is used.

wms_group_title

• WMS TAG Name: Group_title (WMS1.1.1, sect. 7.1.4.1)

• Description: (Optional) A human-readable name for the group that this layer belongs to. Only one layer for
the group needs to contain wms_group_title, MapServer will find and use the value. The value found for
the first layer in the group is used. So if multiple layers have wms_group_title set then only the first value
is used.

wms_identifier_authority, wms_identifier_value

• Description: (Optional) Identifier is used in tandem with AuthorityURL end points to provide a means of
linking identifier information back to a web service. The wms_identifier_authority should provide a string
that matches a declared wms_authorityurl_name. Both wms_identifier_authority and wms_identifier_value
must be present for an Identifier tag to be written to the capabilities.

• refer to section 7.1.4.5.12 of the WMS 1.1.1 spec.

wms_include_items

• Description: (Optional, applies only to GetFeatureInfo text/plain requests) A comma delimited list of items
to include, or keyword “all”.

See gml_include_items above.

9.1. OGC Support and Configuration 495

MapServer Documentation, Release 6.4.1

wms_keywordlist Same as wms_keywordlist in the Web Object.

wms_keywordlist_vocabulary Same as wms_keywordlist_vocabulary in the Web Object.

wms_keywordlist_[vocabulary’s name]_items Same as wms_keywordlist_[vocabulary’s name]_items in the
Web Object.

wms_layer_group

• Description: (Optional) Can be used to assign a layer to a number of hierarchically nested groups. This
grouped hierarchy will be expressed in the capabilities.

WMS_LAYER_GROUP is different from the GROUP keyword in that it does not necessarily publish the
name of the group in the capabilities, only the title is always published. If a layer with the same name as
used in WMS_LAYER_GROUP is found it is treated as named group and if no layer with this name is found
as unnamed group.

As a consequence the groups set with WMS_LAYER_GROUP can not always be requested with a GetMap
or GetFeatureInfo request (see section 7.1.4.5.2 of the WMS implementation specification version 1.1.1.
(OGC 01-068r2)). Another difference is that GROUP does not support nested groups. The purpose of this
metadata setting is to enable making a WMS client aware of layer grouping.

All group names should be preceded by a forward slash (/). It is not allowed to use both the
WMS_LAYER_GROUP setting and the GROUP keyword for a single layer.

LAYER
NAME "mylayer"
DATA "mylayer"
TYPE LINE
CLASS

STYLE
COLOR 100 100 255

END
END
METADATA
"WMS_LAYER_GROUP" "/rootgroup/subgroup"

END
END

wms_metadataurl_format

• Description: (Optional) The file format MIME type of the metadata record (e.g. “text/plain”). The layer
metadata wms_metadataurl_type and wms_metadataurl_href must also be specified.

• refer to section 7.1.4.5.10 of the WMS 1.1.1 spec.

wms_metadataurl_href

• Description: (Optional) The URL to the layer’s metadata. The layer metadata wms_metadataurl_format
and wms_metadataurl_type must also be specified.

• refer to section 7.1.4.5.10 of the WMS 1.1.1 spec.

wms_metadataurl_type

• Description: (Optional) The standard to which the metadata complies. Currently only two types are valid:
“TC211” which refers to [ISO 19115], and “FGDC” which refers to [FGDC-STD-001-1988]. The layer
metadata wms_metadataurl_format and wms_metadataurl_href must also be specified.

• refer to section 7.1.4.5.10 of the WMS 1.1.1 spec.

wms_opaque

• WMS TAG Name: Opaque (WMS1.1.1, sect. 7.1.4.6.3)

• Description: (Optional) Set this metadata to “1” to indicate that the layer represents an area-filling coverage
of space (e.g. a bathymetry and elevation layer). This should be taken by the client as a hint that this layer
should be placed at the bottom of the stack of layers.

496 Chapter 9. OGC

MapServer Documentation, Release 6.4.1

wms_srs Same as wms_srs in the Web Object .

wms_style

• Description: (Optional) The LegendURL style name. Requires the following meta-
data: wms_style_[style’s_name]_width, wms_style_[style’s_name]_legendurl_height,
wms_style_[style’s_name]_legendurl_format, wms_style_[style’s_name]_legendurl_href

• refer to section 7.1.4.5.4 of the WMS 1.1.1 spec.

wms_style_[style’s_name]_legendurl_format

• Description: (Optional) The file format MIME type of the legend image. Requires the follow-
ing metadata: wms_style_[style’s_name]_width, wms_style_[style’s_name]_legendurl_height, wms_style,
wms_style_[style’s_name]_legendurl_href.

• refer to section 7.1.4.5.4 of the WMS 1.1.1 spec.

wms_style_[style’s_name]_legendurl_height

• Description: (Optional) The height of the legend image in pixels. Requires the following
metadata: wms_style_[style’s_name]_width, wms_style, wms_style_[style’s_name]_legendurl_format,
wms_style_[style’s_name]_legendurl_href.

• refer to section 7.1.4.5.4 of the WMS 1.1.1 spec.

wms_style_[style’s_name]_legendurl_href

• Description: (Optional) The URL to the layer’s legend. Requires the following
metadata: wms_style_[style’s_name]_width, wms_style_[style’s_name]_legendurl_height,
wms_style_[style’s_name]_legendurl_format, wms_style.

• refer to section 7.1.4.5.4 of the WMS 1.1.1 spec.

wms_style_[style’s_name]_legendurl_width

• Description: (Optional) The width of the legend image in pixels. Requires the following
metadata: wms_style_[style’s_name]_format, wms_style_[style’s_name]_legendurl_height, wms_style,
wms_style_[style’s_name]_legendurl_href.

• refer to section 7.1.4.5.4 of the WMS 1.1.1 spec.

wms_timedefault

• Description: (Optional for Time Support) This value is used if it is defined and the Time value is missing in
the request. Please see the WMS Time Support Howto for more information.

wms_timeextent

• Description: (Mandatory for Time Support) This is used in the capabilities to return the valid time values
for the layer. The value defined here should be a valid time range. Please see the WMS Time Support Howto
for more information.

wms_timeitem

• Description: (Mandatory for Time Support) This is the name of the field in the DB that contains the time
values. Please see the WMS Time Support Howto for more information.

wms_title Same as wms_title in the Web Object.

Vendor specific WMS parameters

angle

• Angle (in degrees) to rotate the map.

Note: The angle value is in degrees clockwise.

9.1. OGC Support and Configuration 497

MapServer Documentation, Release 6.4.1

radius

• This parameter accepts two types of input:

– An integer that specifies the search radius in pixels.

– The special value bbox that will change the query into a bbox query based on the bbox given in the
request parameters.

bbox_pixel_is_point

• If this parameter is “TRUE”, MapServer will treat the BBOX received in WMS GetMap requests as if it was
provided in pixel_is_point mode. Essentially disabling the conversion from pixel_is_area (WMS model) to
pixel_is_point that is present in mapwms.c for that specific mapfile.

Cascading WMS Requests

Currently, there are 3 requests that support WMS cascading:

• GetMap

• GetFeatureInfo

• GetLegendGraphic

Before MapServer 6.2, a GetLegendGraphic request was not cascaded. A legend was returned using the
layer classes. To preserve that behavior, a GetLegendGraphic request will be cascaded only if:

1. The GetLegendGraphic request is enabled via the _enable_request metadata.

2. The layer does not contain any class with the name property set. ie:

CLASS
NAME "Parks"
STYLE

COLOR 0 255 0
END

END

This layer won’t be cascaded because it contains at least a class with the property NAME set.

Note: If you know that the remote WMS server does not support a given WMS request, you should disable this
request explicitly for your layer using the (ows/wms)_enable_request metadata. Otherwise, you will simply get
the XML exception from the cascaded server.

Sample WMS Server Mapfile

The following is a very basic WMS Server mapfile:

1 MAP
2 NAME "WMS-test"
3 STATUS ON
4 SIZE 400 300
5 EXTENT -2200000 -712631 3072800 3840000
6 UNITS METERS
7 SHAPEPATH "../data"
8 IMAGECOLOR 255 255 255
9 FONTSET ../ e t c / f o n t s . t x t

10

11 WEB
12 IMAGEPATH "/ms4w/tmp/ms_tmp/"
13 IMAGEURL "/ms_tmp/"
14 METADATA

498 Chapter 9. OGC

MapServer Documentation, Release 6.4.1

15 "wms_title" "WMS Demo Server" ##required
16 "wms_onlineresource" "http://yourpath/cgi-bin/mapserv.exe?" ##required
17 "wms_srs" "EPSG:42304 EPSG:42101 EPSG:4269 EPSG:4326" ##recommended
18 "wms_enable_request" "*" ##necessary
19 END
20 END # Web
21

22 PROJECTION
23 "init=epsg:42304" ##required
24 END
25

26 SYMBOL
27 NAME "circle"
28 TYPE ellipse
29 POINTS 1 1 END
30 END # Symbol
31

32 #
33 # Start of layer definitions
34 #
35

36 LAYER
37 NAME "park"
38 METADATA
39 "wms_title" "Parks" ##required
40 END
41 TYPE POLYGON
42 STATUS OFF
43 DATA p a r k
44 PROJECTION
45 "init=epsg:42304" ##recommended
46 END
47 CLASS
48 NAME "Parks"
49 STYLE
50 COLOR 200 255 0
51 OUTLINECOLOR 120 120 120
52 END # Style
53 END # Class
54 END # Layer
55

56 LAYER
57 NAME p o p p l a c e
58 METADATA
59 "wms_title" "Cities" ##required
60 END
61 TYPE POINT
62 STATUS ON
63 DATA p o p p l a c e
64 PROJECTION
65 "init=epsg:42304" ##recommended
66 END
67 CLASS
68 NAME "Cities"
69 STYLE
70 SYMBOL "circle"
71 SIZE 8
72 COLOR 0 0 0
73 END # Style
74 END # Class
75 END # Layer
76

77 END # Map File

9.1. OGC Support and Configuration 499

MapServer Documentation, Release 6.4.1

FAQ / Common Problems

Q How can I find the EPSG code for my data’s projection?

A If you know the parameters of your data’s projection, then you can browse the “epsg” file that
comes with PROJ4 and look for a projection definition that matches your data’s projection. It’s
a simple text file and the EPSG code is inside brackets (<...>) at the beginning of every line.

The “epsg” file is usually located in /usr/local/share/proj/ on Unix systems and in C:/PROJ/ or
C:/PROJ/NAD in Windows systems (depending on the installation). MS4W users will find the
epsg file in /MS4W/proj/nad/.

Q My WMS server produces the error “msProcessProjection(): no system list, errno: ..”

A That’s likely PROJ4 complaining that it cannot find the “epsg” projection definition file. Make
sure you have installed PROJ 4.4.3 or more recent and that the “epsg” file is installed at the right
location. On Unix it should be under /usr/local/share/proj/, and on Windows PROJ looks for it
under C:/PROJ/ or C:/PROJ/NAD (depending on the installation). You should also check the
error documentation to see if your exact error is discussed.

If you don’t have the “epsg” file then you can get it as part of the PROJ4 distribution at
http://trac.osgeo.org/proj/ or you can download it at http://www.maptools.org/dl/proj4-epsg.zip.

Q How do AUTO projections work?

A When a WMS client calls a WMS server with an auto projection, it has to specify the SRS in the
form: AUTO: proj_id,unit_id,lon0,lat0 where:

• proj_id is one of 42001, 42002, 42003, 42004, or 42005 (only five auto projections are
currently defined).

• unit_id is always 9001 for meters. (It is uncertain whether anyone supports any other units.)

• lon0 and lat0 are the coordinates to use as the origin for the projection.

When using an AUTO projection in WMS GetCapabilities, you include only the “AUTO:42003”
string in your wms_srs metadata, you do not include the projection parameters. Those are added
by the application (client) at runtime depending on the map view. For example:

NAME "DEMO"
...

WEB
...
METADATA
"wms_title" "WMS Demo Server"
"wms_onlineresource" "http://my.host.com/cgi-bin/mapserv?map=wms.map&"
"wms_srs" "AUTO:42001 AUTO:42002"
"wms_enable_request" "*" ##necessary

END # METADATA
END # WEB

The above server advertises the first two auto projections.

9.1.3 INSPIRE View Service

Author Stephan Meissl

Contact stephan.meissl at eox.at

Last Updated 2012-03-19

500 Chapter 9. OGC

http://trac.osgeo.org/proj/
http://www.maptools.org/dl/proj4-epsg.zip

MapServer Documentation, Release 6.4.1

Table of Contents

• INSPIRE View Service
– Introduction
– Activation of INSPIRE support
– Multi-language support for certain capabilities fields
– Provision of INSPIRE specific metadata
– Named group layers
– Style section for root layer and possibly existing group layers

Introduction

INSPIRE is the name of an European directive, establishing an infrastructure for spatial information in Europe to
support Community environmental policies, and policies or activities which may have an impact on the environ-
ment.

The INSPIRE View Service is an implementation of the INSPIRE Technical Guidance document on top of the
WMS Server implementation explained in the previous chapter.

In order to achieve INSPIRE View Service compliance, the following enhancements have been implemented in
MapServer:

• Activation of INSPIRE support (two scenarios)

• Multi-language support for certain capabilities fields

• Provision of INSPIRE specific metadata

• Named group layers

• Style section for root layer and possibly existing group layers

Activation of INSPIRE support

INSPIRE specific metadata can either be referenced in an external INSPIRE service metadata document (scenario
1) or can be directly embedded in the capabilities document (scenario 2). MapServer supports both scenarios.

Activation of the corresponding scenario for INSPIRE support takes place in the WEB.METADATA section of the
mapfile through wms_inspire_capabilities. If activated, the corresponding INSPIRE namespace as well
as appropriate validation warnings are generated in the capabilities document.

Scenario 1 - activate INSPIRE support using a reference to external service metadata:

WEB
METADATA
"wms_inspire_capabilities" "url"
...

END
END

Scenario 2 - activate INSPIRE support using embedded service metadata:

WEB
METADATA
"wms_inspire_capabilities" "embed"
...

END
END

9.1. OGC Support and Configuration 501

http://inspire.jrc.ec.europa.eu/
http://INSPIRE.jrc.ec.europa.eu/documents/Network_Services/TechnicalGuidance_ViewServices_v3.0.pdf

MapServer Documentation, Release 6.4.1

Multi-language support for certain capabilities fields

INSPIRE requires multi-language support and requests a list of all supported languages as well as the default
language in the capabilities document. Based on the language parameter in the GetCapabilites request, certain
specific metadata values, namely

• wms_title

• wms_abstract

• wms_rootlayer_title

• wms_rootlayer_abstract

• wms_group_title

• wms_group_abstract

• wms_style_title

• wms_style_<name>_title

as well as language dependent reference data like

• DATA "road_eng"

• CONNECTION "db_ger"

need to be provided in the requested language. If the language is not supported (or no language parameter is
present), the default language has to be used.

All supported languages have to be specified as comma separated list (first language is default) through
wms_languages in the WEB.METADATA section of the mapfile. This language parameter is also added to
the OnlineResource in the GetCapabilites output:

WEB
METADATA
...
"wms_languages" "eng,ger" #first default, values according ISO 639-2/B
...

END
END

For language specific metadata values, a key extension method is applied:

WEB
METADATA
...
"wms_title.eng" "myservicetitle"
"wms_title.ger" "myservicetitleger"
"wms_abstract" "mylayerabstract" #fallback
"wms_abstract.ger" "mylayerabstractger"
...

END
END

For language dependent reference data, a similar approach like the run-time substitution feature of MapServer has
been followed (only DATA and CONNECTION values with %language% are substituted):
...

LAYER
NAME TN.RoadTransportNetwork.RoadLink
DATA "road_%language%"
...
END

...

If the language is not supported (or no language parameter is present), the default language is substituted.

502 Chapter 9. OGC

MapServer Documentation, Release 6.4.1

Provision of INSPIRE specific metadata

Depending on the scenario, additional metadata information is required to support the specification. The INSPIRE
related fields are provided below.

Scenario 1 - INSPIRE related fields using referenced external service metadata:

WEB
METADATA
"wms_inspire_capabilities" "url"
"wms_languages" "eng,ger" #first default, values according ISO 639-2/B
"wms_inspire_metadataurl_href" "http://INSPIRE.service/metadata"
"wms_inspire_metadataurl_format" "application/vnd.ogc.csw.capabilities.response_xml"
"wms_keywordlist_ISO_items" "infoMapAccessService" #value according "classification of spatial data services"
"wms_keywordlist_vocabulary" "ISO"
"wms_title" "myservicetitle"
"wms_abstract" "myabstract"
"wms_fees" "conditions unknown" #value either "no conditions apply"|default "conditions unknown"|<specific conditions>
"wms_accessconstraints" "None" #value according ISO 19115 (MD_RestrictionCode codelist) or default "None"
"wms_contactorganization" "MapServer" #responsible organization
"wms_contactposition" "owner" #responsible organization, value according "INSPIRE Metadata Regulation" (part D6)
...

END
END

Scenario 2 - INSPIRE related fields using embedded service metadata:

WEB
METADATA
"wms_inspire_capabilities" "embed"
"wms_languages" "eng,ger" #first default, values according ISO 639-2/B
"wms_inspire_temporal_reference" "2011-09-19" #date of last revision, value according YYYY-MM-DD
"wms_inspire_mpoc_name" "mympocname" #point of contact
"wms_inspire_mpoc_email" "mympoc@e.mail" #point of contact
"wms_inspire_metadatadate" "2011-09-19" #value according YYYY-MM-DD
"wms_inspire_resourcelocator" "http://myinspireresource" #URL for ResourceLocator
"wms_inspire_keyword" "infoMapAccessService" #value according "classification of spatial data services"
"wms_keywordlist_ISO_items" "infoMapAccessService"
"wms_keywordlist_vocabulary" "ISO"
"wms_title" "myservicetitle"
"wms_abstract" "myabstract"
"wms_fees" "conditions unknown" #value either "no conditions apply"|default "conditions unknown"|<specific conditions>
"wms_accessconstraints" "None" #value according ISO 19115 (MD_RestrictionCode codelist) or default "None"
"wms_contactorganization" "MapServer" #responsible organization
"wms_contactposition" "owner" #responsible organization, value according "INSPIRE Metadata Regulation" (part D6)
...

END
END

Notes:

• several fields require certain values, these values are not validated by MapServer itself, instead a manual
validation against the INSPIRE schemas and the WMS INSPIRE tester is recommended

• as suggested in this document regarding scenario 2, <inspire_common:ResourceType> is always
set to service and <inspire_common:SpatialDataServiceType> is always set to view, both
values can’t be altered through the mapfile

• conformity is always set to not evaluated, based on the latest INSPIRE Metadata Implementing Rules (page
7), a specification document, the specification date and a specification URI or URL need to be provided for
degree conformant/not conformant, which is currently not implemented

9.1. OGC Support and Configuration 503

http://inspire.ec.europa.eu/schemas/inspire_vs/1.0/inspire_vs.xsd
http://inspire_tester.neogeo-online.net/
http://www.neogeo-online.net/blog/wp-content/uploads/2011/04/MAPSERVER_INSPIRE.pdf
http://inspire.jrc.ec.europa.eu/documents/Metadata/Changes_to_MD_Guidelines_from_v1-1_to_v1-2_20100616-1.pdf

MapServer Documentation, Release 6.4.1

Named group layers

INSPIRE mandates usage of named group layers. Thus the functionality of wms_layer_group is extended to
support named group layers. If a layer with the same name as used in wms_layer_group is found it is treated
as named group and if no layer with this name is found as unnamed group as before.

Provided that ability, a hierarchy of any level can be achieved. See for example the grouping used in the
wms_inspire.map mapfile in msautotest:

TN
+--- TN.CommonTransportElements

+--- TN.CommonTransportElements.TransportArea
+--- TN.CommonTransportElements.TransportLink
+--- TN.CommonTransportElements.TransportNode

+--- TN.RoadTransportNetwork
+--- TN.RoadTransportNetwork
+--- TN.RoadTransportNetwork.VehicleTrafficArea
+--- TN.RoadTransportNetwork.RoadServiceArea
+--- TN.RoadTransportNetwork.RoadArea

+--- TN.RailTransportNetwork
+--- TN.RailTransportNetwork.RailwayLink
+--- TN.RailTransportNetwork.RailwayStationArea
+--- TN.RailTransportNetwork.RailwayYardArea
+--- TN.RailTransportNetwork.RailwayArea

Style section for root layer and possibly existing group layers

For regular layers, the concept of GROUP and CLASSGROUP can be used to set the layer
style name to the according value. Additionally the layer style titles can be overwrit-
ten through wms_style_<stylename>_title and the layer style legendURLs through
wms_style_<stylename>_legendurl_* (width, height, format, and href need to be provided):
...

LAYER
NAME TN.RoadTransportNetwork.RoadLink
DATA "road"
METADATA
"wms_title.eng" "Transport networks: Road Link"
"wms_title.ger" "Verkehrsnetze: Strassensegment"
...
"wms_style_inspire_common:DEFAULT_title" "mylayerstyletitle" #style title
"wms_style_inspire_common:DEFAULT_legendurl_width" "85" #override style legendurl (mandatory: width, height, format, href)
"wms_style_inspire_common:DEFAULT_legendurl_height" "40"
"wms_style_inspire_common:DEFAULT_legendurl_format" "image/png"
"wms_style_inspire_common:DEFAULT_legendurl_href" "http://path/to/onlineresource...roadlink"

END
...
END
...
CLASSGROUP "inspire_common:DEFAULT"
CLASSITEM "NAME_E"

CLASS
NAME "myclass1"
GROUP "inspire_common:DEFAULT"
EXPRESSION "Trans-Canada Highway"
COLOR 255 0 0
END

CLASS
NAME "myclass2"
GROUP "inspire_common:DEFAULT"

504 Chapter 9. OGC

https://svn.osgeo.org/mapserver/sandbox/inspire_soc2011/msautotest/wxs/wms_inspire.map

MapServer Documentation, Release 6.4.1

COLOR 0 255 0
END

...

The following method is implemented to support (customizable) style sections in the root layer:

• use wms_style_name in the WEB.METADATA section to add a style section to the root layer

• use wms_style_title to override the style title (optional)

• use wms_style_legendurl_* to override width, heigth, format and href of the legendURL (optional)

and possibly existing group layers:

• use wms_group_style_name in the first corresponding LAYER.METADATA section to add a style
section to the group layer

• use wms_group_style_title to override the style title (optional)

• use wms_group_style_legendurl_* to override width, heigth, format and href of the legendURL
(optional)

...
WEB
METADATA
...
"wms_style_name" "inspire_common:DEFAULT" #style name
"wms_style_title" "myroadarealayerstyletitle" #style title
"wms_style_legendurl_width" "85" #override style legendurl (mandatory: width, height, format, href)
"wms_style_legendurl_height" "40"
"wms_style_legendurl_format" "image/png"
"wms_style_legendurl_href" "http://path/to/onlineresource...roadarea"

END
END

LAYER
NAME TN.RailTransportNetwork.RailwayLink
GROUP TN.CommonTransportElements.TransportLink
DATA "road"
METADATA
"wms_group_title.eng" "Transport networks: Generic Transport Link"
"wms_group_title.ger" "Verkehrsnetze: Generisches Verkehrssegment"
"wms_group_abstract" "mygenerictransportlinklayerabstract" #fallback
"wms_group_abstract.ger" "mygenerictransportlinklayerabstract"
"wms_group_style_name" "inspire_common:DEFAULT" #style name
"wms_group_style_title" "mygenerictransportlinklayerstyletitle" #style title
"wms_group_style_legendurl_width" "85" #override style legendurl (mandatory: width, height, format, href)
"wms_group_style_legendurl_height" "40"
"wms_group_style_legendurl_format" "image/png"
"wms_group_style_legendurl_href" "http://path/to/onlineresource...generictransportlink"
"wms_title.eng" "Transport networks: Railway Link"
"wms_title.ger" "Verkehrsnetze: Eisenbahnverbindung"
"wms_abstract" "myrailwaylinklayerabstract" #fallback
"wms_abstract.ger" "myrailwaylinklayerabstractger"
...

END
...
END

...

Provided that ability, 3 levels of hierarchy can be achieved as done in the example mapfiles
wms_inspire_scenario1.map and wms_inspire_scenario2.map in msautotest:

TN.RoadTransportNetwork.RoadArea
+--- TN.RoadTransportNetwork.RoadLink
+--- TN.CommonTransportElements.TransportLink

9.1. OGC Support and Configuration 505

https://svn.osgeo.org/mapserver/sandbox/inspire_soc2011/msautotest/wxs/wms_inspire_scenario1.map
https://svn.osgeo.org/mapserver/sandbox/inspire_soc2011/msautotest/wxs/wms_inspire_scenario2.map

MapServer Documentation, Release 6.4.1

+--- TN.RailTransportNetwork.RailwayLink
+--- TN.AirTransportNetwork.AirLink

9.1.4 WMS Client

Author Jeff McKenna

Contact jmckenna at gatewaygeomatics.com

Last Updated 2013-06-20

Table of Contents

• WMS Client
– Introduction
– Compilation / Installation
– MapFile Configuration
– Limitations/TODO

Introduction

A WMS (or Web Map Server) allows for use of data from several different servers, and enables for the creation of
a network of Map Servers from which clients can build customized maps. The following document contains infor-
mation about using MapServer’s WMS connection type to include layers from remote WMS servers in MapServer
applications.

MapServer supports the following WMS versions when acting as client: 1.0.0, 1.0.7, 1.1.0, 1.1.1 (see MapServer
OGC Specification support for an updated list).

This document assumes that you are already familiar with certain aspects of MapServer:

• MapServer application development and setting up .map files.

• Familiarity with the WMS spec would be an asset. A link to the WMS specification document is included
below.

WMS-Related Information

• MapServer WMS Server HowTo

• WMS 1.1.1 specification

• MapServer OGC Web Services Workshop package

Compilation / Installation

The WMS connection type is enabled by the –with-wmsclient configure switch. It requires PROJ4, GDAL and
libcurl version 7.10.1 or more recent. Windows users who do not want to compile MapServer should use MS4W
(which comes ready for WMS/WFS client and server use), or check for the availability of other Windows binaries
with WMS support.

• For PROJ4 and GDAL installation, see the MapServer Compilation HowTo (Compiling on Unix / Compiling
on Win32)

• For libcurl, make sure you have version 7.10.1 or more recent installed on your system. You can find
out your libcurl version using curl-config –version. (if your system came with an older version of libcurl
preinstalled then you MUST uninstall it prior to installing the new version)

506 Chapter 9. OGC

http://www.opengeospatial.org/docs/01-068r2.pdf
http://mapserver.github.io/ms-ogc-workshop/
http://www.maptools.org/ms4w/
http://curl.haxx.se/libcurl/c/

MapServer Documentation, Release 6.4.1

Once the required libraries are installed, then configure MapServer using the –with-wmsclient switch (plus all
the other switches you used to use) and recompile. This will give you a new set of executables (and possibly
php_mapscript.so if you requested it). See the MapServer Compilation HowTo (links above) for installation
details.

Check your MapServer executable

To check that your mapserv executable includes WMS support, use the “-v” command-line switch and look for
“SUPPORTS=WMS_CLIENT”.

Example 1. Mapserv Version Info on Unix:

$./mapserv -v
MapServer version 6.3-dev OUTPUT=GIF OUTPUT=PNG OUTPUT=JPEG OUTPUT=KML
SUPPORTS=PROJ SUPPORTS=GD SUPPORTS=AGG SUPPORTS=FREETYPE SUPPORTS=CAIRO
SUPPORTS=ICONV SUPPORTS=FRIBIDI SUPPORTS=WMS_SERVER SUPPORTS=WMS_CLIENT
SUPPORTS=WFS_SERVER SUPPORTS=WFS_CLIENT SUPPORTS=WCS_SERVER
SUPPORTS=SOS_SERVER SUPPORTS=GEOS INPUT=JPEG INPUT=POSTGIS INPUT=OGR
INPUT=GDAL INPUT=SHAPEFILE

Example 2. Mapserv Version Info on Windows:

C:\ms4w\apache\cgi-bin> mapserv -v
MapServer version 6.3-dev OUTPUT=GIF OUTPUT=PNG OUTPUT=JPEG OUTPUT=KML
SUPPORTS=PROJ SUPPORTS=GD SUPPORTS=AGG SUPPORTS=FREETYPE SUPPORTS=CAIRO
SUPPORTS=ICONV SUPPORTS=FRIBIDI SUPPORTS=WMS_SERVER SUPPORTS=WMS_CLIENT
SUPPORTS=WFS_SERVER SUPPORTS=WFS_CLIENT SUPPORTS=WCS_SERVER
SUPPORTS=SOS_SERVER SUPPORTS=GEOS INPUT=JPEG INPUT=POSTGIS INPUT=OGR
INPUT=GDAL INPUT=SHAPEFILE

Install Optional PROJ4 EPSG Codes

(Note: installing these PROJ4 codes is optional, install only if you need them)

Some Canadian WMS servers will use some non-standard projection codes not included in the default distribution
(e.g. EPSG:42304, etc.). If you are planning to use MapServer to connect to Canadian WMS servers then you
might want to download a custom Canadian epsg file with those codes, and unzip it in the /usr/local/share/proj
directory (or /ms4w/proj/nad/ for MS4W users).

Finally, ESRI WMS servers also come with their own series of non-standard codes. If you are planning to con-
nect to ESRI WMS servers then you might want to get a custom epsg file that contains the canadian codes and
the ESRI codes, allowing you to connect to any server. Download the custom ESRI epsg file and unzip it in
/usr/local/share/proj (or /ms4w/proj/nad/ for MS4W users).

Q But why not always install and distribute the proj4-epsg-with-42xxx-and-esri.zip file then since
it’s more complete?

A You should install only the epsg projection codes that you need, the epsg file with all ESRI codes
in it is 20% larger than the default one, so it comes with extra overhead that you may not need.
Also note that when creating WMS servers, in order to be really interoperable, only EPSG codes
that are part of the standard EPSG list should be used. i.e. it is a bad idea for interoperability to
use the custom canadian codes or the custom ESRI codes and we do not want to promote their
use too much.

MapFile Configuration

Note: A PROJECTION must be set in the mapfile for the MAP unless you are sure that all your WMS layers
support only a single projection which is the same as the PROJECTION of the map. The MAP PROJECTION
can be set using “init=epsg:xxxx” codes or using regular PROJ4 parameters. Failure to set a MAP PROJECTION

9.1. OGC Support and Configuration 507

http://www.maptools.org/dl/proj4-epsg-with-42xxx.zip
http://www.maptools.org/dl/proj4-epsg-with-42xxx-and-esri.zip

MapServer Documentation, Release 6.4.1

may result in blank maps coming from remote WMS servers (because of inconsistent BBOX+SRS combination
being used in the WMS connection URL).

Storing Temporary Files

Before version 6.0, and in version 6.0 when wms_cache_to_disk metadata is turned on, you have to set the IM-
AGEPATH value in the WEB object of your mapfile to point to a valid and writable directory. MapServer will use
this directory to store temporary files downloaded from the remote servers. The temporary files are automatically
deleted by MapServer so you won’t notice them.

Example 3. Setting IMAGEPATH Parameter in Mapfile

MAP
...
WEB
IMAGEPATH "/tmp/ms_tmp/"
IMAGEURL ...

END
...

END

If you want to keep this temporary file for debugging purposes, you should add the following statement to the
LAYER object of your mapfile:

LAYER
....
DEBUG ON
...

END

Adding a WMS Layer

WMS layers are accessed via the WMS connection type in the Mapfile. Here is an example of a layer using this
connection type:

LAYER
NAME "country_bounds"
TYPE RASTER
STATUS ON
CONNECTION "http://demo.mapserver.org/cgi-bin/wms?"
CONNECTIONTYPE WMS
METADATA
"wms_srs" "EPSG:4326"
"wms_name" "country_bounds"
"wms_server_version" "1.1.1"
"wms_format" "image/gif"

END
END

Required Layer Parameters and Metadata

• CONNECTIONTYPE WMS

• CONNECTION - this is the remote server’s online resource URL, just the base URL without any of the
WMS parameters. The server version, image format, layer name, etc. will be provided via metadata, see
below.

Note: Note that if the CONNECTION parameter value is not set the the value of the “wms_onlineresource”
metadata will be used. If both CONNECTION and “wms_onlineresource” are set then the “wms_onlineresource”
metadata takes precedence.

508 Chapter 9. OGC

MapServer Documentation, Release 6.4.1

• “wms_format” metadata - the image format to use in GetMap requests.

Note: If wms_formatlist is provided then wms_format is optional and MapServer will pick the first supported
format in wms_formatlist for use in GetMap requests. If both wms_format and wms_formatlist are provided then
wms_format takes precedence. Also note that WMS Servers only advertize supported formats that are part of the
GD/GDAL libraries.

• “wms_name” metadata - comma-separated list of layers to be fetched from the remote WMS server. This
value is used to set the LAYERS and QUERY_LAYERS WMS URL parameters.

• “wms_server_version” metadata - the version of the WMS protocol supported by the remote WMS server
and that will be used for issuing GetMap requests.

• “wms_srs” metadata - space-delimited list of EPSG projection codes supported by the remote server. You
normally get this from the server’s capabilities output. This value should be upper case (EPSG:4236.....not
epsg:4236) to avoid problems with case sensitive platforms. The value is used to set the SRS WMS URL
parameter.

Optional Layer Parameters and Metadata

• MINSCALE, MAXSCALE - if the remote server’s capabilities contains a ScaleHint value for this layer
then you might want to set the MINSCALE and MAXSCALE in the LAYER object in the mapfile. This
will allow MapServer to request the layer only at scales where it makes sense

• PROJECTION object - it is optional at this point. MapServer will create one internally if needed. Includ-
ing one may allow MapServer to avoid looking up a definition in the PROJ.4 init files.

• “wms_auth_username” metadata - msEncrypt-style authorization string. Empty strings are also accepted.

METADATA
"wms_auth_username" "foo"
"wms_auth_password" "{FF88CFDAAE1A5E33}"

END

• “wms_auth_type” metadata - Authorization type. Supported types include:

– basic

– digest

– ntlm

– any (the underlying http library picks the best among the opotions supported by the remote server)

– anysafe (the underlying http library picks only safe methods among the options supported by the
remote server)

METADATA
"wms_auth_type" "ntlm"

END

• “wms_connectiontimeout” metadata - the maximum time to wait for a remote WMS layer to load, set in
seconds (default is 30 seconds). This metadata can be added at the layer level so that it affects only that
layer, or it can be added at the map level (in the web object) so that it affects all of the layers. Note that
wms_connectiontimeout at the layer level has priority over the map level.

METADATA
...
"wms_connectiontimeout" "60"
...

END

9.1. OGC Support and Configuration 509

MapServer Documentation, Release 6.4.1

• “wms_exceptions_format” metadata - set the format for exceptions (as of MapServer 4.6). MapServer
defaults to application/vnd.ogc.se_inimage (the exception will be in a picture format). You can check
the GetCapabilities of the server to see what formats are available for exceptions. The applica-
tion/vnd.ogc.se_inimage exception format is actually a non-required exception format in the WMS 1.1.1
spec, so there are servers out there which don’t support this format. In that case you would use:

LAYER
...
METADATA

"wms_exceptions_format" "application/vnd.ogc.se_xml"
END
...

END

Which would return this xml exception in the MS_ERRORFILE:

Tue Jan 17 18:05:13 2006 - msDrawWMSLayerLow(): WMS server error.
WMS GetMap request got XML exception for layer ’prov_bound’:
<?xml version=’1.0’ encoding="ISO-8859-1" standalone="no" ?>
<!DOCTYPE ServiceExceptionReport SYSTEM
"http://schemas.opengis.net/wms/1.1.1/exception_1_1_1.dtd">
<ServiceExceptionReport version="1.1.1"><ServiceException
code="LayerNotDefined">
msWMSLoadGetMapParams(): WMS server error. Invalid layer(s)
given in the LAYERS parameter.
</ServiceException>
</ServiceExceptionReport>

• “wms_force_separate_request” metadata - set this to “1” to force this WMS layer to be requested using
its own separate GetMap request. By default MapServer will try to merge multiple adjacent WMS layers
from the same server into a single multi-layer GetMap request to reduce the load on remote servers and
improve response time. This metadata is used to bypass that behavior.

• “wms_formatlist” metadata - comma-separated list of image formats supported by the remote WMS
server. Note that wms_formatlist is used only if wms_format is not set. If both wms_format and
wms_formatlist are provided then wms_format takes precedence.

• “wms_latlonboundingbox” metadata - the bounding box of this layer in geographic coordinates in the
format “lon_min lat_min lon_max lat_max”. If it is set then MapServer will request the layer only when
the map view overlaps that bounding box. You normally get this from the server’s capabilities output.

METADATA
"wms_latlonboundingbox" "-124 48 -123 49"

END

• “wms_proxy_auth_type” metadata - the authorization type to use for a proxy connection. Supported
types include:

– basic

– digest

– ntlm

– any (the underlying http library picks the best among the opotions supported by the remote server)

– anysafe (the underlying http library picks only safe methods among the options supported by the
remote server)

METADATA
"wms_proxy_auth_type" "ntlm"

END

• “wms_proxy_host” metadata - the hostname of the proxy to use, in “dot-quad” format, with an optional
port component (e.g. ‘192.168.2.10:8080’).

510 Chapter 9. OGC

MapServer Documentation, Release 6.4.1

METADATA
"wms_proxy_host" "192.168.2.10"

END

• “wms_proxy_port” metadata - the port to use for a proxy connection.

METADATA
"wms_proxy_port" "8080"

END

• “wms_proxy_type” metadata - the type of the proxy connection. Valid values are ‘http’ and ‘socks5’,
which are case sensitive.

METADATA
"wms_proxy_type" "http"

END

• “wms_proxy_username” metadata - msEncrypt-style string for a proxy connection. Empty strings are
also accepted.

METADATA
"wms_proxy_username" "foo"
"wms_proxy_password" "{FF88CFDAAE1A5E33}"

END

• “wms_sld_body” metadata - can be used to specify an inline SLD document.

• “wms_sld_url” metadata - can be used to specify a link to an SLD document.

• “wms_style” metadata - name of style to use for the STYLES parameter in GetMap requests for this layer.

• “wms_style_<stylename>_sld” metadata URL of a SLD to use in GetMap requests. Replace <stylename>
in the metadta name with the name of the style to which the SLD applies.

METADATA
...
"wms_style" "mystyle"
"wms_style_mystyle_sld" "http://my.host.com/mysld.xml"
...

END

For more information on SLDs in MapServer see the SLD HowTo document.

• “wms_time” metadata - value to use for the TIME parameter in GetMap requests for this layer. Please see
the WMS Time HowTo for more information.

• “wms_bgcolor” metadata - specifies the color to be used as the background of the map. The general format
of BGCOLOR is a hexadecimal encoding of an RGB value where two hexadecimal characters are used for
each of Red, Green, and Blue color values. The values can range between 00 and FF for each (0 and 255,
base 10). The format is 0xRRGGBB; either upper or lower case characters are allowed for RR, GG, and BB
values. The “0x” prefix shall have a lower case “x”.

• “wms_transparent” metadata - specifies whether the map background is to be made transparent or not.
TRANSPARENT can take on two values, “TRUE” or “FALSE”. If not specified, MapServer sets default to
“TRUE”

• “wms_cache_to_disk” metadata - set this to “1” to force MapServer to write fetched images to disk.
Writing to disk is necessary to take advantage of MapServer’s caching logic to avoid refetching WMS
requests made previously. This feature is new to MapServer 6.0 - previously results were always written to
disk.

• “wms_nonsquare_ok” metadata - set this to “0” to indicate that the remote WMS only supports requests
for square pixels. In this case MapServer will be careful to only make square pixel requests even if it means
oversampling in one dimension compared to the resolution of image data required. This feature is new to
MapServer 6.0.

9.1. OGC Support and Configuration 511

MapServer Documentation, Release 6.4.1

• “wms_extent” metadata - If there is exactly one SRS supported by this layer (as listed in the wms_srs
metadata), and if the wms_extent metadata item (or an extent specified via the EXTENT keyword) is set
then MapServer will take care to only making requests within this area. This can short circuit requests
completely outside the layer, reduce processing for layers that only partially overlap the target map area and
avoid poor behaviors with reprojection in some areas. The contents of this metadata item should be of the
form “minx miny maxx maxy”. This feature is new to MapServer 6.0.

Note: Note that each of the above metadata can also be referred to as ‘ows_*’ instead of ‘wms_*’. MapServer
tries the ‘wms_*’ metadata first, and if not found it tries the corresponding ‘ows_*’ name. Using this reduces
the amount of duplication in mapfiles that support multiple OGC interfaces since “ows_*” metadata can be used
almost everywhere for common metadata items shared by multiple OGC interfaces.

Old CONNECTION parameter format from version 3.5 and 3.6 (deprecated) In MapServer version 3.5
and 3.6, the CONNECTION parameter had to include at a minimum the VERSION, LAYERS, FORMAT and
TRANSPARENT WMS parameters. This mode of operation is still supported but is deprecated and you are
encouraged to use metadata items for those parameters as documented in the previous section above.

Here is an example of a layer definition using this deprecated CONNECTION parameter format:

LAYER
NAME "bathymetry_elevation"
TYPE RASTER
STATUS ON
CONNECTIONTYPE WMS
CONNECTION "http://demo.org/cgi-bin/wms?VERSION=1.1.0&LAYERS=bm&FORMAT=image/png"
PROJECTION

"init=epsg:4326"
END

END

Limitations/TODO

1. GetFeatureInfo is not fully supported since the output of getFeatureInfo is left to the discretion of the remote
server. A method layer.getWMSFeatureInfoURL() has been added to MapScript for applications that want
to access featureInfo results and handle them directly.

2. MapServer does not attempt to fetch the layer’s capabilities. Doing so at every map draw would be extremely
inefficient. And caching that information does not belong in the core of MapServer. This is better done at
the application level, in a script, and only the necessary information is passed to the MapServer core via the
CONNECTION string and metadata.

9.1.5 WMS Time

Author Jeff McKenna

Contact jmckenna at gatewaygeomatics.com

Revision $Revision$

Date $Date$

Last Updated 2006/06/26

512 Chapter 9. OGC

MapServer Documentation, Release 6.4.1

Table of Contents

• WMS Time
– Introduction
– Enabling Time Support in MapServer
– Future Additions
– Limitations and Known Bugs

Introduction

A WMS server can provide support to temporal requests. This is done by providing a TIME parameter with a time
value in the request. MapServer 4.4 and above provides support to interpret the TIME parameter and transform
the resulting values into appropriate requests.

Links to WMS-Related Information

• MapServer WMS Server HowTo

• MapServer WMS Client HowTo

• WMS 1.1.1 specification

• MapServer OGC Web Services Workshop

Enabling Time Support in MapServer

Time Patterns

WMS specifies that the basic format used for TIME requests is based on the ISO 8601:1988(E) “extended” format.
MapServer supports a limited set of patterns that are defined in the ISO 8601 specifications, as well as few other
patterns that are useful but not compliant to ISO 8601. Here is a list of patterns currently supported:

Table 1. Supported Time Patterns

Time Patterns Examples
YYYYMMDD 20041012
YYYY-MM-DDTHH:MM:SSZ 2004-10-12T13:55:20Z
YYYY-MM-DDTHH:MM:SS 2004-10-12T13:55:20
YYYY-MM-DD HH:MM:SS 2004-10-12 13:55:20
YYYY-MM-DDTHH:MM 2004-10-12T13:55
YYYY-MM-DD HH:MM 2004-10-12 13:55
YYYY-MM-DDTHH 2004-10-12T13
YYYY-MM-DD HH 2004-10-12 13
YYYY-MM-DD 2004-10-12
YYYY-MM 2004-10
YYYY 2004
THH:MM:SSZ T13:55:20Z
THH:MM:SS T13:55:20

Setting Up a WMS Layer with Time Support

To have a valid WMS layer with time support, the user has to define the following metadata at the layer level:

• wms_timeextent: (Mandatory) this is used in the capabilities document to return the valid time values for
the layer. The value defined here should be a valid time range. (more on this in ‘Specifying Time Extents’
below)

9.1. OGC Support and Configuration 513

http://www.opengeospatial.org/docs/01-068r2.pdf
http://ms-ogc-workshop.maptools.org/

MapServer Documentation, Release 6.4.1

• wms_timeitem: (Mandatory) this is the name of the field in the DB that contains the time values.

• wms_timedefault: (Optional) this value is used if it is defined and the TIME value is missing in the request.

It is also recommended to set a LAYER FILTER for the time layer to provide a default time also for non-WMS
requests. If the time item is mytime, and the time format is “YYYYMMDD” the following layer filter could be
used:

FILTER ([m y t i m e] = ’2004-01-01 14:10:00’)

Specifying Time Extents Time Extents can be declared with the following syntax for the wms_timeextent meta-
data (see Annex C.3 in the WMS 1.1.1 specification document for a full description):

1. value - a single value. This is not directly supported in MapServer but there is an easy workwound by
specifying the same value as min and max.

2. value1,value2,value3,... - a list of multiple values.

3. min/max/resolution - an interval defined by its lower and upper bounds and its resolution. This is supported
in MapServer (note that the resolution is not supported however).

4. min1/max1/res1,min2/max2/res2,... - a list of multiple intervals.

Example WMS-Server Layer
LAYER

NAME "earthquakes"
METADATA
"wms_title" "Earthquakes"
"wms_timeextent" "2004-01-01/2004-02-01"
"wms_timeitem" "TIME"
"wms_timedefault" "2004-01-01 14:10:00"
"wms_enable_request" "*"

END
TYPE POINT
STATUS ON
DATA "quakes"
FILTER ([T I M E]=’2004-01-01 14:10:00’)
CLASS
..

END
END

GetCapabilities Output

If your layer is set up properly, requesting the capabilities on the server outputs a Dimension element. Here is an
example of a GetCapabilities result for a layer configured for time support:

<Layer queryable="0" opaque="0" cascaded="0">
<Name>earthquakes</Name>
<Title>Earthquakes</Title>
<SRS>EPSG:4326</SRS>
<LatLonBoundingBox minx="-131.02" miny="24.84" maxx="-66.59" maxy="48.39" />
<BoundingBox SRS="EPSG:4326"

minx="-131.02" miny="24.84" maxx="-66.59" maxy="48.39" />
<Dimension name="time" units="ISO8601"/>
<Extent name="time" default="2004-01-01 14:10:00" nearestValue="0">2004-01-01/2004-02-01</Extent>

</Layer>

514 Chapter 9. OGC

http://www.opengeospatial.org/docs/01-068r2.pdf

MapServer Documentation, Release 6.4.1

Supported Time Requests

When sending a request with the TIME parameter, different types of time values can be specified. The following
are supported by MapServer:

• single value: for example: ...&TIME=2004-10-12&...

• multiple values: for example: ...&TIME=2004-10-12, 2004-10-13, 2004-10-14&...

• single range value: for example: ...&TIME=2004-10-12/2004-10-13&...

• multiple range values: for example: ...&TIME=2004-10-12/2004-10-13, 2004-10-15/2004-10-16&...

Interpreting Time Values

When MapServer receives a request with a TIME parameter, it transforms the time requests into valid expressions
that are assigned to the filter parameter on layers that are time-aware. Here are some examples of how different
types of requests are treated (wms_timeitem is defined here as being “time_field”):

• single value (2004-10-12) transforms to (‘[time_field]‘ eq ‘2004-10-12‘)

• multiple values (2004-10-12, 2004-10-13) transform to (‘[time_field]‘ eq ‘2004-10-12‘ OR ‘[time_field]‘
eq ‘2004-10-13‘)

• single range : 2004-10-12/2004-10-13 transforms to ((‘[time_field]‘ ge ‘2004-10-12‘) AND (‘[time_field]‘
le ‘2004-10-13‘))

• multiple ranges (2004-10-12/2004-10-13, 2004-10-15/2004-10-16) transform to ((‘[time_field]‘ ge ‘2004-
10-12‘ AND ‘[time_field]‘ le ‘2004-10-13‘) OR (‘[time_field]‘ ge ‘2004-10-15‘ AND ‘[time_field]‘ le
‘2004-10-16‘))

As shown in the above examples, all fields and values are written inside back tics (‘) - this is the general way of
specifying time expressions inside MapServer.

Exceptions to this rule:

1. When dealing with layers that are not Shapefiles nor through OGR, the expression built has slightly different
syntax. For example, the expression set in the filter for the first example above would be ([time_field] =
‘2004-10-12’).

2. For PostGIS/PostgreSQL layers, the time expression built uses the date_trunc function available in Post-
greSQL. For example, if the user passes a time value of ‘2004-10-12’, the expression set in the filter is
date_trunc(‘day’, time_field) = ‘2004-10-12’. The use of the date_trunc function allows requests to use the
concept of time resolution. In the example above, for a request of ‘2004-10-12’, MapServer determines
that the resolution is “day” by parsing the time string and the result gives all records matching the date
2004-10-12 regardless of the values set for Hours/Minutes/Seconds in the database. For more information
on the date_trunc function, please refer to the PostgreSQL documentation.

Limiting the Time Formats to Use

The user has the ability to define the time format(s) to be used when a request is sent, in metadata at the WEB
level. For example, the user can define the following two formats:

"wms_timeformat" "YYYY-MM-DDTHH, YYYY-MM-DDTHH:MM"

Another example is for a WMS layer that is based on time data that contains precise time values taken every
minute (e.g., 2004-10-12T13:55, 2004-10-12T13:56, 2004-10-12 T13:57, ...). Normally, a valid request on such a
layer would require the time value to be as complete as the data underneath. By defining a set of patterns to use,
MapServer introduces the notion of resolution to be used when doing a query. Using the example above, a request
TIME= 2004-10-12T13:55 would be valid and a request TIME= 2004-10-12T13 would also be valid and would
return all elements taken for that hour.

Note that this functionality is only available on layers based on Shapefiles and OGR.

9.1. OGC Support and Configuration 515

http://www.postgresql.org/docs/8.1/static/functions-datetime.html

MapServer Documentation, Release 6.4.1

Example of WMS-T with PostGIS Tile Index for Raster Imagery

This example currently requires latest 4.9 CVS build!

Here is an example mapfile snippet for a raster WMS-T instance using a PostGIS tileindex. This example shows
US Nexrad Base Reflectivity running at Iowa State U at http://mesonet.agron.iastate.edu/cgi-bin/wms/nexrad/n0r-
t.cgi?SERVICE=WMS&request=GetCapabilities

1 # Tile Index
2 LAYER
3 STATUS ON
4 NAME "time_idx"
5 TYPE POLYGON
6 DATA "the_geom from nexrad_n0r_tindex"
7 METADATA
8 "wms_title" "TIME INDEX"
9 "wms_srs" "EPSG:4326"

10 "wms_extent" "-126 24 -66 50"
11 "wms_timeextent" "2003-08-01/2006-12-31/PT5M"
12 "wms_timeitem" "datetime" #column in postgis table of type timestamp
13 "wms_timedefault" "2006-06-23T03:10:00Z"
14 "wms_enable_request" "*"
15 END
16 CONNECTION "dbname=postgis host=10.10.10.20"
17 CONNECTIONTYPE postgis
18 END
19

20 # raster layer
21 LAYER
22 NAME "nexrad-n0r-wmst"
23 TYPE RASTER
24 STATUS ON
25 DEBUG ON
26 PROJECTION
27 "init=epsg:4326"
28 END
29 METADATA
30 "wms_title" "NEXRAD BASE REF WMS-T"
31 "wms_srs" "EPSG:4326"
32 "wms_extent" "-126 24 -66 50"
33 "wms_timeextent" "2003-08-01/2006-12-31/PT5M"
34 "wms_timeitem" "datetime" #datetime is a column in postgis table of type timestamp
35 "wms_timedefault" "2006-06-23T03:10:00Z"
36 "wms_enable_request" "*"
37 END
38 OFFSITE 0 0 0
39 TILEITEM "filepath" #filepath is a column in postgis table with varchar of the filepath to each image
40 TILEINDEX "time_idx"
41 FILTER ([d a t e t i m e] = "2006-06-23T03:10:00Z")
42 END

You can find more information on Time and tileindexes in the WCS documentation.

Future Additions

• Support for a special time value: “current”.

Limitations and Known Bugs

• Pattern “YYYYMMDD” does not work on Windows. (Bug#970)

516 Chapter 9. OGC

http://mesonet.agron.iastate.edu/cgi-bin/wms/nexrad/n0r-t.cgi?SERVICE=WMS&request=GetCapabilities
http://mesonet.agron.iastate.edu/cgi-bin/wms/nexrad/n0r-t.cgi?SERVICE=WMS&request=GetCapabilities
http://trac.osgeo.org/mapserver/ticket/970

MapServer Documentation, Release 6.4.1

9.1.6 WMS Dimension

Author Yewondwossen Assefa

Contact yassefa at dmsolutions.ca

Last Updated 2013/10/08

Table of Contents

• WMS Dimension
– Introduction
– Enabling Dimension Support in MapServer
– GetCapabilities Output
– Supported Dimension Requests
– Processing Dimension Requests

Introduction

A WMS server can provide support for several type of dimensions such as time, elevation or other types of
dimensions (for example, satellite images in different wavelength bands). For temporal dimension, please refer to
WMS Time Support. This document describes support for the elevation dimension and other type of dimensions

Links to WMS-Related Information

• MapServer WMS Server HowTo

• WMS Time Support HowTo

Enabling Dimension Support in MapServer

Setting Up a WMS Layer with dimension support

To have a valid WMS layer with dimension support, the user has to define the following metadata at the layer
level:

• wms_dimensionlist: (Mandatory) comma separated list of dimension names available for the layer

• wms_[dimensionname]_item: (Mandatory) this is the name of the field in the DB that contains the dimen-
sion values.

• wms_[dimensionname]_units: (Mandatory) Attribute indicating units of dimensional axis. If the dimen-
sional quantity has no units (e.g. band number in a multi-wavelength sensor), use the null string: “”. If
the dimensional quantity has units, unit names should be taken from the Unified Code for Units of Measure
(UCUM) if UCUM has an appropriate entry. When UCUM is used, the mandatory units attribute shall be
an appropriate entry from the UCUM “name” column.

• wms_[dimensionname]_extent: (Mandatory) defines a valid set of values for the dimension

• wms_[dimensionname]_default: (Optional) this value is used if it is defined and the dimension value is
missing in the request.

Specifying Dimension Extents Dimension Extents can be declared with the following syntax for the
wms_[dimensionname]_extent metadata (see Annex C.3 in the WMS 1.1.1 specification document for a full de-
scription):

1. value - a single value.

2. value1,value2,value3,... - a list of multiple values.

9.1. OGC Support and Configuration 517

http://www.opengeospatial.org/docs/01-068r2.pdf

MapServer Documentation, Release 6.4.1

3. min/max/resolution - an interval defined by its lower and upper bounds and its resolution. This is supported
in MapServer (note that the resolution is not supported however).

4. min1/max1/res1,min2/max2/res2,... - a list of multiple intervals.

Example WMS-Server Layer
LAYER

NAME "lakes_elev"
METADATA
"wms_title" "Lakes"
"wms_description" "Lakes"
"wms_dimensionlist" "elevation, text_dimension"
"wms_elevation_item" "ELEV"
"wms_elevation_extent" "500, 490, 480"
"wms_elevation_units" "meters"
"wms_elevation_default" "500"
"wms_text_dimension_item" "text_dimen"
"wms_text_dimension_extent" "first, second, third"
"wms_text_dimension_units" "my_units"
"wms_enable_request" "*"

END
TYPE POLYGON
..

END

GetCapabilities Output

If your layer is set up properly, requesting the capabilities on the server outputs one or several Dimension elements.
Here is an example of a GetCapabilities result for a layer configured for two dimensions (wms 1.3.0):

<Layer queryable="0" opaque="0" cascaded="0">
<Name>lakes_elev</Name>
<Title>Lakes</Title>
<CRS>EPSG:4326</CRS>
<EX_GeographicBoundingBox>
<westBoundLongitude>0.000178263</westBoundLongitude>
<eastBoundLongitude>0.0034202</eastBoundLongitude>
<southBoundLatitude>-0.002134</southBoundLatitude>
<northBoundLatitude>0.000313775</northBoundLatitude>
<BoundingBox CRS="EPSG:4326" minx="-0.002134" miny="0.000178263" maxx="0.000313775" maxy="0.0034202" />
<Dimension name="elevation" units="meters" default="500" multipleValues="1" nearestValue="0">500, 490, 480</Dimension>
<Dimension name="text_dimension" units="my_units" multipleValues="1" nearestValue="0">first, second, third</Dimension>

</Layer>

Supported Dimension Requests

A request parameter name is constructed by concatenating the prefix “dim_” with the sample dimension Name
(the value of the name attribute of the corresponding <Dimension> and <Extent> elements in the Capabilities
XML). The resulting “dim_name” is case-insensitive. The use of the “dim_” prefix is to avoid clashes between
server-defined dimension names and current or future OGC Web Service specifications. (Time and Elevation,
being predefined, do not use the prefix.) (section C.4.2)

• single value: for example: ...&elevation=500&...

• multiple values: for example: ...&dim_text_dimension=first,second&...

• single range value: for example: ...&elevation=480/490&...

• multiple range values: for example: ...&elevation=480/490,490/500&...

518 Chapter 9. OGC

MapServer Documentation, Release 6.4.1

Processing Dimension Requests

When MapServer process a valid dimension wms parameter, It will process it into expressions and set it on the
LAYER FILTER object. If there was already a Logical “MapServer expressions”, It will be concatenated with it.

For example a request such as &elevation=490/500&... on a MapServer layer (with an empty FILTER) would give
.. code-block:: mapfile

FILTER (([ELEV] >= 490 AND [ELEV] <= 500))

For example a request such as &elevation=600&... on a postgis layer with an existing FILTER would give ..
code-block:: guess

• FILTER (elev > 500) #before request

• FILTER ((elev > 500) and (((ELEV = 600)))) #after request

9.1.7 Map Context

Author Jeff McKenna

Contact jmckenna at gatewaygeomatics.com

Last Updated 2010-10-07

Contents

• Map Context
– Introduction
– Implementing a Web Map Context

Introduction

The term ‘map context’ comes from the Open Geospatial Constortium’s (OGC) Web Map Context Specification
v1.0.0, which coincides with the OGC Web Map Server Specification (WMS) v1.1.1. A map context is a XML
document that describes the appearance of layers from one or more WMS servers, and can be transferred be-
tween clients while maintaining startup views, the state of the view (and its layers), and storing additional layer
information.

Support for OGC Web Map Context was added to MapServer in version 3.7/4.0. This allows client applications to
load and save a map configuration in a standard XML format. MapServer can read context documents of versions
0.1.2, 0.1.4, 0.1.7, 1.0.0, 1.1.0 and can export contents in versions 0.1.4, 0.1.7, 1.0.0, 1.1.0. Web Map Context
1.1.0 support was added to MapServer 4.10

This document assumes that you are already familiar with certain aspects of MapServer:

• MapServer application development and setting up mapfiles.

• Familiarity with the WMS spec would be an asset. Please see the following section for links to associated
sources.

Links to WMS / Map Context Related Information

• MapServer WMS Client HowTo

• Open Geospatial Consortium (OGC) home page

• WMS 1.1.1 specification

• Map Context 1.0.0 specification

• MapServer OGC Web Services Workshop

9.1. OGC Support and Configuration 519

http://www.opengeospatial.org/docs/03-036r2.pdf
http://www.opengeospatial.org/docs/03-036r2.pdf
http://www.opengeospatial.org/docs/01-068r2.pdf
http://www.opengeospatial.org/
http://www.opengeospatial.org/docs/01-068r2.pdf
http://www.opengeospatial.org/docs/03-036r2.pdf
http://ms-ogc-workshop.maptools.org/

MapServer Documentation, Release 6.4.1

Implementing a Web Map Context

Special Build Considerations

Map Context support requires PROJ4, GDAL/OGR and PHP support libraries.

Build/install the above libraries on your system and then build MapServer with the ‘–with-wmsclient –with-proj
–with-ogr –with-gdal –with-php’ configure options. Also make sure that your build uses the USE_WMS_LYR and
USE_OGR flags. For more details on MapServer compilation see the appropriate HowTo: Unix / Windows

Windows users can use MS4W, which is ready for Map Context use.

Map Context Mapfile

A map context document can ONLY contain WMS layers (e.g. CONNECTIONTYPE WMS). Please refer to the
MapServer WMS Client HowTo for more information on declaring WMS layers.

MapFile Metadata The following mapfile metadata are used by MapServer to handle map context information:

(Note that some parameters have width, height, format, and href, and some only have format and href. This is
because width and height are only used for images and parameters that do not have them are text or html. For
consistency with the spec MapServer supports height and width for all parameters, but they should only be used
for images)

Web Object Metadata

• ows_schemas_location : Location of XML schema document. Default is http://schemas.opengis.net. See
http://ogc.dmsolutions.ca for an example of a valid schema tree.

• wms_abstract : A blurb of text providing more information about the WMS server.

• wms_address : If provided must also then provide wms_addresstype, wms_city, wms_stateorprovince,
wms_postcode, and wms_country)

• wms_addresstype : If provided must also then provide wms_address, wms_city, wms_stateorprovince,
wms_postcode, and wms_country)

• wms_city : If provided must also then provide wms_address, wms_addresstype, wms_stateorprovince,
wms_postcode, and wms_country)

• wms_contactelectronicmailaddress : contact Email address.

• wms_contactfacsimiletelephone : contact facsimile telephone number.

• wms_contactorganization :

• wms_contactperson :

• wms_contactposition :

• wms_contactvoicetelephone : contact voice telephone number.

• wms_context_fid : the feature id of the context. Set to 0 when saving if not specified.

• wms_context_version : the version of the map context specification.

• wms_country : If provided must also then provide wms_address, wms_city, wms_stateorprovince,
wms_postcode, and wms_addresstype.

• wms_descriptionurl_format : Format of the webpage which contains relevant information to the view.

• wms_descriptionurl_href : Reference to a webpage which contains relevant information to the view.

• wms_keywordlist : A comma-separated list of keywords or keyword phrases to help catalog searching.

• wms_logourl_width : Width of the context logo.

520 Chapter 9. OGC

http://www.maptools.org/ms4w/
http://schemas.opengis.net
http://ogc.dmsolutions.ca

MapServer Documentation, Release 6.4.1

• wms_logourl_height : Height of the context logo.

• wms_logourl_format : Format of the context logo.

• wms_logourl_href : Location of the context logo.

• wms_postcode : If provided must also then provide wms_address, wms_city, wms_stateorprovince,
wms_addresstype, and wms_country.

• wms_stateorprovince : If provided must also then provide wms_address, wms_city, wms_addresstype,
wms_postcode, and wms_country.

• wms_title : (Required) A human-readable name for this Layer (this metadata does not exist beyond version
0.1.4)

Layer Object Metadata

• wms_abstract : A blurb of text providing more information about the WMS server.

• wms_dataurl_href : Link to an online resource where data corresponding to the layer can be found.

• wms_dataurl_format : Format of the online resource where data corresponding to the layer can be found.

• wms_dimension : Current dimension used. New in version 4.10.

• wms_dimensionlist : List of available dimensions. New in version 4.10.

• wms_dimension_%s_default : Default dimension value. MapServer will check for wms_time and
wms_timedefault metadata when this is not specified. %s = the name of the dimension. New in version
4.10.

• wms_dimension_%s_multiplevalues : Multiple dimension values. %s = the name of the dimension. New in
version 4.10.

• wms_dimension_%s_nearestvalue : Nearest dimension value. The default value is 0. %s = the name of the
dimension. New in version 4.10.

• wms_dimension_%s_units : Units for the dimension values. The default value is ISO8601. %s = the name
of the dimension. New in version 4.10.

• wms_dimension_%s_unitsymbol : Symbol for dimension units. The default value is t. %s = the name of the
dimension. New in version 4.10.

• wms_dimension_%s_uservalue : User dimension value. MapServer will check for wms_time and
wms_timedefault metadata when this is not specified. %s = the name of the dimension. New in version
4.10.

• wms_format : Current format used.

• wms_formatlist : List of available formats for this layer.

• wms_metadataurl_href : Link to an online resource where descriptive metadata of the corresponding layer
can be found.

• wms_metadataurl_format : Format of the online resource where descriptive metadata of the corresponding
layer can be found.

• wms_name : Name of the WMS layer on the server.

• wms_onlineresource : Required URL to access the server.

• wms_server_version : The version of the web map server specification.

• wms_server_title : The title of the web map server.

• wms_stylelist : Current style used.

• wms_style_%s_legendurl_width : Width of an image describing the style. %s = the name of the style.

• wms_style_%s_legendurl_height : Height of an image describing the style. %s = the name of the style.

9.1. OGC Support and Configuration 521

MapServer Documentation, Release 6.4.1

• wms_style_%s_legendurl_format : Format of an image describing the style. %s = the name of the style.

• wms_style_%s_legendurl_href : Location of an image describing the style. %s = the name of the style.

• wms_style_%s_sld : URL to the SLD document of this style. %s = the name of the style.

• wms_style_%s_sld_body : SLD_BODY document of this style. %s = the name of the style.

• wms_style_%s_title : Title of the layer. %s = the name of the style.

• wms_title : (Required) A human-readable name for this Layer.

Sample Map Context Mapfile
1 MAP
2

3 NAME "mapcontext"
4 STATUS ON
5 SIZE 400 300
6 SYMBOLSET "../etc/symbols.txt"
7 EXTENT -180 -90 180 90
8 UNITS DD
9 SHAPEPATH "../data"

10 IMAGECOLOR 255 255 255
11 FONTSET "../etc/fonts.txt"
12

13

14 #
15 # Start of web interface definition
16 #
17 WEB
18 IMAGEPATH "/ms4w/tmp/ms_tmp/"
19 IMAGEURL "/ms_tmp/"
20 METADATA
21 "wms_abstract" "Demo for map context document. Blah blah..."
22 "wms_title" "Map Context demo" #### REQUIRED
23 END
24 END
25

26 PROJECTION
27 "init=epsg:4326"
28 END
29

30 #
31 # Start of layer definitions
32 #
33

34 LAYER
35 NAME "country_bounds"
36 TYPE RASTER
37 STATUS ON
38 CONNECTION "http://demo.mapserver.org/cgi-bin/wms?"
39 CONNECTIONTYPE WMS
40 METADATA
41 "wms_title" "World Country Boundaries" #### REQUIRED
42 "wms_onlineresource" "http://demo.mapserver.org/cgi-bin/wms?" #### REQUIRED
43 "wms_srs" "EPSG:4326"
44 "wms_name" "country_bounds"
45 "wms_server_version" "1.1.1"
46 "wms_format" "image/gif"
47 "wms_dimensionlist" "time,width"
48 "wms_dimension" "time"
49 "wms_dimension_time_unitsymbol" "t"
50 "wms_dimension_time_units" "ISO8601"
51 "wms_dimension_time_uservalue" "1310"

522 Chapter 9. OGC

MapServer Documentation, Release 6.4.1

52 "wms_dimension_time_default" "1310"
53 "wms_dimension_time_multiplevalues" "1310,1410"
54 "wms_dimension_time_nearestvalue" "0"
55 END
56 END
57

58 END # Map File

Testing Map Context Support

1. The first thing to do is to save your mapfile using the saveMapContext function available from the
PHP/MapScript library. An example script is shown below:

<?php
if (!extension_loaded("MapScript")) dl(MODULE);
$oMap = ms_newMapObj("mapcontext.map");
$oMap->saveMapContext("mapcontext_output.xml");

?>

2. Scan the XML output to look for <!– WARNING: ... –> comments. Then make the necessary changes to
fix every warning that you encounter. At the end of this you should have a mapfile compatible with the Map
Context specification.

3. Now you can load your new Map Context document into an application using the loadMapContext function
from the PHP/MapScript library.

Sample Map Context Document

The following is a sample Map Context document:

1 <?xml version=’1.0’ encoding="ISO-8859-1" standalone="no" ?>
2 <ViewContext version="1.1.0" id="mapcontext" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:ogc="http://www.opengis.net/ogc" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.opengis.net/context" xmlns:sld="http://www.opengis.net/sld" xsi:schemaLocation="http://www.opengis.net/context http://schemas.opengis.net/context/1.1.0/context.xsd">
3 <General>
4 <Window width="400" height="300"/>
5 <!-- Bounding box corners and spatial reference system -->
6 <BoundingBox SRS="EPSG:4326" minx="-180.000000" miny="-90.000000" maxx="180.000000" maxy="90.000000"/>
7 <!-- Title of Context -->
8 <Title>Map Context demo</Title>
9 <Abstract>Demo for map context document. Blah blah...</Abstract>

10 <ContactInformation>
11 </ContactInformation>
12 </General>
13 <LayerList>
14 <Layer queryable="0" hidden="0">
15 <Server service="OGC:WMS" version="1.1.1" title="World Country Boundaries">
16 <OnlineResource xlink:type="simple" xlink:href="http://demo.mapserver.org/cgi-bin/wms?"/>
17 </Server>
18 <Name>country_bounds</Name>
19 <Title>World Country Boundaries</Title>
20 <SRS>EPSG:4326</SRS>
21 <FormatList>
22 <Format current="1">image/gif</Format>
23 </FormatList>
24 <DimensionList>
25 <Dimension name="time" units="ISO8601" unitSymbol="t" userValue="1310" default="1310" multipleValues="1310,1410" nearestValue="0" current="1"/>
26 </DimensionList>
27 </Layer>
28 </LayerList>
29 </ViewContext>

9.1. OGC Support and Configuration 523

MapServer Documentation, Release 6.4.1

Map Context Support Through CGI

MapServer CGI allows you to load a map context through the use of a CONTEXT parameter, and you can point
this parameter to a locally stored context file or a context file accessible through a URL. For more information on
MapServer CGI see the CGI Reference.

Support for Local Map Context Files There is a new cgi parameter called CONTEXT that is used to specify a
local context file. The user can then use MapServer to request a map using the following syntax:

http://localhost/mapserver.cgi?MODE=map&MAP=/path/to/mapfile.map&CONTEXT=
/path/to/contextfile.xml&LAYERS=layer_name1 layers_name2

Note: All layers created from a context file have their status set to ON. To be able to display layers, the user
needs to add the LAYERS argument in the URL.

Support for Context Files Accessed Through a URL The syntax of using a web accessible context file would
be similar to accessing a local context file:

http://localhost/mapserver.cgi?MODE=map&MAP=/path/to/mapfile.map&CONTEXT=
http://URL/path/to/contextfile.xml&LAYERS=layers_name1 layer_name2

Due to security concerns loading a file from a URL is disabled by default. To enable this functionality, the
user needs to set a CONFIG parameter called CGI_CONTEXT_URL in the default mapfile that will allow this
functionality. Here is an example of a map file with the CONFIG parameter:

Start of map file
NAME "map-context"
STATUS ON
SIZE 400 300
EXTENT -2200000 -712631 3072800 3840000
UNITS METERS
IMAGECOLOR 255 255 255
IMAGETYPE png
CONFIG "CGI_CONTEXT_URL" "1"
...
WEB

...
END
LAYER

...
END

END

Default Mapfile To smoothly run a MapServer CGI application with a Map Context, the application admin-
istrator needs to provide a default mapfile with at least the basic required parameters that will be used with the
Context file. This default mapfile can contain as little information as the imagepath and imageurl or contain a list
of layers. Information coming from the context (e.g.: layers, width, height, ...) would either be appended or will
replace values found in the mapfile.

Here is an example of a default map file containing the minimum required parameters:

1 NAME "CGI-CONTEXT-DEMO"
2 STATUS ON
3 SIZE 400 300
4 EXTENT -2200000 -712631 3072800 3840000
5 UNITS METERS
6 IMAGECOLOR 255 255 255

524 Chapter 9. OGC

MapServer Documentation, Release 6.4.1

7 IMAGETYPE png
8 #
9 # Start of web interface definition

10 #
11 WEB
12 MINSCALE 2000000
13 MAXSCALE 50000000
14 #
15 # On Windows systems, /tmp and /tmp/ms_tmp/ should be created at the root
16 # of the drive where the .MAP file resides.
17 #
18 IMAGEPATH "/ms4w/tmp/ms_tmp/"
19 IMAGEURL "/ms_tmp/"
20 END
21 END # Map File

Map Context Support Through WMS

MapServer can also output your WMS layers as a Context document. MapServer extends the WMS standard by
adding a request=GetContext operation that allows you to retrieve a context for a WMS-based mapfile with a call
like:

http://localhost/mapserver.cgi?map=/path/to/mapfile.map&service=WMS&
request=GetContext&version=1.1.0

The VERSION parameter controls the version of context document to return.

GetContext is disabled by default because it could be considered a security issue: it could publicly expose the
URLs of WMS layers used (cascaded) by a mapfile.

To enable it, set the “wms_getcontext_enabled” web metadata to “1” in your WMS server’s mapfile.

9.1.8 WFS Server

Author Jean-François Doyon

Contact jdoyon at nrcan.gc.ca

Author Jeff McKenna

Contact jmckenna at gatewaygeomatics.com

Last Updated 2013-05-16

Contents

• WFS Server
– Introduction
– Configuring your MapFile to Serve WFS layers
– Reference Section
– To-do Items and Known Limitations

Introduction

A WFS (Web Feature Service) publishes feature-level geospatial data to the web. This means that instead of
returning an image, as MapServer has traditionally done, the client now obtains fine-grained information about
specific geospatial features of the underlying data, at both the geometry AND attribute levels. As with other
OGC specifications, this interface uses XML over HTTP as it’s delivery mechanism, and, more precisely, GML
(Geography Markup Language), which is a subset of XML.

9.1. OGC Support and Configuration 525

MapServer Documentation, Release 6.4.1

WFS-Related Information

Here are some WFS related links (including a newly added OGC services workshop with MapServer). Since
these are highly detailed technical specifications, there is no need to read through them in their entirety to get a
MapServer WFS up and running. It is still recommended however to read them over and get familiar with the
basics of each of them, in order to understand how it all works:

• The OGC Web Feature Service Implementation Specification.

• The Geography Markup Language Implementation Specification.

• MapServer OGC Web Services Workshop package.

Working knowledge of MapServer is of course also required.

Software Requirements

In order to enable MapServer to serve WFS, it MUST be compiled against certain librairies:

• PROJ.4: The reprojection library. Version 4.4.3 or greater is required.

• GDAL/OGR: I/O support libraries. Version 1.1.8 or greater is required.

Please see the MapServer UNIX Compilation and Installation HowTo for detailed instructions on compiling
mapserver with support for these libraries and features. For Windows users, the MS4W installer comes ready
to serve both WFS and WMS.

Versions of GML Supported

MapServer can output both GML2 and GML3. By default MapServer serves GML2. You can test this by adding
an ‘OUTPUTFORMAT’ parameter to a GetFeature request, such as:

• GML2 request output

• GML3 request output

For a detailed discussion on the versions supported, see bug#884.

Configuring your MapFile to Serve WFS layers

Much as in the WMS support, WFS publishing is enabled by adding certain magic METADATA keyword/value
pairs to a MapFile.

MapServer will serve and include in its WFS capabilities only the layers that meet the following conditions:

• Data source is of vector type (Shapefile, OGR, PostGIS, SDE, SDO, ...)

• LAYER NAME must be set. Layer names must start with a letter when setting up a WFS server (layer
names should not start with a digit or have spaces in them).

• LAYER TYPE is one of: LINE, POINT, POLYGON

• The “wfs_onlineresource” metadata:

The wfs_onlineresource metadata is set in the map’s web object metadata and specifies the URL that should
be used to access your server. This is required for the GetCapabilities output. If wfs_onlineresource is not
provided then MapServer will try to provide a default one using the script name and hostname, but you
shouldn’t count on that too much. It is strongly recommended that you provide the wfs_onlineresource
metadata.

See section 12.3.3 of the WFS 1.0.0 specification for the whole story about the online resource URL. Basi-
cally, what you need is a complete HTTP URL including the http:// prefix, hostname, script name, poten-
tially a “map=” parameter, and and terminated by ”?” or “&”.

526 Chapter 9. OGC

https://portal.opengeospatial.org/files/?artifact_id=7176
https://portal.opengeospatial.org/files/?artifact_id=7174
http://ms-ogc-workshop.maptools.org/
http://www.maptools.org/ms4w/
http://demo.mapserver.org/cgi-bin/wfs?SERVICE=WFS&VERSION=1.0.0&REQUEST=getfeature&TYPENAME=continents&MAXFEATURES=1&OUTPUTFORMAT=gml2
http://demo.mapserver.org/cgi-bin/wfs?SERVICE=WFS&VERSION=1.0.0&REQUEST=getfeature&TYPENAME=continents&MAXFEATURES=1&OUTPUTFORMAT=gml3
http://trac.osgeo.org/mapserver/ticket/884
https://portal.opengeospatial.org/files/?artifact_id=7176
http://

MapServer Documentation, Release 6.4.1

Here is a valid online resource URL:

http://my.host.com/cgi-bin/mapserv?map=mywfs.map&

By creating a wrapper script on the server it is possible to hide the “map=” parameter from the URL and
then your server’s online resource URL could be something like:

http://my.host.com/cgi-bin/mywfs?

This is covered in more detail in the “More About the Online Resource URL” section of the WMS Server
document.

• The “wfs_enable_request” metadata (see below).

Example WFS Server Mapfile

The following is an example of a bare minimum WFS Server mapfile. Note the comments for the required
parameters.

MAP
NAME "WFS_server"
STATUS ON
SIZE 400 300
SYMBOLSET "../etc/symbols.txt"
EXTENT -180 -90 180 90
UNITS DD
SHAPEPATH "../data"
IMAGECOLOR 255 255 255
FONTSET "../etc/fonts.txt"

#
Start of web interface definition
#
WEB
IMAGEPATH "/ms4w/tmp/ms_tmp/"
IMAGEURL "/ms_tmp/"
METADATA

"wfs_title" "WFS Demo Server for MapServer" ## REQUIRED
"wfs_onlineresource" "http://demo.mapserver.org/cgi-bin/wfs?" ## Recommended
"wfs_srs" "EPSG:4326 EPSG:4269 EPSG:3978 EPSG:3857" ## Recommended
"wfs_abstract" "This text describes my WFS service." ## Recommended
"wfs_enable_request" "*" # necessary

END
END

PROJECTION
"init=epsg:4326"

END

#
Start of layer definitions
#

##################
World Continents
##################
LAYER
NAME "continents"
METADATA

"wfs_title" "World continents" ##REQUIRED
"wfs_srs" "EPSG:4326" ## REQUIRED
"gml_include_items" "all" ## Optional (serves all attributes for layer)

9.1. OGC Support and Configuration 527

MapServer Documentation, Release 6.4.1

"gml_featureid" "ID" ## REQUIRED
"wfs_enable_request" "*"

END
TYPE POLYGON
STATUS ON
DATA ’shapefile/countries_area’
PROJECTION

"init=epsg:4326"
END
CLASS

NAME ’World Continents’
STYLE

COLOR 255 128 128
OUTLINECOLOR 96 96 96

END
END

END #layer

END #mapfile

Rules for Handling SRS in MapServer WFS

The OGC WFS 1.0 specification doesn’t allow a layer (feature type) to be advertised in more than one SRS. Also,
there is no default SRS that applies to all layers by default. However, it is possible to have every layer in a WFS
server advertised in a different SRS.

The OGC WFS 1.1 specification allows more than one SRS to be advertised, and one of the SRSs will be advertised
as the default SRS (the default SRS will be the first in the list specified in the METADATA wfs_srs / ows_srs).

Here is how MapServer decides the SRS to advertise and use for each layer in your WFS:

• If a top-level map SRS is defined then this SRS is used and applies to all layers (feature types) in this WFS.
In this case the SRS of individual layers is simply ignored even if it is set.

• If no top-level map SRS is defined, then each layer is advertised in its own SRS in the capabilities.

Note: By “SRS is defined”, we mean either the presence of a PROJECTION object defined using an EPSG code,
or of a wfs_srs / ows_srs metadata at this level.

Note: At the map top-level the wfs_srs / ows_srs metadata value takes precedence over the contents of the
PROJECTION block.

At the layer level, if both the wfs_srs / ows_srs metadata and the PROJECTION object are set to different values,
then the wfs_srs / ows_srs metadata defines the projection to use in advertising this layer (assuming there is no
top-level map SRS), and the PROJECTION value is assumed to be the projection of the data. So this means that
the data would be reprojected from the PROJECTION SRS to the one defined in the wfs_srs / ows_srs metadata
before being served to WFS clients.

Confusing? As a rule of thumb, simply set the wfs_srs / ows_srs at the map level (in web metadata) and never set
the wfs_srs / ows_srs metadata at the layer level and things will work fine for most cases.

Axis Orientation in WFS 1.1

The axis order in previous versions of the WFS specifications was to always use easting (x or lon) and northing
(y or lat). WMS 1.1 specifies that, depending on the particular SRS, the x axis may or may not be oriented West-
to-East, and the y axis may or may not be oriented South-to-North. The WFS portrayal operation shall account
for axis order. This affects some of the EPSG codes that were commonly used such as ESPG:4326. The current

528 Chapter 9. OGC

MapServer Documentation, Release 6.4.1

implementation makes sure that coordinates returned to the server for the GetFeature request reflect the inverse
axis orders for EPSG codes between 4000 and 5000.

Test Your WFS Server

Validate the Capabilities Metadata OK, now that we’ve got a mapfile, we have to check the XML capabilities
returned by our server to make sure nothing is missing.

Using a web browser, access your server’s online resource URL to which you add the parameter “RE-
QUEST=GetCapabilities” to the end, e.g.

http://demo.mapserver.org/cgi-bin/wfs?SERVICE=WFS&VERSION=1.0.0&REQUEST=GetCapabilities

If everything went well, you should have a complete XML capabilities document. Search it for the word “WARN-
ING”... MapServer inserts XML comments starting with “<!–WARNING: ” in the XML output if it detects
missing mapfile parameters or metadata items. If you notice any warning in your XML output then you have to fix
all of them before you can register your server with a WFS client, otherwise things are likely not going to work.

Note: The SERVICE parameter is required for all WFS requests. When a request happens, it is passed through
WMS, WFS, and WCS in MapServer (in that order) until one of the services respond to it.

Test With a GetFeature Request OK, now that we know that our server can produce a valid
XML GetCapabilities response we should test the GetFeature request. Simply adding “SER-
VICE=WFS&VERSION=1.0.0&REQUEST=GetFeature&TYPENAME=yourlayername1,yourlayername2”
to your server’s URL should return the GML associated with those layers.

http://demo.mapserver.org/cgi-bin/wfs?SERVICE=WFS&VERSION=1.0.0&REQUEST=getfeature&TYPENAME=continents&MAXFEATURES=100

Test with a Real Client If you have access to a WFS client, then register your new server’s online resource with
it and you should be off and running.

If you don’t have your own WFS client installed already, here are a few pointers:

• MapServer itself can be used as a WFS client, see the WFS Client HowTo.

• Quantum GIS is a full GIS package which includes WFS client support. (recommended)

• Deegree provides a WFS client.

• uDig can add layers from WMS/WFS servers.

Support for GET and POST Requests Starting from version 4.2 MapServer supports XML-encoded POST
requests and GET requests. The default in MapServer is POST.

Support for Filter Encoding Starting from version 4.2 MapServer supports Filter Encoding (FE) in WFS Get-
Feature requests. For more information on the server side of Filter Encoding see the Filter Encoding HowTo.

MapServer WFS Extensions

STARTINDEX In addition to the MAXFEATURES=n keyword, MapServer also supports a STARTINDEX=n
keyword in WFS GetFeature requests. This can be used to skip some features in the result set and in
combination with MAXFEATURES provides for the ability to use WFS GetFeature to page through results.
Note that STARTINDEX=0 means start with the first feature, skipping none.

OUTPUTFORMAT Normally OUTPUTFORMAT should be GML2 for WFS 1.0 and either “text/xml; sub-
type=gml/2.1.2” or “text/xml; subtype=gml/3.1.1” for WFS 1.1. However as an extension to the specifica-
tion, it is also possible to configure MapServer for a variety of other feature output formats. This is discussed
in some detail in the OGR Output document.

9.1. OGC Support and Configuration 529

http://demo.mapserver.org/cgi-bin/wfs?SERVICE=WFS&VERSION=1.0.0&REQUEST=GetCapabilities
http://demo.mapserver.org/cgi-bin/wfs?SERVICE=WFS&VERSION=1.0.0&REQUEST=getfeature&TYPENAME=continents&MAXFEATURES=100
http://www.qgis.org/
http://www.deegree.org/
http://udig.refractions.net/

MapServer Documentation, Release 6.4.1

Reference Section

The following metadata are available in the setup of the WFS Server mapfile:

Note: Each of the metadata below can also be referred to as ‘ows_*’ instead of ‘wfs_*’. MapServer tries
the ‘wfs_*’ metadata first, and if not found it tries the corresponding ‘ows_*’ name. Using this reduces the
amount of duplication in mapfiles that support multiple OGC interfaces since “ows_*” metadata can be used
almost everywhere for common metadata items shared by multiple OGC interfaces.

Web Object Metadata

ows_allowed_ip_list (or wfs_allowed_ip_list)

• Description: (Optional) A list of IP addresses that will be allowed access to the service.

Example:

METADATA
"ows_allowed_ip_list" "123.45.67.89 11.22.33.44"

END

ows_denied_ip_list (or wfs_denied_ip_list)

• Description: (Optional) A list of IP addresses that will be denied access to the service.

Example:

METADATA
"ows_denied_ip_list" "123.45.67.89 11.22.33.44"

END

ows_schemas_location (Optional) (Note the name ows_schemas_location and not wfs/_... this is because all
OGC Web Services (OWS) use the same metadata) Root of the web tree where the family of OGC WFS
XMLSchema files are located. This must be a valid URL where the actual .xsd files are located if you
want your WFS output to validate in a validating XML parser. Default is http://schemas.opengis.net. See
http://ogc.dmsolutions.ca for an example of a valid schema tree.

ows_updatesequence (Optional) The updateSequence parameter can be used for maintaining the consistency of
a client cache of the contents of a service metadata document. The parameter value can be an integer, a
timestamp in [ISO 8601:2000] format, or any other number or string.

wfs_abstract (Optional) Descriptive narrative for more information about the server.

WFS TAG Name: Abstract (WFS 1.0.0, sect. 12.3.3)

wfs_accessconstraints (Optional) Text describing any access constraints imposed by the service provider on the
WFS or data retrieved from this service.

WFS TAG Name: Accessconstraints (WFS 1.0.0, sect. 12.3.3)

wfs_enable_request (or ows_enable_request) Space separated list of requests to enable. The default is none.
The following requests can be enabled: GetCapabilities, GetFeature and DescribeFeatureType. A ”!” in
front of a request will disable the request. “*” enables all requests.

Examples:

To enable only GetCapabilities and GetFeature:

"wfs_enable_request" "GetCapabilities GetFeature"

To enable all requests except GetCapabilities

"wfs_enable_request" "* !GetCapabilities"

530 Chapter 9. OGC

http://schemas.opengis.net
http://ogc.dmsolutions.ca

MapServer Documentation, Release 6.4.1

wfs_encoding (Optional) XML encoding for all XML documents returned by the server. The default is ISO-
8859-1.

wfs_feature_collection Replaces the default name of the feature-containing element (<msFeatureCollection>)
with a user-defined value.

wfs_fees (Optional) Any fees imposed by the service provider for usage of this service or for data retrieved from
the WFS.

WFS TAG Name: Fees (WFS 1.0.0, sect. 12.3.3)

wfs_getcapabilities_version (Optional) Default version to use for GetCapabilities requests that do not have a
version parameter. If not set, the latest supported version will be returned.

wfs_keywordlist (Optional) List of words to aid catalog searching.

WFS TAG Name: Keyword (WFS 1.0.0, sect. 12.3.3)

wfs_maxfeatures (Optional) The number of elements to be returned by the WFS server. This has priority over
the ‘maxfeatures’ parameter passed by the user. If the not set the current behaviour is not changed. Sensible
values are integers greater than 0. If 0 is specified, no features will be returned.

wfs_namespace_prefix (Optional) User defined namespace prefix to be used in the response of a WFS GetFea-
ture request. E.g. “wfs_namespace_prefix” “someprefix”.

wfs_namespace_uri (Optional) User defined namespace URI to be used in the response of a WFS GetFeature
request. e.g. “wfs_namespace_uri” “http://somehost/someurl”.

wfs_onlineresource (Recommended) The URL prefix for HTTP GET requests.

WFS TAG Name: Onlineresource (WFS 1.0.0, sect. 12.3.3)

wfs_service_onlineresource (Optional) Top-level onlineresource URL. MapServer uses the onlineresource meta-
data (if provided) in the following order:

1. wfs_service_onlineresource

2. ows_service_onlineresource

3. wfs_onlineresource (or automatically generated URL, see the onlineresource section of this document)

wfs_srs (Recommended) The SRS to use for all layers in this server. (e.g. EPSG:4326) See the note about the
SRS rules in WFS.

wfs_title (Required) Human readable title to identify server.

WFS TAG Name: Title (WFS 1.0.0, sect. 12.3.3)

Layer Object

gml_constants (Optional) A comma delimited list of constants. This option allows you to define data that are
not part of the underlying dataset and add them to the GML output. Many application schemas require
constants of one form or another. To specify the value and type of the constants use gml_[item name]_value
and gml_[item name]_type.

"gml_constants" "const1,const2"
"gml_const1_type" "Character"
"gml_const1_value" "abc"
"gml_const2_type" "Integer"
"gml_const2_value" "999"

gml_exclude_items (Optional) A comma delimited list of items to exclude. As of MapServer 4.6, you can
control how many attributes (fields) you expose for your data layer with metadata. The previous behaviour
was simply to expose all attributes all of the time. The default is to expose no attributes at all. An example
excluding a specific field would be:

9.1. OGC Support and Configuration 531

http://somehost/someurl

MapServer Documentation, Release 6.4.1

"gml_include_items" "all"
"gml_exclude_items" "Phonenum"

gml_featureid (Required for MapServer 4.10) Field to be used for the ID of the feature in the output GML.
wfs_featureid or ows_featureid can be specified instead.

gml_geometries Provides a name other than the default “msGeometry” for geometry elements. The value is
specified as a string to be used for geometry element names.

gml_[geometry name]_occurances MapServer applies default values of 0 and 1, respectively, to the “minOc-
curs” and “maxOccurs” attributes of geometry elements, as can be seen in the preceding examples. To over-
ride these defaults, a value is assigned to a gml_[geometry name]_occurances layer metadata item, where
again [geometry name] is the string value specified for gml_geometries, and the value is a comma-delimited
pair containing the respective lower and upper bounds.

gml_[geometry name]_type When employing gml_geometries, it is also necessary to specify the geometry type
of the layer. This is accomplished by providing a value for gml_[geometry name]_type, where [geometry
name] is the string value specified for gml_geometries, and a value which is one of:

• point

• multipoint

• line

• multiline

• polygon

• multipolygon

gml_groups (Optional) A comma delimited list of group names for the layer.

gml_[group name]_group (Optional) A comma delimited list of attributes in the group. Here is an example:

"gml_include_items" "all"
"gml_groups" "display"
"gml_display_group" "Name_e,Name_f"

gml_include_items (Optional) A comma delimited list of items to include, or keyword “all”. As of MapServer
4.6, you can control how many attributes (fields) you expose for your data layer with this metadata. The
previous behaviour was simply to expose all attributes all of the time. You can enable full exposure by using
the keyword “all”, such as:

"gml_include_items" "all"

You can specify a list of attributes (fields) for partial exposure, such as:

"gml_include_items" "Name,ID"

The new default behaviour is to expose no attributes at all.

gml_[item name]_alias (Optional) An alias for an attribute’s name. The served GML will refer to this attribute
by the alias. Here is an example:

"gml_province_alias" "prov"

gml_[item name]_precision (Optional) Specifies the precision of the indicated field for formats where this is
significant, such as Shapefiles. Precision is the number of decimal places, and is only needed for “Real”
fields. Currently this is only used for OGR based output formats, not the WFS GML2/GML3 output.

gml_[item name]_type (Optional) Specifies the type of the attribute. Valid values are the OGR data types:
Integer|Real|Character|Date|Boolean. Mapserver translates these to valid GML data types.

gml_[item name]_value Used to specify values for gml_constants.

gml_[item name]_width (Optional) Specifies the width of the indicated field for formats where this is significant,
such as Shapefiles.

532 Chapter 9. OGC

MapServer Documentation, Release 6.4.1

gml_types (Optional) If this field is “auto” then some input feature drivers (ie. OGR, POSTGIS, ORACLESPA-
TIAL and native shapefiles) will automatically populate the type, width and precision metadata for the
layer based on the source file. Currently this is only used for OGR based output formats, not the WFS
GML2/GML3 output.

"gml_types" "auto"

gml_xml_items (Optional) A comma delimited list of items that should not be XML-encoded.

ows_allowed_ip_list Same as ows_allowed_ip_list in the Web Object.

ows_denied_ip_list Same as ows_denied_ip_list in the Web Object.

wfs_abstract Same as wfs_abstract in the Web Object.

wfs_enable_request (or ows_enable_request) Space separated list of requests to enable. The default is none.
The following requests can be enabled: GetCapabilities, GetFeature and DescribeFeatureType. A ”!” in
front of a request will disable the request. “*” enables all requests.

Examples:

To enable only GetCapabilities and GetFeature:

"wfs_enable_request" "GetCapabilities GetFeature"

To enable all requests except GetCapabilities

"wfs_enable_request" "* !GetCapabilities"

wfs_extent (Optional) Used for the layer’s BoundingBox tag for cases where it is impossible (or very inefficient)
for MapServer to probe the data source to figure its extents. The value for this metadata is “minx miny maxx
maxy” separated by spaces, with the values in the layer’s projection units. If wfs_extent is provided then it
has priority and MapServer will NOT try to read the source file’s extents.

wfs_featureid (Required for MapServer 4.10) Field to be used for the ID of the feature in the output GML.
gml_featureid or ows_featureid can be specified instead.

wfs_getfeature_formatlist (Optional) Comma-separted list of formats that should be valid for a GetFeature re-
quest. If defined, only these formats are advertised in the Capabilities document.

wfs_keywordlist Same as wfs_keywordlist in the Web Object.

wfs_metadataurl_format (Optional) The file format of the metadata record. Valid values are “XML”, “SGML”,
or “HTML”. The layer metadata wfs_metadataurl_type and wfs_metadataurl_href must also be specified.
Refer to section 12.3.5 of the WFS 1.0.0 spec.

wfs_metadataurl_href (Optional) The URL to the layer’s metadata. The layer metadata wfs_metadataurl_type
and wfs_metadataurl_format must also be specified. Refer to section 12.3.5 of the WFS 1.0.0 spec.

wfs_metadataurl_type (Optional) The standard to which the metadata complies. Currently only two types are
valid: “TC211” which refers to [ISO 19115], and “FGDC” which refers to [FGDC CSDGM]. The layer
metadata wfs_metadataurl_format and wfs_metadataurl_href must also be specified. Refer to section 12.3.5
of the WFS 1.0.0 spec.

wfs_srs If there is no SRS defined at the top-level in the mapfile then this SRS will be used to advertize this
feature type (layer) in the capabilities. See the note about the SRS rules in WFS.

wfs_title Same as wfs_title in the Web Object.

To-do Items and Known Limitations

• This is just a basic WFS (read-only): transaction requests are not supported and probably never will given
the nature of MapServer. GeoServer or TinyOWS is recommended for those needing WFS-T support.

• WFS spec. seems to require that features of a given feature type must all be of the same geometry type
(point, line, polygon). This works fine for shapefiles, but some data source formats supported by MapServer

9.1. OGC Support and Configuration 533

https://portal.opengeospatial.org/files/?artifact_id=7176
https://portal.opengeospatial.org/files/?artifact_id=7176
https://portal.opengeospatial.org/files/?artifact_id=7176
http://geoserver.org
http://www.tinyows.org

MapServer Documentation, Release 6.4.1

allow mixed geometry types in a single layer and this goes against the WFS spec. Suggestions on how to
handle this are welcome (send suggestions to the mapserver-dev mailing list.

9.1.9 WFS Client

Author Jean-François Doyon

Contact jdoyon at nrcan.gc.ca

Author Jeff McKenna

Contact jmckenna at gatewaygeomatics.com

Last Updated 2010-11-07

Contents

• WFS Client
– Introduction
– Setting up a WFS-client Mapfile
– TODO / Known Limitations

Introduction

MapServer can retrieve and display data from a WFS server. The following document explains how to display
data from a WFS server using MapServer.

A WFS (Web Feature Service) publishes feature-level geospatial data to the web. This means that it is possible
to use this data as a data source to render a map. In effect, this is not unlike having a shapefile accessible over
the web, only it’s not a shapefile, it’s XML-Encoded geospatial data (GML to be exact), including both geometry
AND attribute information.

WFS-Related Information

Although in-depth understanding of WFS and GML is neither necessary nor required in order to implement a
MapServer application that reads remote WFS data, it is recommended to at least get aquainted with the concepts
and basic functionality of both. Here are the official references (including a newly added OGC workshop with
MapServer):

• OGC Web Feature Service Implementation Specification.

• Geography Markup Language Implementation Specification.

• MapServer OGC Web Services Workshop package.

Software Requirements

In order to enable MapServer to serve WFS, it MUST be compiled against certain libraries:

• PROJ.4: The reprojection library. Version 4.4.3 or greater is required.

• GDAL/OGR: I/O support librairies. Version 1.1.8 or greater is required.

• LibCURL: Used to help MapServer act as an HTTP client. Version 7.10 or greater is required.

Please see the MapServer UNIX Compilation and Installation HOWTO for detailed instructions on compiling
mapserver with support for these librairies and features. For Windows users, look on the MapServer website to
see if there are any binaries available that meet these requirements.

534 Chapter 9. OGC

https://portal.opengeospatial.org/files/?artifact_id=7176
https://portal.opengeospatial.org/files/?artifact_id=7174
http://ms-ogc-workshop.maptools.org/

MapServer Documentation, Release 6.4.1

Setting up a WFS-client Mapfile

Storing Temporary Files

You must set the IMAGEPATH parameter in your mapfile since MapServer uses this directory to store temporary
files downloaded from the remote WFS server. Windows users must specify a full path for IMAGEPATH, such
as: IMAGEPATH “C:/tmp/ms_tmp/”

MAP
...
WEB
IMAGEPATH "/tmp/ms_tmp/"
IMAGEURL ...

END
...

END

WFS Layer

A WFS layer is a regular mapfile layer, which can use CLASS objects, with expressions, etc.

As of MapServer 4.4, the suggested method to define a WFS Client layer is through the CONNECTION parameter
and the layer’s METADATA. The necessary mapfile parameters are defined below:

• CONNECTIONTYPE: must be “wfs”

• CONNECTION: The URL to the WFS Server. e.g. http://demo.mapserver.org/cgi-bin/wfs? The
path to the mapfile on the WFS server is required if it was required in the GetCapabilities re-
quest e.g. you would have to specify the MAP parameter in the CONNECTION for the follow-
ing server: http://map.ns.ec.gc.ca/MapServer/mapserv.exe?MAP=/mapserver/services/envdat/config.map
&SERVICE=WFS&VERSION=1.0.0&REQUEST=GetCapabilities

• METADATA: The LAYER’s must contain a METADATA object with the following parameters:

– wfs_connectiontimeout (optional): The maximum time to wait for a remote WFS layer to load, set in
seconds (default is 30 seconds). This metadata can be added at the layer level so that it affects only
that layer, or it can be added at the map level (in the web object) so that it affects all of the layers. Note
that wfs_connectiontimeout at the layer level has priority over the map level.

– wfs_filter: This can be included to include a filter encoding parameter in the getFeature request (see
the Filter Encoding Howto for more information on filtering). The content of the wfs_filter is a valid
filter encoding element.
...
METADATA

"wfs_filter" "<PropertyIsGreaterThan><PropertyName>POP_RANGE</PropertyName>
< L i t e r a l >4</ L i t e r a l ></ P r o p e r t y I s G r e a t e r T h a n >"

END
...

– wfs_geometryname (optional): The name of the geometry column used for spatial filtering in the filter
parameter (Geometry by default). This parameter is used for ArcGIS or GeoServer WFS services as
several geometry column can be choosed (or with a different default name to Geometry).

– wfs_latlongboundingbox (optional): The bounding box of this layer in geographic coordinates in the
format “lon_min lat_min lon_max lat_max”. If it is set then MapServer will request the layer only
when the map view overlaps that bounding box. You normally get this from the server’s capabilities
output.

– wfs_maxfeatures (optional): Limit the number of GML features to return. Sensible values are integers
greater than 0. If 0 is specified, no features will be returned.

– wfs_request_method (optional): Can be set to “GET” to do a Get request to WFS servers that do not
support Post requests. The default method in MapServer is Post.

9.1. OGC Support and Configuration 535

http://demo.mapserver.org/cgi-bin/wfs
http://map.ns.ec.gc.ca/MapServer/mapserv.exe?MAP=/mapserver/services/envdat/config.map&SERVICE=WFS&VERSION=1.0.0&REQUEST=GetCapabilities
http://map.ns.ec.gc.ca/MapServer/mapserv.exe?MAP=/mapserver/services/envdat/config.map&SERVICE=WFS&VERSION=1.0.0&REQUEST=GetCapabilities

MapServer Documentation, Release 6.4.1

...
METADATA

"wfs_request_method" "GET"
END
...

– wfs_typename (required): the <Name> of the layer found in the GetCapabil-
ities. An example GetCapabilities request is: http://demo.mapserver.org/cgi-
bin/wfs?SERVICE=WFS&VERSION=1.0.0&REQUEST=GetCapabilities

– wfs_version (required): WFS version, currently “1.0.0”

Note: Each of the above metadata can also be referred to as ‘ows_*’ instead of ‘wfs_*’. MapServer tries
the ‘wfs_*’ metadata first, and if not found it tries the corresponding ‘ows_*’ name. Using this reduces the
amount of duplication in mapfiles that support multiple OGC interfaces since “ows_*” metadata can be used
almost everywhere for common metadata items shared by multiple OGC interfaces.

Example WFS Layer

LAYER
NAME "continents"
TYPE POLYGON
STATUS ON
CONNECTION "http://demo.mapserver.org/cgi-bin/wfs?"
CONNECTIONTYPE WFS
METADATA
"wfs_typename" "continents"
"wfs_version" "1.0.0"
"wfs_connectiontimeout" "60"
"wfs_maxfeatures" "10"

END
PROJECTION
"init=epsg:4326"

END
CLASS
NAME "Continents"
STYLE

COLOR 255 128 128
OUTLINECOLOR 96 96 96

END
END

END # Layer

Connection - deprecated

As of MapServer v4.4 the method of specifying all of the connection information in the CONNECTION parameter
has beendeprecated. The preferred method is mentioned above. If the metadata is not provided, VERSION,
SERVICE, and TYPENAME will be fetched from the CONNECTION, as shown below

CONNECTION "http://demo.mapserver.org/cgi-bin/wfs?SERVICE=WFS&VERSION=1.0.0&TYPENAME=continents"

TODO / Known Limitations

1. Temporary WFS (gml) files are written to the IMAGEPATH directory, but this could become a security
concern since it makes the raw GML data downloadable by someone who could guess the gml filename.
We should consider having a “wfs_cache_dir” metadata that, if it is set will define a directory where temp

536 Chapter 9. OGC

http://demo.mapserver.org/cgi-bin/wfs?SERVICE=WFS&VERSION=1.0.0&REQUEST=GetCapabilities
http://demo.mapserver.org/cgi-bin/wfs?SERVICE=WFS&VERSION=1.0.0&REQUEST=GetCapabilities

MapServer Documentation, Release 6.4.1

files should be written. The default would still be to use the value of IMAGEPATH if “wfs_tmpdir” is not
set.

9.1.10 WFS-T Server

Contents

• WFS-T Server
– WFS-T

WFS-T

MapServer does not support the WFS-T specification. A companion program, TinyOWS, is a fast implementation
of WFS-T. TinyOWS and MapServer share the same Mapfile format, and you can use the same Mapfile and
datasources for a dual installation of MapServer and TinyOWS on your server.

9.1.11 WFS Filter Encoding

Author Jeff McKenna

Contact jmckenna at gatewaygeomatics.com

Author Yewondwossen Assefa

Contact assefa at dmsolutions.ca

Last Updated 2010-10-07

Date $Date$

Table of Contents

• WFS Filter Encoding
– Introduction
– Currently Supported Features
– Get and Post Requests
– Use of Filter Encoding in MapServer
– Limitations
– Tests

Introduction

This document describes the procedures for taking advantage of the Filter Encoding (FE) support in WFS GetFea-
ture requests, which was added to MapServer in version 4.2.

This document assumes that you are already familiar with the following aspects of MapServer:

• MapServer application development and setting up .map files.

• Familiarity with the WFS specification would be an asset. Links to the MapServer WFS documents are
included in the next section.

9.1. OGC Support and Configuration 537

MapServer Documentation, Release 6.4.1

Links to SLD-related Information

• Filter Encoding Implementation Specification.

• MapServer WFS Client Howto.

• MapServer WFS Server Howto.

• MapServer OGC Web Services Workshop.

• Open GIS Consortium (OGC) home page.

Currently Supported Features

The following table lists the currently supported features for FE.

Table 1. Currently Supported Features

Feature Set Feature
Spatial Capabilities

Equals
Disjoint
Touches
Within
Overlaps
Crosses
Intersects
Contains
DWithin
BBOX

Scalar Capabilities

Logical Operators
And
Or
Not

Comparison Operators
PropertyIsEqualTo (=)
PropertyIsNotEqualTo (<>)
PropertyIsLessThan (<)
PropertyIsGreaterThan (>)
PropertyIsLessThanOrEqualTo (<=)
PropertyIsGreaterThanOrEqualTo (>=)
PropertyIsLike
PropertyIsBetween (range)

Units of measure

The following units of measure are supported:

m or meters meters
km or kilometers kilometers
NM nauticalmiles
mi or miles miles
in or inches inches
ft or feet feet
deg or dd degree
px pixels

538 Chapter 9. OGC

http://www.opengeospatial.org/docs/02-059.pdf
http://ms-ogc-workshop.maptools.org/
http://www.opengeospatial.org

MapServer Documentation, Release 6.4.1

Get and Post Requests

MapServer already has the capability to receive and parse Get requests and URL-encoded Post requests. The
ability for MapServer to be able to receive Post requests with XML-encoded information sent in the body of the
request has been added. Also, the ability to generate XML-encoded Post requests for WFS layers has been added.

Both Get and Post request are now supported for all WFS requests:

• GetCapabilities

• GetFeatures

• DescribeFeatureType

Supporting these WFS requests in Post was implemented to keep consistency between all supported WFS requests.

When sending requests, the default request method used is Post. To change this behavior, we have introduced a
layer level meta data, wfs_request_method, which can be set to “GET”.

Use of Filter Encoding in MapServer

This section describes how to use FE on both the server and client sides.

Server Side

To be able to use Filter Encoding, you need to create a valid WFS server using MapServer. Please refer to the
WFS Server HOWTO for specifics.

There is nothing special that should be added to a WFS server for Filter Encoding, but you should note that, when
requesting the capabilities of your WFS server, the document returned should contain the supported filters. Here
is part of a Capabilities document (note the “Filter_Capabilities” section):

1 <?xml version="1.0" encoding="ISO-8859-1"?>
2 <WFS_Capabilities version="1.0.0" updateSequence="0"
3 xmlns="http://www.opengis.net/wfs" xmlns:ogc="http://www.opengis.net/ogc"
4 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
5 xsi:schemaLocation="http://www.opengis.net/wfs
6 http://schemas.opengis.net/wfs/1.0.0/WFS-capabilities.xsd">
7

8 <!-- MapServer version 5.6.5 OUTPUT=GIF OUTPUT=PNG OUTPUT=JPEG OUTPUT=WBMP
9 OUTPUT=SWF OUTPUT=SVG SUPPORTS=PROJ SUPPORTS=AGG SUPPORTS=FREETYPE

10 SUPPORTS=ICONV SUPPORTS=WMS_SERVER SUPPORTS=WMS_CLIENT
11 SUPPORTS=WFS_SERVER SUPPORTS=WFS_CLIENT SUPPORTS=WCS_SERVER
12 SUPPORTS=GEOS SUPPORTS=RGBA_PNG INPUT=EPPL7 INPUT=POSTGIS INPUT=OGR
13 INPUT=GDAL INPUT=SHAPEFILE -->
14

15 <Service>
16 <Name>MapServer WFS</Name>
17 <Title>WMS Demo Server for MapServer</Title>
18 <Abstract>This demonstration server showcases MapServer (www.mapserver.org)
19 and its OGC support</Abstract>
20 <OnlineResource>http://demo.mapserver.org/cgi-bin/wfs?</OnlineResource>
21 </Service>
22

23 <Capability>
24 <Request>
25 <GetCapabilities>
26 <DCPType>
27 <HTTP>
28 <Get onlineResource="http://demo.mapserver.org/cgi-bin/wfs?"/>
29 </HTTP>
30 </DCPType>
31 <DCPType>

9.1. OGC Support and Configuration 539

MapServer Documentation, Release 6.4.1

32 <HTTP>
33 <Post onlineResource="http://demo.mapserver.org/cgi-bin/wfs?"/>
34 </HTTP>
35 </DCPType>
36 </GetCapabilities>
37 ...
38 </Request>
39 </Capability>
40 ...
41 <ogc:Filter_Capabilities>
42 <ogc:Spatial_Capabilities>
43 <ogc:Spatial_Operators>
44 <ogc:Equals/>
45 <ogc:Disjoint/>
46 <ogc:Touches/>
47 <ogc:Within/>
48 <ogc:Overlaps/>
49 <ogc:Crosses/>
50 <ogc:Intersects/>
51 <ogc:Contains/>
52 <ogc:DWithin/>
53 <ogc:BBOX/>
54 </ogc:Spatial_Operators>
55 </ogc:Spatial_Capabilities>
56 <ogc:Scalar_Capabilities>
57 <ogc:Logical_Operators/>
58 <ogc:Comparison_Operators>
59 <ogc:Simple_Comparisons/>
60 <ogc:Like/>
61 <ogc:Between/>
62 </ogc:Comparison_Operators>
63 </ogc:Scalar_Capabilities>
64 </ogc:Filter_Capabilities>
65

66 </WFS_Capabilities>

Client Side

To be able to generate a Filter to a WFS server, a layer level metadata called wfs_filter has been added, which
should contain the filter to be sent to the server. Following is an example of a valid WFS client layer with a filter:

LAYER
NAME "cities"
TYPE POINT
STATUS ON
CONNECTION "http://demo.mapserver.org/cgi-bin/wfs?"
CONNECTIONTYPE WFS
METADATA
"wfs_typename" "cities"
"wfs_version" "1.0.0"
"wfs_connectiontimeout" "60"
"wfs_maxfeatures" "100"
"wfs_filter" "<PropertyIsGreaterThan><PropertyName>POPULATION</PropertyName>

< L i t e r a l >10000000</ L i t e r a l ></ P r o p e r t y I s G r e a t e r T h a n >"
END
PROJECTION
"init=epsg:4326"

END
LABELITEM ’NAME’
CLASS
NAME ’World Cities’

540 Chapter 9. OGC

MapServer Documentation, Release 6.4.1

STYLE
COLOR 255 128 128
OUTLINECOLOR 128 0 0
SYMBOL ’circle’
SIZE 9

END
LABEL

COLOR 0 0 0
OUTLINECOLOR 255 255 255
TYPE TRUETYPE
FONT s a n s
SIZE 7
POSITION UC
PARTIALS FALSE

END
END

END

Note:

• The filter given as a value of the wfs_filter metadata should not contain <Filter> start and end tags.

• The CONNECTION points to a valid WFS server supporting filters

• The returned shapes will be drawn using the class defined in the layer.

Limitations

• A limited set of spatial operators are supported.

Tests

Here are some test URLs for the different supported filters:

• PropertyIsEqualTo

http://demo.mapserver.org/cgi-bin/wfs?&VERSION=1.0.0&SERVICE=WFS
&REQUEST=GetFeature&TYPENAME=cities&Filter=<Filter>
<PropertyIsEqualTo><PropertyName>NAME</PropertyName>
<Literal>Halifax</Literal></PropertyIsEqualTo></Filter>

• PropertyIsNotEqualTo

http://demo.mapserver.org/cgi-bin/wfs?&VERSION=1.0.0&SERVICE=WFS
&REQUEST=GetFeature&TYPENAME=cities&Filter=<Filter>
<PropertyIsNotEqualTo><PropertyName>NAME</PropertyName>
<Literal>Halifax</Literal></PropertyIsNotEqualTo></Filter>

• PropertyIsLessThan

http://demo.mapserver.org/cgi-bin/wfs?&VERSION=1.0.0&SERVICE=WFS
&REQUEST=GetFeature&TYPENAME=cities&Filter=<Filter>
<PropertyIsLessThan><PropertyName>POPULATION</PropertyName>
<Literal>1000</Literal></PropertyIsLessThan></Filter>

• PropertyIsGreaterThan

http://demo.mapserver.org/cgi-bin/wfs?&VERSION=1.0.0&SERVICE=WFS
&REQUEST=GetFeature&TYPENAME=cities&Filter=<Filter>
<PropertyIsGreaterThan><PropertyName>POPULATION</PropertyName>
<Literal>10000000</Literal></PropertyIsGreaterThan></Filter>

• PropertyIsLessThanOrEqualTo

9.1. OGC Support and Configuration 541

http://demo.mapserver.org/cgi-bin/wfs?&VERSION=1.0.0&SERVICE=WFS&REQUEST=GetFeature&TYPENAME=cities&Filter=\T1\textless {}Filter\T1\textgreater {}\T1\textless {}PropertyIsEqualTo\T1\textgreater {}\T1\textless {}PropertyName\T1\textgreater {}NAME\T1\textless {}/PropertyName\T1\textgreater {}\T1\textless {}Literal\T1\textgreater {}Halifax\T1\textless {}/Literal\T1\textgreater {}\T1\textless {}/PropertyIsEqualTo\T1\textgreater {}\T1\textless {}/Filter\T1\textgreater {}
http://demo.mapserver.org/cgi-bin/wfs?&VERSION=1.0.0&SERVICE=WFS&REQUEST=GetFeature&TYPENAME=cities&Filter=\T1\textless {}Filter\T1\textgreater {}\T1\textless {}PropertyIsNotEqualTo\T1\textgreater {}\T1\textless {}PropertyName\T1\textgreater {}NAME\T1\textless {}/PropertyName\T1\textgreater {}\T1\textless {}Literal\T1\textgreater {}Halifax\T1\textless {}/Literal\T1\textgreater {}\T1\textless {}/PropertyIsNotEqualTo\T1\textgreater {}\T1\textless {}/Filter\T1\textgreater {}
http://demo.mapserver.org/cgi-bin/wfs?&VERSION=1.0.0&SERVICE=WFS&REQUEST=GetFeature&TYPENAME=cities&Filter=\T1\textless {}Filter\T1\textgreater {}\T1\textless {}PropertyIsLessThan\T1\textgreater {}\T1\textless {}PropertyName\T1\textgreater {}POPULATION\T1\textless {}/PropertyName\T1\textgreater {}\T1\textless {}Literal\T1\textgreater {}1000\T1\textless {}/Literal\T1\textgreater {}\T1\textless {}/PropertyIsLessThan\T1\textgreater {}\T1\textless {}/Filter\T1\textgreater {}
http://demo.mapserver.org/cgi-bin/wfs?&VERSION=1.0.0&SERVICE=WFS&REQUEST=GetFeature&TYPENAME=cities&Filter=\T1\textless {}Filter\T1\textgreater {}\T1\textless {}PropertyIsGreaterThan\T1\textgreater {}\T1\textless {}PropertyName\T1\textgreater {}POPULATION\T1\textless {}/PropertyName\T1\textgreater {}\T1\textless {}Literal\T1\textgreater {}10000000\T1\textless {}/Literal\T1\textgreater {}\T1\textless {}/PropertyIsGreaterThan\T1\textgreater {}\T1\textless {}/Filter\T1\textgreater {}
http://demo.mapserver.org/cgi-bin/wfs?&VERSION=1.0.0&SERVICE=WFS&REQUEST=GetFeature&TYPENAME=cities&Filter=\T1\textless {}Filter\T1\textgreater {}\T1\textless {}PropertyIsLessThanOrEqualTo\T1\textgreater {}\T1\textless {}PropertyName\T1\textgreater {}POPULATION\T1\textless {}/PropertyName\T1\textgreater {}\T1\textless {}Literal\T1\textgreater {}499\T1\textless {}/Literal\T1\textgreater {}\T1\textless {}/PropertyIsLessThanOrEqualTo\T1\textgreater {}\T1\textless {}/Filter\T1\textgreater {}

MapServer Documentation, Release 6.4.1

http://demo.mapserver.org/cgi-bin/wfs?&VERSION=1.0.0&SERVICE=WFS
&REQUEST=GetFeature&TYPENAME=cities&Filter=<Filter>
<PropertyIsLessThanOrEqualTo><PropertyName>POPULATION</PropertyName>
<Literal>499</Literal></PropertyIsLessThanOrEqualTo></Filter>

• PropertyIsGreaterThanOrEqualTo

http://demo.mapserver.org/cgi-bin/wfs?&VERSION=1.0.0&SERVICE=WFS
&REQUEST=GetFeature&TYPENAME=cities&Filter=<Filter>
<PropertyIsGreaterThanOrEqualTo><PropertyName>POPULATION</PropertyName>
<Literal>10194978</Literal></PropertyIsGreaterThanOrEqualTo></Filter>

• PropertyIsBetween

http://demo.mapserver.org/cgi-bin/wfs?&VERSION=1.0.0&SERVICE=WFS
&REQUEST=GetFeature&TYPENAME=cities&Filter=<Filter>
<PropertyIsBetween><PropertyName>POPULATION</PropertyName>
<LowerBoundary>10194978</LowerBoundary>
<UpperBoundary>12116379</UpperBoundary></PropertyIsBetween></Filter>

• PropertyIsLike

http://demo.mapserver.org/cgi-bin/wfs?&VERSION=1.0.0&SERVICE=WFS
&REQUEST=GetFeature&TYPENAME=cities&Filter=<Filter>
<PropertyIsLike wildcard=’*’ singleChar=’.’ escape=’!’>
<PropertyName>NAME</PropertyName><Literal>Syd*</Literal></PropertyIsLike>
</Filter>

• Logical operator OR

http://demo.mapserver.org/cgi-bin/wfs?&VERSION=1.0.0&SERVICE=WFS
&REQUEST=GetFeature&TYPENAME=cities&Filter=<Filter>
<OR><PropertyIsEqualTo><PropertyName>NAME</PropertyName>
<Literal>Sydney</Literal></PropertyIsEqualTo><PropertyIsEqualTo>
<PropertyName>NAME</PropertyName><Literal>Halifax</Literal>
</PropertyIsEqualTo></OR></Filter>

• Logical operator AND

http://demo.mapserver.org/cgi-bin/wfs?&VERSION=1.0.0&SERVICE=WFS
&REQUEST=GetFeature&TYPENAME=cities&Filter=<Filter>
<AND><PropertyIsLike wildcard=’*’ singleChar=’.’ escape=’!’>
<PropertyName>NAME</PropertyName><Literal>Syd*</Literal></PropertyIsLike>
<PropertyIsEqualTo><PropertyName>POPULATION</PropertyName>
<Literal>4250065</Literal></PropertyIsEqualTo></AND></Filter>

• Logical operator NOT

http://demo.mapserver.org/cgi-bin/wfs?&VERSION=1.0.0&SERVICE=WFS
&REQUEST=GetFeature&TYPENAME=cities&Filter=<Filter>
<AND><NOT><PropertyIsEqualTo><PropertyName>POPULATION</PropertyName>
<Literal>0</Literal></PropertyIsEqualTo></NOT><NOT><PropertyIsEqualTo>
<PropertyName>POPULATION</PropertyName><Literal>12116379</Literal>
</PropertyIsEqualTo></NOT></AND></Filter>

• Spatial operator BBOX

http://demo.mapserver.org/cgi-bin/wfs?&VERSION=1.0.0&SERVICE=WFS
&REQUEST=GetFeature&TYPENAME=cities&Filter=<Filter>
<BBOX><PropertyName>Name>NAME</PropertyName><Box%20srsName=’EPSG:42304’>
<coordinates>135.2239,34.4879 135.8578,34.8471</coordinates></Box></BBOX>
</Filter>

• Spatial operator Dwithin

542 Chapter 9. OGC

http://demo.mapserver.org/cgi-bin/wfs?&VERSION=1.0.0&SERVICE=WFS&REQUEST=GetFeature&TYPENAME=cities&Filter=\T1\textless {}Filter\T1\textgreater {}\T1\textless {}PropertyIsGreaterThanOrEqualTo\T1\textgreater {}\T1\textless {}PropertyName\T1\textgreater {}POPULATION\T1\textless {}/PropertyName\T1\textgreater {}\T1\textless {}Literal\T1\textgreater {}10194978\T1\textless {}/Literal\T1\textgreater {}\T1\textless {}/PropertyIsGreaterThanOrEqualTo\T1\textgreater {}\T1\textless {}/Filter\T1\textgreater {}
http://demo.mapserver.org/cgi-bin/wfs?&VERSION=1.0.0&SERVICE=WFS&REQUEST=GetFeature&TYPENAME=cities&Filter=\T1\textless {}Filter\T1\textgreater {}\T1\textless {}PropertyIsBetween\T1\textgreater {}\T1\textless {}PropertyName\T1\textgreater {}POPULATION\T1\textless {}/PropertyName\T1\textgreater {}\T1\textless {}LowerBoundary\T1\textgreater {}10194978\T1\textless {}/LowerBoundary\T1\textgreater {}\T1\textless {}UpperBoundary\T1\textgreater {}12116379\T1\textless {}/UpperBoundary\T1\textgreater {}\T1\textless {}/PropertyIsBetween\T1\textgreater {}\T1\textless {}/Filter\T1\textgreater {}
http://demo.mapserver.org/cgi-bin/wfs?&VERSION=1.0.0&SERVICE=WFS&REQUEST=GetFeature&TYPENAME=cities&Filter=\T1\textless {}Filter\T1\textgreater {}\T1\textless {}PropertyIsLike%20wildcard='*'%20singleChar='.'%20escape='!'\T1\textgreater {}\T1\textless {}PropertyName\T1\textgreater {}NAME\T1\textless {}/PropertyName\T1\textgreater {}\T1\textless {}Literal\T1\textgreater {}Syd*\T1\textless {}/Literal\T1\textgreater {}\T1\textless {}/PropertyIsLike\T1\textgreater {}\T1\textless {}/Filter\T1\textgreater {}
http://demo.mapserver.org/cgi-bin/wfs?&VERSION=1.0.0&SERVICE=WFS&REQUEST=GetFeature&TYPENAME=cities&Filter=\T1\textless {}Filter\T1\textgreater {}\T1\textless {}OR\T1\textgreater {}\T1\textless {}PropertyIsEqualTo\T1\textgreater {}\T1\textless {}PropertyName\T1\textgreater {}NAME\T1\textless {}/PropertyName\T1\textgreater {}\T1\textless {}Literal\T1\textgreater {}Sydney\T1\textless {}/Literal\T1\textgreater {}\T1\textless {}/PropertyIsEqualTo\T1\textgreater {}\T1\textless {}PropertyIsEqualTo\T1\textgreater {}\T1\textless {}PropertyName\T1\textgreater {}NAME\T1\textless {}/PropertyName\T1\textgreater {}\T1\textless {}Literal\T1\textgreater {}Halifax\T1\textless {}/Literal\T1\textgreater {}\T1\textless {}/PropertyIsEqualTo\T1\textgreater {}\T1\textless {}/OR\T1\textgreater {}\T1\textless {}/Filter\T1\textgreater {}
http://demo.mapserver.org/cgi-bin/wfs?&VERSION=1.0.0&SERVICE=WFS&REQUEST=GetFeature&TYPENAME=cities&Filter=\T1\textless {}Filter\T1\textgreater {}\T1\textless {}AND\T1\textgreater {}\T1\textless {}PropertyIsLike%20wildcard='*'%20singleChar='.'%20escape='!'\T1\textgreater {}\T1\textless {}PropertyName\T1\textgreater {}NAME\T1\textless {}/PropertyName\T1\textgreater {}\T1\textless {}Literal\T1\textgreater {}Syd*\T1\textless {}/Literal\T1\textgreater {}\T1\textless {}/PropertyIsLike\T1\textgreater {}\T1\textless {}PropertyIsEqualTo\T1\textgreater {}\T1\textless {}PropertyName\T1\textgreater {}POPULATION\T1\textless {}/PropertyName\T1\textgreater {}\T1\textless {}Literal\T1\textgreater {}4250065\T1\textless {}/Literal\T1\textgreater {}\T1\textless {}/PropertyIsEqualTo\T1\textgreater {}\T1\textless {}/AND\T1\textgreater {}\T1\textless {}/Filter\T1\textgreater {}
http://demo.mapserver.org/cgi-bin/wfs?&VERSION=1.0.0&SERVICE=WFS&REQUEST=GetFeature&TYPENAME=cities&Filter=\T1\textless {}Filter\T1\textgreater {}\T1\textless {}AND\T1\textgreater {}\T1\textless {}NOT\T1\textgreater {}\T1\textless {}PropertyIsEqualTo\T1\textgreater {}\T1\textless {}PropertyName\T1\textgreater {}POPULATION\T1\textless {}/PropertyName\T1\textgreater {}\T1\textless {}Literal\T1\textgreater {}0\T1\textless {}/Literal\T1\textgreater {}\T1\textless {}/PropertyIsEqualTo\T1\textgreater {}\T1\textless {}/NOT\T1\textgreater {}\T1\textless {}NOT\T1\textgreater {}\T1\textless {}PropertyIsEqualTo\T1\textgreater {}\T1\textless {}PropertyName\T1\textgreater {}POPULATION\T1\textless {}/PropertyName\T1\textgreater {}\T1\textless {}Literal\T1\textgreater {}12116379\T1\textless {}/Literal\T1\textgreater {}\T1\textless {}/PropertyIsEqualTo\T1\textgreater {}\T1\textless {}/NOT\T1\textgreater {}\T1\textless {}/AND\T1\textgreater {}\T1\textless {}/Filter\T1\textgreater {}
http://demo.mapserver.org/cgi-bin/wfs?&VERSION=1.0.0&SERVICE=WFS&REQUEST=GetFeature&TYPENAME=cities&Filter=\T1\textless {}Filter\T1\textgreater {}\T1\textless {}BBOX\T1\textgreater {}\T1\textless {}PropertyName\T1\textgreater {}Name\T1\textgreater {}NAME\T1\textless {}/PropertyName\T1\textgreater {}\T1\textless {}Box%20srsName='EPSG:4326'\T1\textgreater {}\T1\textless {}coordinates\T1\textgreater {}135.2239,34.4879%20135.8578,34.8471\T1\textless {}/coordinates\T1\textgreater {}\T1\textless {}/Box\T1\textgreater {}\T1\textless {}/BBOX\T1\textgreater {}\T1\textless {}/Filter\T1\textgreater {}
http://demo.mapserver.org/cgi-bin/wfs?&VERSION=1.0.0&SERVICE=WFS&REQUEST=GetFeature&TYPENAME=cities&Filter=\T1\textless {}Filter\T1\textgreater {}\T1\textless {}DWithin\T1\textgreater {}\T1\textless {}PropertyName\T1\textgreater {}Geometry\T1\textless {}/PropertyName\T1\textgreater {}\T1\textless {}gml:Point\T1\textgreater {}\T1\textless {}gml:coordinates\T1\textgreater {}135.500000,34.666667\T1\textless {}/gml:coordinates\T1\textgreater {}\T1\textless {}/gml:Point\T1\textgreater {}\T1\textless {}Distance%20units='m'\T1\textgreater {}10000\T1\textless {}/Distance\T1\textgreater {}\T1\textless {}/DWithin\T1\textgreater {}\T1\textless {}/Filter\T1\textgreater {}

MapServer Documentation, Release 6.4.1

http://demo.mapserver.org/cgi-bin/wfs?&VERSION=1.0.0&SERVICE=WFS
&REQUEST=GetFeature&TYPENAME=cities&Filter=<Filter>
<DWithin><PropertyName>Geometry</PropertyName><gml:Point>
<gml:coordinates>135.500000,34.666667</gml:coordinates>
</gml:Point><Distance units=’m’>10000</Distance></DWithin></Filter>

• Spatial operator Intersects

http://demo.mapserver.org/cgi-bin/wfs?&VERSION=1.0.0&SERVICE=WFS
&REQUEST=GetFeature&TYPENAME=cities&Filter=<Filter>
<Intersects><PropertyName>Geometry</PropertyName>
<gml:Polygon><gml:outerBoundaryIs><gml:LinearRing>
<gml:coordinates>135.5329,34.6624 135.4921,34.8153 135.3673,34.7815
135.3800,34.6216 135.5361,34.6210 135.5329,34.6624</gml:coordinates>
</gml:LinearRing></gml:outerBoundaryIs></gml:Polygon></Intersects></Filter>

• The OGC conformance tests (http://cite.opengeospatial.org/test_engine) have been run on the FE support.
The following table and notes reflect the current status.

Table 2. WFS OGC test suite (over the HTTP Get and Post method)

Test # Description # of Tests # of Failed Tests
1 Basic WFS tests over the HTTP Get and Post method 402 281
1.1 GetCapabilities 16 0
1.2 DescribeFeatureType 18 0
1.3 GetFeature 368 281
1.3.1 Basic WFS tests 20 1
1.3.2 Complex WFS tests 18 18
1.3.3 Arithmetic filter WFS tests 8 8
1.3.4 Comparison WFS tests 50 26
1.3.4.1 GetFeature PropertyIsGreaterThanOrEqualTo filter 2 0
1.3.4.2 GetFeature PropertyIsBetween filter 6 2
1.3.4.3 GetFeature PropertyIsEqualTo filter 4 0
1.3.4.4 GetFeature PropertyIsGreaterThan filter 4 2
1.3.4.5 GetFeature PropertyIsGreaterThanOrEqualTo filter 6 6
1.3.4.6 GetFeature PropertyIsLessThan filter 6 4
1.3.4.7 GetFeature PropertyIsLessThanOrEqualTo filter 6 4
1.3.4.8 GetFeature PropertyIsLike filter 2 0
1.3.4.9 GetFeature PropertyIsNotEqualTo filter 6 0
1.3.4.10 GetFeature PropertyIsNull filter 8 8
1.3.5 Logical WFS test 20 0
1.3.5.1 GetFeature AND PropertyIsEqualTo PropertyIsEqualTo filter 8 0
1.3.5.2 GetFeature OR PropertyIsEqualTo PropertyIsEqualTo filter 8 0
1.3.5.3 GetFeature NOT PropertyIsNotEqualTo filter 4 0
1.3.6 Spatial operator WFS test 252 228
1.3.6.1 GetFeature BBOX filter 36 12
1.3.6.2 GetFeature with other filter types 216 216
2 Transactional WFS test 69 69

The OGC Cite WFS test suite can be found on the OGC Cite portal.

Following are some MapServer specific notes on this test suite:

1. Test number 1.3.1:

• There is a contradiction between the wfs/1.0.0/basic/getfeature/post/3 assertion and the XPath ex-
pected value of the test. The assertion says: “Test that a GetFeature request with no output format
defined returns a wfs:FeatureCollection with GML data.” and the expected XPath value for this re-
quest: “boolean(/ogc:ServiceExceptionReport)” is supposed to be true. So, the assertion means that
when a WFS server receives a request which contains an undefined output format or no output format
at all, the WFS server must return a WFS collection containing GML data. The XPath expected value

9.1. OGC Support and Configuration 543

http://demo.mapserver.org/cgi-bin/wfs?&VERSION=1.0.0&SERVICE=WFS&REQUEST=GetFeature&TYPENAME=cities&Filter=\T1\textless {}Filter\T1\textgreater {}\T1\textless {}Intersects\T1\textgreater {}\T1\textless {}PropertyName\T1\textgreater {}Geometry\T1\textless {}/PropertyName\T1\textgreater {}\T1\textless {}gml:Polygon\T1\textgreater {}\T1\textless {}gml:outerBoundaryIs\T1\textgreater {}\T1\textless {}gml:LinearRing\T1\textgreater {}\T1\textless {}gml:coordinates\T1\textgreater {}135.5329,34.6624%20135.4921,34.8153%20135.3673,34.7815%20135.3800,34.6216%20135.5361,34.6210%20135.5329,34.6624\T1\textless {}/gml:coordinates\T1\textgreater {}\T1\textless {}/gml:LinearRing\T1\textgreater {}\T1\textless {}/gml:outerBoundaryIs\T1\textgreater {}\T1\textless {}/gml:Polygon\T1\textgreater {}\T1\textless {}/Intersects\T1\textgreater {}\T1\textless {}/Filter\T1\textgreater {}
http://cite.opengeospatial.org/test_engine
http://cite.opengeospatial.org/test_engine/wfs/1.0.0

MapServer Documentation, Release 6.4.1

means that when a WFS server receives a request with an undefined output format or no output format
at all, the WFS server must return a service exception report.

2. Tests number 1.3.2 and 1.3.3:

• Not supported.

3. Tests number 1.3.4.2, 1.3.4.4 to 1.3.4.7:

• The string comparison is not supported using >, <, >=, <=.

• The date comparison is not supported.

See Also:

bug 461

4. Test number 1.3.4.10:

• This property is not supported in MapServer.

5. Test number 1.3.6.1:

• The returned feature xml won’t validate because the validation is done against a specific xsd (geoma-
try.xsd).

• The data conversion on multipoints and multilayers are not supported within GDAL.

See Also:

bug 461

6. Test number 2:

• The transaction requests are not supported.

9.1.12 SLD

Author Jeff McKenna

Contact jmckenna at gatewaygeomatics.com

Author Yewondwossen Assefa

Contact assefa at dmsolutions.ca

Last Updated 2011-01-14

Contents

• SLD
– Introduction
– Server Side Support
– Client Side Support
– Named Styles support
– Other Items Implemented
– Issues Found During Implementation

Introduction

This document describes the procedures for taking advantage of the Styled Layer Descriptor (SLD) support in
WMS GetMap requests with MapServer. SLD support exists for the server side (ability to read an SLD and apply
it with a GetMap request) and for the client side (includes sending SLD requests to server and generate SLD files
on the fly from MapServer map file). SLD support was added to MapServer in version 4.2.

This document assumes that you are already familiar with the following aspects of MapServer:

544 Chapter 9. OGC

http://trac.osgeo.org/mapserver/ticket/461
http://trac.osgeo.org/mapserver/ticket/461

MapServer Documentation, Release 6.4.1

• MapServer application development and setting up .map files.

• Familiarity with the WMS specification would be an asset. Links to the MapServer WMS documents are
included in the next section.

Links to SLD-related Information

• Styled Layer Descriptor Implementation Specification.

• MapServer WMS Client HowTo.

• MapServer WMS Server HowTo.

• MapServer OGC Web Services Workshop.

• Open GIS Consortium (OGC) home page.

Server Side Support

General Information

There are two ways a WMS request can pass an SLD document with a GetMap request to MapServer:

• SLD parameter pointing to remote SLD (SLD=http://URL_TO_SLD).

• SLD_BODY parameter to send the SLD definition in the URL.

These two methods are both available through MapServer. An example of a request would be:

http://demo.mapserver.org/cgi-bin/wms?SERVICE=wms&VERSION=1.1.1&REQUEST=GetMap
&LAYERS=country_bound
s&SLD=http://demo.mapserver.org/ogc-demos/map/sld/sld_line_simple.xml

Test the remote SLD request.

The SLD in the above request follows:

<?xml version="1.0" encoding="UTF-8"?>
<StyledLayerDescriptor version="1.0.0"
xmlns="http://www.opengis.net/sld"
xmlns:ogc="http://www.opengis.net/ogc"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.opengis.net/sld
http://schemas.opengis.net/sld/1.0.0/StyledLayerDescriptor.xsd">
<NamedLayer>
<Name>country_bounds</Name>
<UserStyle>

<Title>xxx</Title>
<FeatureTypeStyle>

<Rule>
<LineSymbolizer>

<Geometry>
<ogc:PropertyName>center-line</ogc:PropertyName>

</Geometry>
<Stroke>
<CssParameter name="stroke">#0000ff</CssParameter>

</Stroke>
</LineSymbolizer>

</Rule>
</FeatureTypeStyle>

</UserStyle>
</NamedLayer>

</StyledLayerDescriptor>

9.1. OGC Support and Configuration 545

http://www.opengeospatial.org/docs/02-070.pdf
http://ms-ogc-workshop.maptools.org/
http://www.opengeospatial.org
http://demo.mapserver.org/cgi-bin/wms?SERVICE=wms&VERSION=1.1.1&REQUEST=GetMap&LAYERS=country_bounds&FORMAT=png&WIDTH=400&HEIGHT=300&SRS=EPSG:4326&STYLES=&BBOX=-180.0,-90.0,180.0,90.0&TRANSPARENT=TRUE&SLD=http://demo.mapserver.org/ogc-demos/map/sld/sld_line_simple.xml

MapServer Documentation, Release 6.4.1

Version 1.1.0 of the same SLD

<?xml version="1.0" encoding="UTF-8"?>
<StyledLayerDescriptor version="1.1.0"
xmlns="http://www.opengis.net/sld"
xmlns:se="http://www.opengis.net/se"
xmlns:ogc="http://www.opengis.net/ogc"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.opengis.net/sld
http://schemas.opengis.net/sld/1.1.0/StyledLayerDescriptor.xsd">

<NamedLayer>
<se:Name>country_bounds</se:Name>
<UserStyle>

<se:Name>xxx</se:Name>
<se:FeatureTypeStyle>

<se:Rule>
<se:LineSymbolizer>

<se:Geometry>
<ogc:PropertyName>center-line</ogc:PropertyName>

</se:Geometry>
<se:Stroke>
<se:SvgParameter name="stroke">#0000ff</se:SvgParameter>

</se:Stroke>
</se:LineSymbolizer>

</se:Rule>
</se:FeatureTypeStyle>

</UserStyle>
</NamedLayer>

</StyledLayerDescriptor>

When MapServer gets a valid SLD through a request, it parses this SLD to extract all the styles attached to the
NamedLayers, and then it applies these styles to the map before it is returned to the client. When applying the
SLD, MapServer compares the <Name> parameter of the NamedLayers in the SLD document to the WMS layer
names (WMS layer names are available in a GetCapabilities request).

Note: All the examples given in this document are live uses of valid SLDs and a MapServer installation with
SLD support.

Additional WMS features related to SLDs have also been developed:

Table1. Additional WMS Features
Features Supported Notes

Method GET : SLD URL Yes
Method GET : SLD_BODY Yes Additional item
Describer Layer Yes
GetLegendGraphic Yes
GetStyles Yes Uses MapScript to get the SLD

Note: As of MapServer version 4.2.3, the GetLegendGraphic request (see section 12 of the Styled Layer Descrip-
tor Implementation Specification) works as follows: if the RULE keyword is absent from the request, an image
containing the entire legend for the specified layer will be returned. This image consists of the layer name and a
symbolization graphic and label for each class.

Specific SLD Elements Supported

The following tables give a lot of additional details about SLD support in MapServer.

Table2. Named Layers and User Layers

546 Chapter 9. OGC

http://www.opengeospatial.org/docs/02-070.pdf
http://www.opengeospatial.org/docs/02-070.pdf

MapServer Documentation, Release 6.4.1

Features Supported Notes
Named Layers Yes
User Layers No

Table3. Named Styles and User Styles

Features Supported Notes
Named Styles Yes
User Styles Yes

Table 4. User Styles

Features Sup-
ported

Notes

Name No This was removed at implementation time, since it does not fit with MapServer
Title No No use in the MapServer environment
Abstract No No use in the MapServer environment
IsDefault No Only one style is available per layer
FeatureType-
Style

Yes MapServer has a concept of one feature type style per layer (either point, line,
polygon, or raster)

Table 5. FeatureTypeStyle

Features Supported Notes
Name No No use in the MapServer environment
Title No No use in the MapServer environment
Abstract No No use in the MapServer environment
FeatureTypeName No No use in the MapServer environment
SemanticTypeIdentifier No Still an experimental element in the SLD specifications
Rule Yes

Table 6. Rule
Features Supported Notes

Name Yes
Title Yes
Abstract No No use in the MapServer environment
LegendGraphic Yes
Filter Yes
ElseFilter Yes
MinScaleDenominator Yes
MaxScaleDenominator Yes
LineSymbolizer Yes
PolygonSymbolizer Yes
PointSymbolizer Yes
TextSymbolizer Yes
RasterSymbolizer Yes Applies for 8-bit rasters

• Filter and ElseFilter

For each rule containing a filter, there is a class created with the class expression set to reflect that fil-
ter. Available filters that can be used are Comparison Filters and Logical Filters (see the Filter Encoding
HowTo). The ElseFilter parameters are converted into a class in MapServer and placed at the end of the
class list with no expression set. They are used to render elements that did not fit into any other classes.

• MinScaleDenomibator and MaxScaleDenominator are translated in minscale and maxscale in MapServer.

The following are examples of valid requests using the Filters:

• line with one filter: sld 6a / full request 6a

• line with multiple filters: sld 6b / full request 6b

• line with one filter and an else filter: sld 6c / full request 6c

9.1. OGC Support and Configuration 547

http://demo.mapserver.org/ogc-demos/map/sld/sld_line_one_filter.xml
http://demo.mapserver.org/cgi-bin/wms?SERVICE=wms&VERSION=1.1.1&REQUEST=GetMap&LAYERS=country_bounds&FORMAT=png&WIDTH=400&HEIGHT=300&SRS=EPSG:4326&STYLES=&BBOX=-180.0,-90.0,180.0,90.0&TRANSPARENT=TRUE&SLD=http://demo.mapserver.org/ogc-demos/map/sld/sld_line_one_filter.xml
http://demo.mapserver.org/ogc-demos/map/sld/sld_line_multi_filter.xml
http://demo.mapserver.org/cgi-bin/wms?SERVICE=wms&VERSION=1.1.1&REQUEST=GetMap&LAYERS=country_bounds&FORMAT=png&WIDTH=400&HEIGHT=300&SRS=EPSG:4326&STYLES=&BBOX=-180.0,-90.0,180.0,90.0&TRANSPARENT=TRUE&SLD=http://demo.mapserver.org/ogc-demos/map/sld/sld_line_multi_filter.xml
http://demo.mapserver.org/ogc-demos/map/sld/sld_line_one_filter_and_else.xml
http://demo.mapserver.org/cgi-bin/wms?SERVICE=wms&VERSION=1.1.1&REQUEST=GetMap&LAYERS=country_bounds&FORMAT=png&WIDTH=400&HEIGHT=300&SRS=EPSG:4326&STYLES=&BBOX=-180.0,-90.0,180.0,90.0&TRANSPARENT=TRUE&SLD=http://demo.mapserver.org/ogc-demos/map/sld/sld_line_one_filter_and_else.xml

MapServer Documentation, Release 6.4.1

• spatial filter using BBOX: sld 6d/ full request 6d

This example enables spatial filtering using the BBOX parameter as a Filter for a selected area
(Africa). Note that an ElseFilter will not work with a spatial filter.

Table 7. LineSymbolizer

Features Supported Notes
Geometry No MapServer uses the data geometry for the rendering
Stroke: GraphicFill No Solid color is used
Stroke: GraphicStroke Yes Draws the symbol along the line
Stroke (CssParameter): stroke Yes RGB colors are supported
Stroke (CssParameter): width Yes
Stroke (CssParameter): opacity Yes Only for AGG driver and mapserver version >=5.2
Stroke (CssParameter): linejoin and linecap No Not supported in MapServer
Stroke (CssParameter): dasharray Yes
Stroke (CssParameter): dashoffset No
PerperdicularOffset (only in SLD 1.1.0) Yes Offset values of the style object will be set
InitialGap(GraphicStroke SLD 1.1.0) No
Gap (GraphicStroke parameter SLD 1.1.0) No

Note: SvgParameter instead of CssParameter are required for SLD 1.1.0.

The following are examples of valid requests using the LineSymbolizer:

• simple line: sld 7a / full request 7a

• line with width: sld 7b / full request 7b

• dashed line: sld 7c / full request 7c

Table 8. PolygonSymbolizer

Features Supported Notes
Geometry No
Stroke Yes Strokes are the same as for the LineSymbolizer
Fill Yes Was developed to support symbol fill polygons in addition to solid fill
Fill-opacity Yes Only available for AGG driver and mapserver version >=5.2
PerperdicularOffset No SLD 1.1.0 parameter
Displacement Yes SLD 1.1.0 parameter. Sets offsetx/y in MapServer

A Fill can be a solid fill or be a Graphic Fill, which is either a well-known Mark symbol (e.g., square, circle,
triangle, star, cross, x) or an ExternalGraphic element (e.g., gif, png) available through a URL. When a Mark
symbol is used in an SLD, MapServer creates a corresponding symbol in the map file and uses it to render the
symbols. When a ExternalGraphic is used, the file is saved locally and a pixmap symbol is created in the mapfile
referring to the this file.

Note: The Web object IMAGEPATH is used to save the file.

The following are examples of valid requests using the PolygonSymbolizer:

• simple solid fill: sld 8a / full request 8a

• solid fill with outline: sld 8b / full request 8b

• fill with mark symbol: sld 8c / full request 8c

• fill with external symbol: sld 8d/ full request 8d

Table 9. PointSymbolizer

548 Chapter 9. OGC

http://demo.mapserver.org/ogc-demos/map/sld/sld_line_simple_spatial3.xml
http://demo.mapserver.org/cgi-bin/wms?SERVICE=wms&VERSION=1.1.1&REQUEST=GetMap&LAYERS=country_bounds&FORMAT=png&WIDTH=400&HEIGHT=300&SRS=EPSG:4326&STYLES=&BBOX=-180.0,-90.0,180.0,90.0&TRANSPARENT=TRUE&SLD=http://demo.mapserver.org/ogc-demos/map/sld/sld_line_simple_spatial3.xml
http://demo.mapserver.org/ogc-demos/map/sld/sld_line_simple.xml
http://demo.mapserver.org/cgi-bin/wms?SERVICE=wms&VERSION=1.1.1&REQUEST=GetMap&LAYERS=country_bounds&FORMAT=png&WIDTH=400&HEIGHT=300&SRS=EPSG:4326&STYLES=&BBOX=-180.0,-90.0,180.0,90.0&TRANSPARENT=TRUE&SLD=http://demo.mapserver.org/ogc-demos/map/sld/sld_line_simple.xml
http://demo.mapserver.org/ogc-demos/map/sld/sld_line_width.xml
http://demo.mapserver.org/cgi-bin/wms?SERVICE=wms&VERSION=1.1.1&REQUEST=GetMap&LAYERS=country_bounds&FORMAT=png&WIDTH=400&HEIGHT=300&SRS=EPSG:4326&STYLES=&BBOX=-180.0,-90.0,180.0,90.0&TRANSPARENT=TRUE&SLD=http://demo.mapserver.org/ogc-demos/map/sld/sld_line_width.xml
http://demo.mapserver.org/ogc-demos/map/sld/sld_line_dash.xml
http://demo.mapserver.org/cgi-bin/wms?SERVICE=wms&VERSION=1.1.1&REQUEST=GetMap&LAYERS=country_bounds&FORMAT=png&WIDTH=400&HEIGHT=300&SRS=EPSG:4326&STYLES=&BBOX=-180.0,-90.0,180.0,90.0&TRANSPARENT=TRUE&SLD=http://demo.mapserver.org/ogc-demos/map/sld/sld_line_dash.xml
http://demo.mapserver.org/ogc-demos/map/sld/sld_polygon_solid_fill.xml
http://demo.mapserver.org/cgi-bin/wms?SERVICE=WMS&VERSION=1.1.1&REQUEST=GetMap&LAYERS=continents&FORMAT=png&WIDTH=400&HEIGHT=300&SRS=EPSG:4326&STYLES=&BBOX=-180.0,-90.0,180.0,90.0&TRANSPARENT=TRUE&SLD=http://demo.mapserver.org/ogc-demos/map/sld/sld_polygon_solid_fill.xml
http://demo.mapserver.org/ogc-demos/map/sld/sld_polygon_solid_fill_outline.xml
http://demo.mapserver.org/cgi-bin/wms?SERVICE=WMS&VERSION=1.1.1&REQUEST=GetMap&LAYERS=continents&FORMAT=png&WIDTH=400&HEIGHT=300&SRS=EPSG:4326&STYLES=&BBOX=-180.0,-90.0,180.0,90.0&TRANSPARENT=TRUE&SLD=http://demo.mapserver.org/ogc-demos/map/sld/sld_polygon_solid_fill_outline.xml
http://demo.mapserver.org/ogc-demos/map/sld/sld_polygon_fill_symbol.xml
http://demo.mapserver.org/cgi-bin/wms?SERVICE=WMS&VERSION=1.1.1&REQUEST=GetMap&LAYERS=continents&FORMAT=png&WIDTH=400&HEIGHT=300&SRS=EPSG:4326&STYLES=&BBOX=-180.0,-90.0,180.0,90.0&TRANSPARENT=TRUE&SLD=http://demo.mapserver.org/ogc-demos/map/sld/sld_polygon_fill_symbol.xml
http://demo.mapserver.org/ogc-demos/map/sld/sld_polygon_fill_symbol_external.xml
http://demo.mapserver.org/cgi-bin/wms?SERVICE=WMS&VERSION=1.1.1&REQUEST=GetMap&LAYERS=continents&FORMAT=png&WIDTH=400&HEIGHT=300&SRS=EPSG:4326&STYLES=&BBOX=-180.0,-90.0,180.0,90.0&TRANSPARENT=TRUE&SLD=http://demo.mapserver.org/ogc-demos/map/sld/sld_polygon_fill_symbol_external.xml

MapServer Documentation, Release 6.4.1

Features Supported Notes
Geometry No
Graphic: Mark symbol Yes Well-known names (square, circle, triangle, star, cross, X) are supported
Graphic: ExternalGraphic Yes Was developed to support symbol fill polygons in addition to solid fill
Opacity Yes Support added in MapServer 5.4
Size Yes
Rotation Yes Support added in MapServer 5.4
Displacement Yes SLD 1.1.0 Paramater. Support added in MapServer 5.4
AnchorPoint No

Note: Refer to the PolygonSymbolizer notes for how the Mark and ExternalGraphic symbols are applied in
MapServer.

The following are examples of valid requests using the PointSymbolizer:

• filled mark symbol: sld 9a / full request 9a

• default settings (square, size 6, color 128/128/128): sld 9b / full request 9b

• external symbol: sld 9c / full request 9c

Table 10. TextSymbolizer

Features Sup-
ported

Notes

Geometry No
Label Yes
Font(font-
family)

Yes Font names used are those available in MapServer font file. If no fonts are available
there, default bitmap fonts are used

Font-style
(Italic, ...)

Yes

Font-
weight

Yes

Font-size Yes If true-type fonts are not used, default bitmap sizes are given
La-
belPlace-
ment

Yes PointPlacement is supported. LinePlacement is supported for versions >=5.2.1. Only
PerperdicularOffset and IsAligned are supported for LinePlacement.

Halo Yes Supported (fill converted to outlinecolor, and radius is converted to outlinewidth.
Note that outlinewidth is only available for AGG in >=5.2)

Fill Yes Only solid color is available

Notes on the TextSymbolizer:

• Font names: when converting Font parameters to MapServer, the following rule is applied to get the font
name: FontFamily-FontStyle-FontWeight. For example, if there is an SLD with a Font Family of arial, a
Font Style of italic, and a Font weight equal to bold, the resulting MapServer font name is arial-bold-italic.
Font Style and Weight are not mandatory and, if not available, they are not used in building the font name.
When a Font Style or a Font Weight is set to normal in an SLD, it is also ignored in building the name. For
example, if there is an SLD with a Font Family of arial, a Font Style of normal and a Font weight equals to
bold, the resulting MapServer font name is arial-bold.

• A TextSymbolizer can be used in MapServer on a Point, Line, or Polygon layer - in addition to other
symbolizers used for these layers.

• PointPacement: a point placement includes AnchorPoint (which is translated to Position in MapServer)
Displacement (which is translated to Offset) and Angle (which is translated to Angle).

• Angle setting (MapServer version >=5.4): by default the angle parameter is set to AUTO. For point features,
users can use the PointPlacement to alter the value. For line features, the user can add a LinePlacement: If
an ‘empty’ LinePlacement is part of the SLD, the angle will be set to FOLLOW, If a LinePlacement contains
the PerpendicualarOffset parameter, the angle will be set to 0 and the PerpendicualarOffset will be used to
set the offset values in the label object. SLD 1.1.0 introduces the IsAligned parameter for LinePlacement:
if this parameter is set to false, the angle will be set to 0.

9.1. OGC Support and Configuration 549

http://demo.mapserver.org/ogc-demos/map/sld/sld_symbol.xml
http://demo.mapserver.org/cgi-bin/wms?SERVICE=WMS&VERSION=1.1.1&REQUEST=GetMap&LAYERS=cities&BBOX=-84.7978536015,41.440374,-75.737539764,45.97524&FORMAT=png&WIDTH=400&HEIGHT=300&SRS=EPSG:4326&STYLES=&TRANSPARENT=TRUE&SLD=http://demo.mapserver.org/ogc-demos/map/sld/sld_symbol.xml
http://demo.mapserver.org/ogc-demos/map/sld/sld_symbol_default_settings.xml
http://demo.mapserver.org/cgi-bin/wms?SERVICE=WMS&VERSION=1.1.1&REQUEST=GetMap&LAYERS=cities&BBOX=-84.7978536015,41.440374,-75.737539764,45.97524&FORMAT=png&WIDTH=400&HEIGHT=300&SRS=EPSG:4326&STYLES=&TRANSPARENT=TRUE&SLD=http://demo.mapserver.org/ogc-demos/map/sld/sld_symbol_default_settings.xml
http://demo.mapserver.org/ogc-demos/map/sld/sld_symbol_external.xml
http://demo.mapserver.org/cgi-bin/wms?SERVICE=WMS&VERSION=1.1.1&REQUEST=GetMap&LAYERS=cities&BBOX=-84.7978536015,41.440374,-75.737539764,45.97524&http://demo.mapserver.org/cgi-bin/wms?SERVICE=WMS&VERSION=1.1.1&REQUEST=GetMap&LAYERS=cities&BBOX=-84.7978536015,41.440374,-75.737539764,45.97524&FORMAT=png&WIDTH=400&HEIGHT=300&SRS=EPSG:4326&STYLES=&TRANSPARENT=TRUE&SLD=http://demo.mapserver.org/ogc-demos/map/sld/sld_symbol_external.xml

MapServer Documentation, Release 6.4.1

The following are examples of valid requests using the TextSymbolizer:

• point layer : test for label, font, point placement, color, angle: sld 10a / full request 10a

• point layer with text and symbols using 2 symbolizers: sld 10b / full request 10b

• line layer with text using 2 symbolizers: sld 10c / full request 10c

Table 11. RasterSymbolizer

Features Supported Notes
Geometry No
Opacity Yes
ChannelSelection No
OverlapBehaviour No
ColorMap Yes
ContrastEnhancement No
ShadedRelief No
ImageOutline No

The current support in MapServer includes only ColorMap parameter support. It can be used to classify 8-bit
rasters. Inside the ColorMap parameters, the color and quantity parameters are extracted and used to do the
classification.

Table 12. ColorMap

The following Features are available in SLD 1.0

Features Supported Notes
Color Yes
Opacity No
Quantity Yes
Label No

The following is an example of ColorMap usage for SLD 1.0.

If we have following ColorMap in an SLD:

<ColorMap>
<ColorMapEntry color="#00ff00" quantity="22"/>
<ColorMapEntry color="#00bf3f" quantity="30"/>
<ColorMapEntry color="#007f7f" quantity="37"/>
<ColorMapEntry color="#003fbf" quantity="45"/>
<ColorMapEntry color="#0000ff" quantity="52"/>
<ColorMapEntry color="#000000" quantity="60"/>

</ColorMap>

The six classes that are created are:

class 1: [pixel] >= 22 AND [pixel] < 30 with color 00ff00
class 2: [pixel] >= 30 AND [pixel] < 37 with color 00bf3f
class 3: [pixel] >= 37 AND [pixel] < 45 with color 007f7f
class 4: [pixel] >= 45 AND [pixel] < 52 with color 003fbf
class 5: [pixel] >= 52 AND [pixel] < 60 with color 0000ff
class 6: [pixel] = 60 with color 000000

Note: The ColorMapEntry quantity parameters should be in increasing order.

The following Features are available in SLD 1.1

Features Supported Notes
Categorize Yes

The following is an example of and SLD 1.1.0 with a raster symbolizer

550 Chapter 9. OGC

http://demo.mapserver.org/ogc-demos/map/sld/sld_text_annotation.xml
http://demo.mapserver.org/cgi-bin/wms?SERVICE=WMS&VERSION=1.1.1&REQUEST=GetMap&LAYERS=cities&BBOX=-81.366241839,42.39269586,-77.8780568047,44.13861927&FORMAT=png&WIDTH=400&HEIGHT=300&SRS=EPSG:4326&STYLES=&TRANSPARENT=TRUE&SLD=http://demo.mapserver.org/ogc-demos/map/sld/sld_text_annotation.xml
http://demo.mapserver.org/ogc-demos/map/sld/sld_text_with_symbols.xml
http://demo.mapserver.org/cgi-bin/wms?SERVICE=WMS&VERSION=1.1.1&REQUEST=GetMap&LAYERS=cities&BBOX=-81.366241839,42.39269586,-77.8780568047,44.13861927&FORMAT=png&WIDTH=400&HEIGHT=300&SRS=EPSG:4326&STYLES=&TRANSPARENT=TRUE&SLD=http://demo.mapserver.org/ogc-demos/map/sld/sld_text_with_symbols.xml
http://demo.mapserver.org/ogc-demos/map/sld/sld_text_line.xml
http://demo.mapserver.org/cgi-bin/wms?SERVICE=WMS&VeRsIoN=1.1.1&Request=GetMap&LAYERS=WorldRoads&BBOX=-81.366241839,42.39269586,-77.8780568047,44.13861927&FORMAT=png&WIDTH=400&HEIGHT=300&SRS=EPSG:4326&STYLES=&TRANSPARENT=TRUE&SLD=http://demo.mapserver.org/ogc-demos/map/sld/sld_text_line.xml

MapServer Documentation, Release 6.4.1

<StyledLayerDescriptor version="1.1.0" xsi:schemaLocation="http://www.opengis.net/sld
http://schemas.opengis.net/sld/1.1.0/StyledLayerDescriptor.xsd"
xmlns="http://www.opengis.net/sld" xmlns:ogc="http://www.opengis.net/ogc"
xmlns:se="http://www.opengis.net/se" xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<NamedLayer>
<se:Name>landsat</se:Name>
<UserStyle>
<se:Name>xxx</se:Name>
<se:FeatureTypeStyle>
<se:Rule>
<se:RasterSymbolizer>
<se:Opacity>0.7</se:Opacity>
<se:ColorMap>
<se:Categorize fallbackValue="#78c818">
<se:LookupValue>Rasterdata</se:LookupValue>
<se:Value>#ffffff</se:Value>
<se:Threshold>22</se:Threshold>
<se:Value>#00ff00</se:Value>
<se:Threshold>30</se:Threshold>
<se:Value>#00bf3f</se:Value>
<se:Threshold>37</se:Threshold>
<se:Value>#007f7f</se:Value>
<se:Threshold>45</se:Threshold>
<se:Value>#003fbf</se:Value>
<se:Threshold>52</se:Threshold>
<se:Value>#0000ff</se:Value>
<se:Threshold>60</se:Threshold>
<se:Value>#000000</se:Value>
</se:Categorize>
</se:ColorMap>
</se:RasterSymbolizer>
</se:Rule>
</se:FeatureTypeStyle>
</UserStyle>
</NamedLayer>
</StyledLayerDescriptor>

The classes that are created are:

class 1: [pixel] < 22 with color ffffff
class 2: [pixel] >= 22 AND [pixel] < 30 with color 00ff00
class 3: [pixel] >= 30 AND [pixel] < 37 with color 00bf3f
class 4: [pixel] >= 37 AND [pixel] < 45 with color 007f7f
class 5: [pixel] >= 45 AND [pixel] < 52 with color 003fbf
class 6: [pixel] >= 52 AND [pixel] < 60 with color 0000ff
class 7: [pixel] >= 60 with color 000000

Examples using 8 bits and 16 bits rasters can be seen at:

• example 1

• example 2

Client Side Support

Client side support of the SLD consists of two parts:

• The first part is using MapServer as a WMS client to send a GetMap request with an SLD. This is done
using two metadata that can be placed at a layer level in a MapServer mapfile. These two metadata are:

– wms_sld_url, which takes a valid URL as a value and appends SLD=xxx to the GetMap request.

9.1. OGC Support and Configuration 551

http://demo.mapserver.org/cgi-bin/wms_landsat?SERVICE=WMS&VERSION=1.1.1&REQUEST=GetMap&LAYERS=lunenburg&BBOX=380232,4900124,420507,4928504&SRS=EPSG:2961&FORMAT=image/png&WIDTH=400&HEIGHT=400&SLD=http://demo.mapserver.org/ogc-demos/map/sld/sld_raster.xml
http://demo.mapserver.org/cgi-bin/wms_landsat?SERVICE=WMS&VERSION=1.1.1&REQUEST=GetMap&LAYERS=goldenCO&BBOX=478575,4399785,489315,4413735&SRS=EPSG:26713&FORMAT=image/png&WIDTH=400&HEIGHT=400&SLD=http://demo.mapserver.org/ogc-demos/map/sld/sld_raster_16bits.xml

MapServer Documentation, Release 6.4.1

– wms_sld_body, which takes a valid SLD string and appends SLD_BODY=xxx to the GetMap
request. If the value of wms_sld_body is set to AUTO, MapServer generates an SLD based on the
classes found in the layer and send this SLD as the value of the SLD_BODY parameter in the GetMap
request.

• The other major item is the generation of an SLD document from MapServer classes. These functions are
currently available through MapServer/MapScript interface. Here are the functions available:

– on a map object: generatesld

– on a layer object: generatesld

Additional MapScript functions have been added or will be added to complement these functions:

– on a map object: applysld

– on a layer object: applysld

Note: When generating an SLD from MapServer classes, if there is a pixmap symbol you need to have this
symbol available through a URL so it can be converted as an ExternalGraphic symbol in the SLD. To do this, you
need to define the URL through a web object level metadata called WMS_SLD_SYMBOL_URL in your map file.
The SLD generated uses this URL and concatenates the name of the pixmap symbol file to get the value that is
generated as the ExternaGraphic URL.

PHP/MapScript Example that Generates an SLD from a Mapfile

The following is a small script that calls the generateSLD() function to create an SLD for a specific layer in a
mapfile:

1 <?php
2

3 // define variables
4 define("MAPFILE", "D:/ms4w/apps/cadastra/map/cadastra.map");
5 define("MODULE", "php_mapscript.dll");
6

7 // load the mapscript module
8 if (!extension_loaded("MapScript")) dl(MODULE);
9

10 // open map
11 $oMap = ms_newMapObj(MAPFILE);
12

13 // get the parcel layer
14 $oLayer = $oMap->getLayerByName("parcel");
15

16 // force visibilty of the layer
17 $oLayer->set(’status’, MS_ON);
18

19 // generate the sld for that layer
20 $SLD = $oLayer->generateSLD();
21

22 // save sld to a file
23 $fp = fopen("parcel-sld.xml", "a");
24 fputs($fp, $SLD);
25 fclose($fp);
26

27 ?>

Named Styles support

Named styles support are introduced in MapServer 5.2. The support is base on rfc39.

552 Chapter 9. OGC

MapServer Documentation, Release 6.4.1

MapServer 5.2 introduces the possibility to assign a group to a series of classes defined on a layer object using
two new non-mandatory keywords CLASSGROUP (at the layer level) and GROUP at the class level:

LAYER
...
CLASSGROUP "group1"
...
CLASS

NAME "name1"
GROUP "group1"
...

END
CLASS

NAME "name2"
GROUP "group2"
...

END
CLASS

NAME "name3"
GROUP "group1"
...

END
...

At rendering time, if the CLASSGROUP is defined, only classes that have the same group name would be used.
Based on this concept, WMS/SLD support uses the class groups as named styles. Each group of classes is consid-
ered equivalent to a named style:

• The GetCapbilities request will output all the styles that are available

• The GetMap request can use the STYLES parameter to specify a named style

• The GetLegendGraphic can use the STYLES parameter to specify a named style

Other Items Implemented

• Support of filled polygons with Mark and ExternalGraphic symbols.

• MapScript functions to parse and apply SLD.

• SLD_BODY request support on client and server side.

Issues Found During Implementation

• Limitation of the FilterEncoding to comparison and logical filters. The spatial filters were not made available
since it required major changes in MapServer WMS support.

9.1.13 WCS Server

Author Jeff McKenna

Contact jmckenna at gatewaygeomatics.com

Author Stephan Meissl

Contact stephan.meissl at eox.at

Author Fabian Schindler

Contact fabian.schindler at eox.at

Last Updated 2012-08-30

9.1. OGC Support and Configuration 553

MapServer Documentation, Release 6.4.1

Table of Contents

• WCS Server
– Introduction
– Configuring Your Mapfile to Serve WCS Layers
– Test Your WCS 1.0 Server
– WCS 1.1.0+ Issues
– WCS 2.0
– HTTP-POST support
– Reference Section
– Rules for handling SRS in a MapServer WCS
– Spatio/Temporal Indexes
– WCS 2.0 Application Profile - Earth Observation (EO-WCS)
– To-do Items and Known Limitations

Introduction

A WCS (or Web Coverage Service) allows for the publication of “coverages”- digital geospatial information
representing space-varying phenomena. In the MapServer world it allows for unfiltered access to raster data.
Conceptually it is easy think of WCS as a raster equivalent of WFS. The following documentation is based on
the Open Geospatial Consortium’s (OGC) Web Coverage Service Interfaces Implementation Specification version
1.0.0.

Links to WCS-Related Information

• OGC’c WCS Standard page

• WCS 1.0.0 specification

• WCS 1.1.1c1 specification

• WCS 2.0

– GML 3.2.1 Application Schema Coverages

– WCS 2.0 Specification - Core

– WCS 2.0 Specification - KVP Protocol Binding Extension

– WCS 2.0 Specification - XML/POST Protocol Binding Extension

• WMS Server HowTo

Software Requirements

In order to enable MapServer to serve WCS data, it MUST be compiled against certain libraries:

• PROJ.4: The reprojection library. Version 4.4.3 or greater is required.

• GDAL: raster support library.

• MapServer: version >= 4.4 (tested with 5.0.2 while updating this document)

For WCS 1.1.x (MapServer 5.2) and WCS 2.0 (MapServer 6.0) support there is an additional requirement:

• libxml2: An xml parser and generation library.

Please see the MapServer UNIX Compilation and Installation HowTo for detailed instructions on compiling
MapServer with support for these libraries and features. For Windows users, MapServer for Windows (MS4W)
comes with WCS Server support.

554 Chapter 9. OGC

https://portal.opengeospatial.org/files/?artifact_id=3837
https://portal.opengeospatial.org/files/?artifact_id=3837
http://www.opengeospatial.org/standards/wcs
https://portal.opengeospatial.org/files/?artifact_id=3837
http://portal.opengeospatial.org/files/?artifact_id=22560
http://portal.opengeospatial.org/files/?artifact_id=48553
http://portal.opengeospatial.org/files/?artifact_id=48428
http://portal.opengeospatial.org/files/?artifact_id=41439
http://portal.opengeospatial.org/files/?artifact_id=41440
http://www.maptools.org/ms4w/index.phtml

MapServer Documentation, Release 6.4.1

Configuring Your Mapfile to Serve WCS Layers

Much as in the WMS and WFS support, WCS publishing is enabled by adding certain magic METADATA key-
word/value pairs to a .map file.

MapServer will serve and include in its WCS capabilities only the layers that meet the following conditions:

• Data source is a raster, which is processed using GDAL (e.g GeoTIFF, Erdas Imagine, ...)

• LAYER NAME must be set

• LAYER TYPE is set to RASTER

• WEB metadata or LAYER metadata “wcs_enable_request” must be set

• WEB metadata “wcs_label” must be set

• LAYER metadata “wcs_label” must be set

• LAYER metadata “wcs_rangeset_name” must be set

• LAYER metadata “wcs_rangeset_label” must be set

• LAYER is enabled to be served via WCS (see MS RFC 67)

• LAYER PROJECTION must be set, even if PROJECTION is set at the MAP level (a bug?)

Example WCS Server Mapfile

The following is an example of a simple WCS Server mapfile. Note the comments for the required parameters.

MAP
NAME W C S _ s e r v e r
STATUS ON
SIZE 400 300
SYMBOLSET "../etc/symbols.txt"
EXTENT -2200000 -712631 3072800 3840000
UNITS METERS
SHAPEPATH "../data"
IMAGECOLOR 255 255 255
FONTSET "../etc/fonts.txt"

#
Start of web interface definition
#
WEB
IMAGEPATH "/ms4w/tmp/ms_tmp/"
IMAGEURL "/ms_tmp/"
METADATA

"wcs_label" "GMap WCS Demo Server" ### required
"wcs_description" "Some text description of the service"
"wcs_onlineresource" "http://127.0.0.1/cgi-bin/mapserv.exe?" ### recommended
"wcs_fees" "none"
"wcs_accessconstraints" "none"
"wcs_keywordlist" "wcs,test"
"wcs_metadatalink_type" "TC211"
"wcs_metadatalink_format" "text/plain"
"wcs_metadatalink_href" "http://someurl.com"
"wcs_address" "124 Gilmour Street"
"wcs_city" "Ottawa"
"wcs_stateorprovince" "ON"
"wcs_postcode" "90210"
"wcs_country" "Canada"
"wcs_contactelectronicmailaddress" "blah@blah"
"wcs_contactperson" "me"

9.1. OGC Support and Configuration 555

http://mapserver.org/development/rfc/ms-rfc-67.html

MapServer Documentation, Release 6.4.1

"wcs_contactorganization" "unemployed"
"wcs_contactposition" "manager"
"wcs_contactvoicetelephone" "613-555-1234"
"wcs_contactfacimiletelephone" "613-555-1235"
"wcs_service_onlineresource" "http://127.0.0.1/cgi-bin/mapserv.exe?"
"wcs_enable_request" "*"

END
END

PROJECTION
"init=epsg:42304"

END

LAYER
NAME b a t h y m e t r y
METADATA

"wcs_label" "Elevation/Bathymetry" ### required
"wcs_rangeset_name" "Range 1" ### required to support DescribeCoverage request
"wcs_rangeset_label" "My Label" ### required to support DescribeCoverage request

END
TYPE RASTER ### required
STATUS ON
DATA b a t h _ m a p s e r v e r . t i f
PROJECTION

"init=epsg:42304"
END

END
END # Map File

Output Formats

The raster formats supported by MapServer WCS are determined by the wcs_formats metadata item on the
LAYER. This should contain a space separated list of OUTPUTFORMAT driver names separated by spaces.
If absent, all raster OUTPUTFORMATs are allowed.

WCS is a “raw data” oriented format. So it often most suitable to use it with format using the BYTE, INT16 and
FLOAT32 IMAGEMODEs with GDAL related output formats rather than the built in “rendering oriented” output
formats. By default the only GDAL format driver defined is the GTiff driver. The following are example output
format declarations utilizing the raw image modes:

OUTPUTFORMAT
NAME GEOTIFF_16
DRIVER "GDAL/GTiff"
MIMETYPE "image/tiff"
IMAGEMODE FLOAT32
EXTENSION "tif"

END

OUTPUTFORMAT
NAME AAIGRID
DRIVER "GDAL/AAIGRID"
MIMETYPE "image/x-aaigrid"
IMAGEMODE INT16
EXTENSION "grd"
FORMATOPTION "FILENAME=result.grd"

END

The FORMATOPTION FILENAME defines the preferred name of the result file when returned WCS GetCoverage
results.

556 Chapter 9. OGC

MapServer Documentation, Release 6.4.1

Test Your WCS 1.0 Server

Validate the Capabilities Metadata

OK, now that we’ve got a mapfile, we have to check the XML capabilities returned by our server to make sure
nothing is missing.

Using a web browser, access your server’s online resource URL to which you add the parameters “SER-
VICE=WCS&VERSION=1.0.0&REQUEST=GetCapabilities” to the end, e.g.

http://my.host.com/cgi-bin/mapserv?map=mywcs.map&SERVICE=WCS
&VERSION=1.0.0&REQUEST=GetCapabilities

If you get an error message in the XML output then take necessary actions. Common problems and solutions are
listed in the FAQ at the end of this document.

If everything went well, you should have a complete XML capabilities document. Search it for the word “WARN-
ING”... MapServer inserts XML comments starting with “<!–WARNING: ” in the XML output if it detects
missing mapfile parameters or metadata items.

Note that when a request happens, it is passed through WMS, WFS, and WCS in MapServer (in that order) until
one of the services respond to it.

Here is a working example of a GetCapabilities request:

WCS GetCapabilities live example

Test With a DescribeCoverage Request

OK, now that we know that our server can produce a valid XML GetCapabilities response we should test the De-
scribeCoverage request. The DescribeCoverage request lists more information about specific coverage offerings.

Using a web browser, access your server’s online resource URL to which you add the parameters “SER-
VICE=WCS&VERSION=1.0.0&REQUEST=DescribeCoverage&COVERAGE=layername” to the end, e.g.

http://my.host.com/cgi-bin/mapserv?map=mywcs.map&SERVICE=WCS
&VERSION=1.0.0&REQUEST=DescribeCoverage&COVERAGE=bathymetry

Here is a working example of a DescribeCoverage request:

WCS DescribeCoverage live example

Test With a GetCoverage Request

The GetCoverage request allows for the retrieval of coverages in a specified output format to the client.

The following is a list of the required GetCoverage parameters according to the WCS spec:

VERSION=version: Request version

REQUEST=GetCoverage: Request name

COVERAGE=coverage_name: Name of an available coverage, as stated in the GetCapabilities

CRS=epsg_code: Coordinate Reference System in which the request is expressed.

BBOX=minx,miny,maxx,maxy: Bounding box corners (lower left, upper right) in CRS units. One
of BBOX or TIME is required.

TIME=time1,time2: Request a subset corresponding to a time. One of BBOX or TIME is required..

WIDTH=output_width: Width in pixels of map picture. One of WIDTH/HEIGHT or RESX/Y is
required.

9.1. OGC Support and Configuration 557

http://demo.mapserver.org/cgi-bin/wcs?SERVICE=wcs&VERSION=1.0.0&REQUEST=GetCapabilities
http://demo.mapserver.org/cgi-bin/wcs?SERVICE=wcs&VERSION=1.0.0&REQUEST=DescribeCoverage&COVERAGE=modis

MapServer Documentation, Release 6.4.1

HEIGHT=output_height: Height in pixels of map picture. One of WIDTH/HEIGHT or RESX/Y is
required.

RESX=x: When requesting a georectified grid coverage, this requests a subset with a specific spatial
resolution. One of WIDTH/HEIGHT or RESX/Y is required.

RESY=y: When requesting a georectified grid coverage, this requests a subset with a specific spatial
resolution. One of WIDTH/HEIGHT or RESX/Y is required.

FORMAT=output_format: Output format of map, as stated in the DescribeCoverage response.

The following are optional GetCoverage parameters according to the WCS spec:

RESPONSE_CRS=epsg_code: Coordinate Reference System in which to express coverage re-
sponses.

So to follow our above examples, a valid DescribeCoverage request would look like:

http://my.host.com/cgi-bin/mapserv?map=mywcs.map&SERVICE=wcs
&VERSION=1.0.0&REQUEST=GetCoverage&coverage=bathymetry
&CRS=EPSG:42304&BBOX=-2200000,-712631,3072800,3840000&WIDTH=3199
&HEIGHT=2833&FORMAT=GTiff

Here is a working example of a GetCoverage request (note that a 350KB tif is being requested, so this may take a
second):

WCS GetCoverage live example

WCS 1.1.0+ Issues

WCS 1.1.0 and later versions of the WCS protocol are supported by MapServer 5.2. For the most part the map
file setup for WCS 1.1.0 is similar to WCS 1.0.0, but the actual protocol is substantially changed.

GetCapabilities

The GetCapabilities request is the same as WCS 1.0 but with a different VERSION value:

SERVICE=WCS&VERSION=1.1.0&REQUEST=GetCapabilities

The format of the returned capabilities document is substantially altered from WCS 1.0, and makes use of OWS
Common for service descriptions.

DescribeCoverage

The DescribeCoverage request is similar to WCS 1.0, but the IDENTIFIER keyword is used instead of COVER-
AGE to name the coverage being requested:

SERVICE=WCS&VERSION=1.1.0&REQUEST=DescribeCoverage&IDENTIFIER=spaceimaging

GetCoverage

The format for GetCoverage is substantially changed from 1.0. The following is a list of GetCoverage required
parameters:

VERSION=version: Request version

REQUEST=GetCoverage: Request name

IDENTIFIER=coverage_name: Name of an available coverage, as stated in the GetCapabilities

BOUNDINGBOX=minx,miny,maxx,maxy,crs: Bounding box corners (lower left, upper right), and
the CRS they are in. The CRS is described using a URN.

558 Chapter 9. OGC

http://demo.mapserver.org/cgi-bin/wcs?SERVICE=wcs&VERSION=1.0.0&REQUEST=GetCoverage&COVERAGE=modis-001&CRS=EPSG:26915&BBOX=159707,4597395,1400707,5501395&WIDTH=400&HEIGHT=300&FORMAT=GEOTIFF_RGB

MapServer Documentation, Release 6.4.1

FORMAT=output_format: Output format (mime type) of grid product, as stated in the GetCapabil-
ities.

If an alternate spatial resolution is desired, then the following set of keywords must be used to specify the sample
origin and step size of the output grid to be produced. The produced grid will be of a number of pixels and lines
as can be fit in the BOUNDINGBOX starting at GridOrigin, at GridOffsets resolution.

GRIDBASECRS=crs: The grid base CRS (URN).

GRIDCS=crs: The grid CRS (URN).

GridType=urn:ogc:def:method:WCS:1.1:2dGridIn2dCrs: This is the only supported value for
MapServer.

GridOrigin=x_origin,y_origin: The sample point for the top left pixel.

GridOffsets=xstep,ystep: The x and y step size for grid sampling (resolution). Both are positive.

As well, the following optional parameters are available.

RangeSubset=selection: Selects a range subset, and interpolation method. Currently only sub-
setting on bands are allowed. Depending on rangeset names, this might take the form “Band-
sName[bands[1]]” to select band 1, or “BandsName:bilinear[bands[1]]” to select band 1 with bilinear
interpolation.

So a simple GetCoverage might look like:

SERVICE=WCS&VERSION=1.1.0&REQUEST=GetCoverage&IDENTIFIER=dem&FORMAT=image/tiff
&BOUNDINGBOX=43,33,44,34,urn:ogc:def:crs:EPSG::4326

A more complex request might look like:

SERVICE=WCS&VERSION=1.1.0&REQUEST=GetCoverage&IDENTIFIER=dem&FORMAT=image/tiff
&BOUNDINGBOX=33,43,34,44,urn:ogc:def:crs:EPSG::4326
&GridBaseCRS=urn:ogc:def:crs:EPSG::4326&GridCS=urn:ogc:def:crs:EPSG::4326
&GridType=urn:ogc:def:method:WCS:1.1:2dGridIn2dCrs
&GridOrigin=33,44&GridOffsets=0.01,0.01
&RangeSubset=BandsName:bilinear[bands[1]]

It should also be noted that return results from WCS 1.1 GetCoverage requests are in multi-part mime format.
Typically this consists of a first part with an xml document referencing the other parts of the message, and an
image file part. However, for output formats that return multiple files, each will be a separate part. For instance,
this means it is possible to return a jpeg file with a world file, the OUTPUTFORMAT is appropriately configured.

URNs

In WCS 1.1 protocol coordinate systems are referenced by URN. Some typical URNs are:

urn:ogc:def:crs:EPSG::4326
urn:ogc:def:crs:EPSG:27700
urn:ogc:def:crs:OGC::CRS84

The first two are roughly equivalent to EPSG:4326, and EPSG:27700 while the third is a CRS defined by OGC
(essentially WGS84). One critical thing to note is that WCS 1.1 follows EPSG defined axis/tuple ordering for
geographic coordinate systems. This means that coordinates reported, or provided in urn:ogc:def:EPSG::4326
(WGS84) are actually handled as lat, long, not long,lat. So, for instance the BOUNDINGBOX for an area in
California might look like:

BOUNDINGBOX=34,-117,35,-116,urn:ogc:def:crs:EPSG::4326

And, likewise the bounds reported by GetCapabilities, and DescribeCoverage will be in this ordering as appropri-
ate.

9.1. OGC Support and Configuration 559

MapServer Documentation, Release 6.4.1

WCS 2.0

Overview

Version 6.0 introduces support for the new version 2.0 of the WCS specification. This section documents the usage
of the new WCS version.

Web Coverage Service (WCS) 2.0 Interface Standard This specification adopts the new OGC Core and Ex-
tension model and at the moment the following documents are available from the OGC’c WCS Standard page:

• GML 3.2.1 Application Schema Coverages

• WCS 2.0 Specification - Core

• WCS 2.0 Specification - KVP Protocol Binding Extension

• WCS 2.0 Specification - XML/POST Protocol Binding Extension

Technical changes from WCS version 1.1.2 include entirely building on the GML 3.2.1 Application Schema
Coverages and adoption of OWS Common 2.0. Another major change is the introduction of trim and slice concepts
which is explained in more detail below.

There are WCS 2.0 Schemas defined against which all requests and responses should validate.

WCS 2.0 KVP request parameters The following KVP request parameters are available in WCS 2.0:

COVERAGEID=id: This parameter is technically the same as the COVERAGE parameter for WCS
1.0 or the IDENTIFIER parameter for WCS 1.1. In DescribeCoverage requests, multiple IDs can
be requested by concatenating them with commas.

SUBSET=axis[,crs](low,high): This parameter subsets the coverage on the given axis. This parame-
ter can be given multiple times, but only once for each axis. The optional sub-parameter crs can either
be an EPSG definition (like EPSG:4326), an URN or an URI or ‘imageCRS’ (which is the default).
All crs sub-parameters from all SUBSET parameters must be equal. (e.g: you cannot subset one axis
in imageCRS and another in EPSG:4326).

Note: The syntax of the crs sub-parameter is likely to need to be changed when new specification
documents become available (see To-do Items and Known Limitations).

SIZE=axis(value): This parameter sets the size of the desired axis to the desired value (pixels).

RESOLUTION=axis(value): This parameter sets the resolution of the desired axis to the desired
value (pixels/unit).

Note: The SIZE and RESOLUTION are mutually exclusive on one axis, but can be mixed on dif-
ferent axes (e.g: SIZE on x-axis and RESOLUTION on y-axis). Also axis names in SUBSET, SIZE
and RESOLUTION parameters cannot be mixed. E.g: ...&SUBSET=x(0,100)&SIZE=lon(200)&...
is not legal although the axis names logically refer to the same axis.

Note: Recognized values for the axis sub-parameter are: “x”, “xaxis”, “x-axis”, “x_axis”, “long”,
“long_axis”, “long-axis”, “lon”, “lon_axis”, “lon-axis”, “y”, “yaxis”, “y-axis”, “y_axis”, “lat”,
“lat_axis” and “lat-axis”.

OUTPUTCRS=crs: This parameter defines in which crs the output image should be expressed in.

MEDIATYPE=mediatype: This parameter is relevant to GetCoverage requests, when multipart
XML/image output is desired. It should be set to ‘multipart/related’ (which is currently the only
possible value for this parameter).

560 Chapter 9. OGC

http://www.opengeospatial.org/standards/wcs
http://portal.opengeospatial.org/files/?artifact_id=48553
http://portal.opengeospatial.org/files/?artifact_id=48428
http://portal.opengeospatial.org/files/?artifact_id=41439
http://portal.opengeospatial.org/files/?artifact_id=41440
http://portal.opengeospatial.org/files/?artifact_id=48553
http://portal.opengeospatial.org/files/?artifact_id=48553
http://portal.opengeospatial.org/files/?artifact_id=38867
http://schemas.opengis.net/wcs/2.0/

MapServer Documentation, Release 6.4.1

INTERPOLATION=intperolation_method: This defines the interpolation method used, for
rescaled images. Possible values are “NEAREST”, “BILINEAR” and “AVERAGE”.

RANGESUBSET=band1[,band2[,...]]: With this parameter, a selection of bands can be made. Also
the bands can be reordered. The bands can be referred to either by name (which can be retrieved using
the DescribeCoverage request) or by index (starting with ‘1’ for the first band).

Note: The paramter names SIZE, RESOLUTION, OUTPUTCRS=crs:, INTERPOLATION, and
RANGESUBSET might need to be changed when new specification documents become available
(see To-do Items and Known Limitations).

Unchanged KVP parameters The following parameters have not (or just slightly) changed since the last ver-
sion of the WCS standard.

VERSION=version: For WCS 2.0, this should be set to ‘2.0.1’.

SERVICE=service

REQUEST=request

ACCEPTVERSIONS=versions

SECTIONS=sections

UPDATESEQUENCE=updatesequence

ACCEPTFORMATS=formats: This parameter is currently ignored.

ACCEPTLANGUAGES=languages: This parameter is currently ignored.

FORMAT=format: The desired format can now also be set with the name of the outputformat object
defined in the mapfile. In contrast to previous versions of WCS this parameter is optional when the
native format is either specified or can be determined via GDAL.

MAP=mapfile

KVP request examples The below sample request outline the new KVP request syntax:

GetCapabilities
http://www.yourserver.com/wcs?SERVICE=wcs&VERSION=2.0.1

&REQUEST=GetCapabilities
DescribeCoverage 2.0
http://www.yourserver.com/wcs?SERVICE=wcs&VERSION=2.0.1

&REQUEST=DescribeCoverage&COVERAGEID=grey
GetCoverage 2.0 image/tiff full
http://www.yourserver.com/wcs?SERVICE=wcs&VERSION=2.0.1

&REQUEST=GetCoverage&COVERAGEID=grey&FORMAT=image/tiff
GetCoverage 2.0 multipart/related (GML header & image/tiff) full
http://www.yourserver.com/wcs?SERVICE=wcs&VERSION=2.0.1

&REQUEST=GetCoverage&COVERAGEID=grey&FORMAT=image/tiff
&MEDIATYPE=multipart/related

GetCoverage 2.0 image/tiff trim x y both
http://www.yourserver.com/wcs?SERVICE=wcs&VERSION=2.0.1

&REQUEST=GetCoverage&COVERAGEID=grey&FORMAT=image/tiff
&SUBSET=x(10,200)&SUBSET=y(10,200)

GetCoverage 2.0 reproject to EPSG 4326
http://www.yourserver.com/wcs?SERVICE=wcs&VERSION=2.0.1

&REQUEST=GetCoverage&COVERAGEID=grey&FORMAT=image/tiff
&SUBSET=x,http://www.opengis.net/def/crs/EPSG/0/4326(-121.488744,-121.485169)

Please refer to the WCS 2.0 tests in msautotest for further sample requests.

9.1. OGC Support and Configuration 561

http://trac.osgeo.org/mapserver/browser/trunk/msautotest/wxs/wcs_simple.map

MapServer Documentation, Release 6.4.1

Changes to previous versions

The layer name must be a valid NCName, i.e: must not start with a number and can only contain alphanumerical
characters. This constraint derives of the gml:id property which has to be a NCName, that relates to the coverage
ID which is itself taken from the layers name.

Specifying coverage specific metadata

For WCS enabled layers in MapServer, there are different possibilities for declaring coverage metadata for WCS
2.0. In the simplest case, all of the required metadata can be retrieved from the source image.

For some reason this may not be desireable, maybe because the source image does not provide these metadata.
Not every input image format has geospatial metadata attached. In this case, the layer metadata can be used to
provide this information.

The convention is that once (wcs|ows)_extent and one of (wcs|ows)_size and (wcs|ows)_resolution is set in the
layer metadata, all the coverage specific metadata will be retrieved from there. Otherwise the source image is
queried via GDAL, if possible.

The relevant layer metadata fields are (wcs|ows)_bandcount, (wcs|ows)_imagemode, (wcs|ows)_native_format,
and all New band related metadata entries.

New band related metadata entries

In this section new WCS 2.0 specific layer metadata entries are discussed.

The following layer metadata fields can be used to return a more detailed description for the range type of a
“virtual dataset” coverage. A coverage is considered as a “virtual dataset” if the (wcs|ows)_extent metadata entry
and one of the (wcs|ows)_size or (wcs|ows)_resolution metadata entries are set.

First of all, the used version of metadata has to be identified. To identify the bands of a coverage, one of the
following fields must be present:

• (wcs|ows)_band_names (corresponding to WCS 2.0)

• (wcs|ows)_rangeset_axes (corresponding to WCS 1.1)

The type of these fields is a space delimited list of names, whereas the count of the names has to match the
“bandcount” metadata field. These names are then used as a prefix for other metadata fields only concerning this
band. The possible metadata keys are the following:

• WCS 2.0:

– {band_name}_band_interpretation

– {band_name}_band_uom

– {band_name}_band_definition

– {band_name}_band_description

– {band_name}_interval

• WCS 1.1

– {band_name}_semantic

– {band_name}_values_types

– {band_name}_values_semantic

– {band_name}_description

– {band_name}_interval

562 Chapter 9. OGC

MapServer Documentation, Release 6.4.1

All values are interpreted as strings, only “interval” is interpreted as 2 double precision float values separated with
a space.

Also default values can be configured for every key. These have the same suffix as the band specific keys but start
with (wcs|ows) instead of the bands name:

• WCS 2.0:

– (wcs|ows)_band_interpretation

– (wcs|ows)_band_uom

– (wcs|ows)_band_definition

– (wcs|ows)_band_description

– (wcs|ows)_interval

• WCS 1.1

– (wcs|ows)_semantic

– (wcs|ows)_values_types

– (wcs|ows)_values_semantic

– (wcs|ows)_description

– (wcs|ows)_interval

If no specific or default value is given, the output is dependant on the metadata key. The UOM, for example will be
set to ‘W.m-2.Sr-1’, interval and significant figures will be determined according to the image type and definition,
description, and interpretation will not be visible in the output at all.

This example demonstrates the use of the band-specific metadata fields with their default values:

METADATA
"ows_srs" "EPSG:4326"
"wcs_extent" "47.5070762077246 16.038578977182 49.0103258976982 17.2500586851354"

"wcs_size" "1200 1100"
"wcs_imagemode" "BYTE"

"wcs_bandcount" "3"
"wcs_band_names" "BandA BandB BandC"

#default values
"wcs_band_interpretation" "This is default interpretation"
"wcs_band_uom" "DefaultUOM"
"wcs_band_definition" "DefaultDefinition"
"wcs_band_description" "This is default description"
"wcs_interval" "0 125"
"wcs_significant_figures" "3"

#specific band values
"BandA_band_interpretation" "This is a specific interpretation"
"BandA_band_uom" "SpecificUOM"
"BandA_band_definition" "SpecificDefinition"
"BandA_band_description" "This is a specific description"
"BandA_interval" "0 255"

END

The above example would result in having BandA a more specific description, and BandB and BandC having the
default description. It would also be possible to only use some of the specific values for BandA and others from
the default.

If no default and specific values are given for the interval or significant figures metadata field, the a default is
generated from the “imagemode” field, which itself defaults to FLOAT32.

9.1. OGC Support and Configuration 563

MapServer Documentation, Release 6.4.1

The new metadata fields also contain the (wcs|ows)_nilvalues and (wcs|ows)_nilvalues_reasons

• (wcs|ows)_nilvalues

With this field, specific nilvalues can be set. The values have to be delimited by a space.

• (wcs|ows)_nilvalues_reasons

This field defines the reasons for the specific nilvalues. The reasons are also space delimited and reference the
nilvalue with the same index. The values for the reasons should be URIs or URNs.

The following example demonstrates the use of both metadata fields:

METADATA
"ows_srs" "EPSG:4326"
"wcs_extent" "47.5070762077246 16.038578977182 49.0103258976982 17.2500586851354"

"wcs_size" "1200 1100"
"wcs_imagemode" "BYTE"
"wcs_bandcount" "3"

"wcs_nilvalues" "0 255"
"wcs_nilvalues_reasons"
"urn:ogc:def:nil:OGC::BelowDetectionLimit urn:ogc:def:nil:OGC::AboveDetectionLimit"

END

HTTP-POST support

Since version 6.0 MapServer also supports HTTP-POST XML requests. All requests possible via HTTP GET
can also be sent via POST. POST requests are possible for WCS 1.1 or WCS 2.0 which adhere to the according
standard.

This is an example GetCapabilities request:

<?xml version="1.0" encoding="UTF-8"?>
<wcs:GetCapabilities

xmlns:xsi=’http://www.w3.org/2001/XMLSchema-instance’
xsi:schemaLocation="http://www.opengis.net/wcs/2.0
http://schemas.opengis.net/wcs/2.0/wcsAll.xsd"

xmlns="http://www.opengis.net/wcs/2.0"
xmlns:wcs=’http://www.opengis.net/wcs/2.0’
xmlns:ows="http://www.opengis.net/ows/2.0"
service="WCS">
<ows:AcceptVersions>
<ows:Version>2.0.1</ows:Version>

</ows:AcceptVersions>
<ows:Sections>
<ows:Section>OperationsMetadata</ows:Section>
<ows:Section>ServiceIdentification</ows:Section>

</ows:Sections>
</wcs:GetCapabilities>

This is an example DescribeCoverage request, which is only valid for WCS 2.0:

<?xml version="1.0" encoding="UTF-8"?>
<wcs:DescribeCoverage

xmlns:xsi=’http://www.w3.org/2001/XMLSchema-instance’
xsi:schemaLocation="http://www.opengis.net/wcs/2.0
http://schemas.opengis.net/wcs/2.0/wcsAll.xsd"

xmlns="http://www.opengis.net/wcs/2.0"
xmlns:wcs="http://www.opengis.net/wcs/2.0"
service="WCS"
version="2.0.1">
<wcs:CoverageId>SOME_ID</wcs:CoverageId>

</wcs:DescribeCoverage>

564 Chapter 9. OGC

MapServer Documentation, Release 6.4.1

This example demonstrates the usage of a WCS 2.0 POST-XML GetCoverage request:

<?xml version="1.0" encoding="UTF-8"?>
<wcs:GetCoverage

xmlns:xsi=’http://www.w3.org/2001/XMLSchema-instance’
xsi:schemaLocation="http://www.opengis.net/wcs/2.0
http://schemas.opengis.net/wcs/2.0/wcsAll.xsd"

xmlns="http://www.opengis.net/wcs/2.0"
xmlns:wcs="http://www.opengis.net/wcs/2.0"
service="WCS"
version="2.0.1">
<wcs:CoverageId>SOME_ID</wcs:CoverageId>
<wcs:DimensionTrim>
<wcs:Dimension crs="http://www.opengis.net/def/crs/EPSG/0/4326">x
</wcs:Dimension>
<wcs:TrimLow>16.5</wcs:TrimLow>
<wcs:TrimHigh>17.25</wcs:TrimHigh>

</wcs:DimensionTrim>
<wcs:DimensionTrim>
<wcs:Dimension crs="http://www.opengis.net/def/crs/EPSG/0/4326">y
</wcs:Dimension>
<wcs:TrimLow>47.9</wcs:TrimLow>

</wcs:DimensionTrim>
<wcs:format>image/tiff</wcs:format>
<wcs:mediaType>multipart/related</wcs:mediaType>
<wcs:Resolution dimension="x">0.01</wcs:Resolution>
<wcs:Size dimension="y">50</wcs:Size>

</wcs:GetCoverage>

Please refer to the WCS 2.0 Specification - XML/POST Protocol Binding Extension and the WCS 2.0 Schemas
for further information on POST request in WCS 2.0.

Reference Section

To avoid confusion only “wcs_*” and “ows_*” prefixed metadata entries are evaluated in OGC WCS services.
Previous versions used “wms_*” prefixed entries as fallback which is dropped in version 6.0 in favor of forcing
explicit decisions. The module will look for the “wcs_*” and “ows_*” metadata prefixes in this order.

The following metadata are available in the setup of the mapfile:

Web Object Metadata

ows_allowed_ip_list (or wcs_allowed_ip_list)

• Description: (Optional) A list of IP addresses that will be allowed access to the service.

Example:

METADATA
"ows_allowed_ip_list" "123.45.67.89 11.22.33.44"

END

ows_denied_ip_list (or wcs_denied_ip_list)

• Description: (Optional) A list of IP addresses that will be denied access to the service.

Example:

METADATA
"ows_denied_ip_list" "123.45.67.89 11.22.33.44"

END

wcs_abstract

9.1. OGC Support and Configuration 565

http://portal.opengeospatial.org/files/?artifact_id=41440
http://schemas.opengis.net/wcs/2.0/

MapServer Documentation, Release 6.4.1

• Description: (Optional) A brief description of the service, maps to ows:Abstract (WCS 1.1+ only).

wcs_accessconstraints

• Description: (Optional) A list of codes describing any access constraints imposed by the service provider.
The keyword NONE is reserved to mean no access constraints are imposed.

wcs_address, wcs_city, wcs_contactelectronicmailaddress, wcs_contactfacimiletelephone,
wcs_contactorganization, wcs_contactperson, wcs_contactposition, wcs_contactvoicetelephone,
wcs_country, wcs_postcode, wcs_stateorprovince

• Description: (Optional) Contact address information. If provided then all twelve metadata items are re-
quired. You can also use the responsibleparty metadata instead.

wcs_description

• Description: (Optional) A description of the server.

wcs_enable_request (or ows_enable_request)

• Description: Space separated list of requests to enable. The default is none. The following requests can be
enabled: GetCapabilities, GetCoverage and DescribeCoverage. A ”!” in front of a request will disable the
request. “*” enables all requests.

• Examples:

To enable only GetCapabilities and GetCoverage:

"wcs_enable_request" "GetCapabilities GetCoverage"

To enable all requests except GetCapabilities

"wcs_enable_request" "* !GetCapabilities"

wcs_fees

• Description: (Optional) A text string indicating any fees imposed by the service provider.

wcs_keywords

• Description: (Optional) Short words for catalog searching.

wcs_label

• Description: (Required) A human-readable label for the server.

wcs_metadatalink_format

• Description: (Optional) The file format MIME type of the metadata record (e.g. “text/plain”). The web
metadata wcs_metadatalink_type and wcs_metadatalink_href must also be specified.

wcs_metadatalink_href

• Description: (Optional) The URL to the server’s metadata. The web metadata wcs_metadatalink_format
and wcs_metadatalink_type must also be specified.

wcs_metadatalink_type

• Description: (Optional) The standard to which the metadata complies. Currently only two types are valid:
“TC211” which refers to [ISO 19115], and “FGDC” which refers to [FGDC-STD-001-1988]. The web
metadata wcs_metadatalink_format and wcs_metadatalink_href must also be specified.

wcs_name

• Description: (Optional) A name for the server.

wcs_responsibleparty_address_administrativearea, wcs_responsibleparty_address_city,
wcs_responsibleparty_address_country, wcs_responsibleparty_address_deliverypoint,
wcs_responsibleparty_address_electronicmailaddress, wcs_responsibleparty_address_postalcode,
wcs_responsibleparty_individualname, wcs_responsibleparty_onlineresource,

566 Chapter 9. OGC

MapServer Documentation, Release 6.4.1

wcs_responsibleparty_organizationname, wcs_responsibleparty_phone_facsimile,
wcs_responsibleparty_phone_voice, wcs_responsibleparty_postionname

• Description: (Optional) Contact address information. If provided then all twelve metadata items are re-
quired. You can also use the address* metadata instead.

wcs_service_onlineresource

• Description: (Optional) Top-level onlineresource URL. MapServer uses the onlineresource metadata (if
provided) in the following order:

1. wcs_service_onlineresource

2. ows_service_onlineresource

3. wcs_onlineresource (or automatically generated URL, see the onlineresource section of this document)

Layer Object Metadata

ows_allowed_ip_list Same as ows_allowed_ip_list in the Web Object.

ows_denied_ip_list Same as ows_denied_ip_list in the Web Object.

wcs_abstract

• Description: (Optional) A brief description of the service, maps to ows:Abstract (WCS 1.1+ only).

wcs_description

• Description: (Optional) A description of the layer.

wcs_enable_request (or ows_enable_request)

• Description: Space separated list of requests to enable. The default is none. The following requests can be
enabled: GetCapabilities, GetCoverage and DescribeCoverage. A ”!” in front of a request will disable the
request. “*” enables all requests.

• Examples:

To enable only GetCapabilities and GetCoverage:

"wcs_enable_request" "GetCapabilities GetCoverage"

To enable all requests except GetCapabilities

"wcs_enable_request" "* !GetCapabilities"

wcs_extent

• Description: (Optional) Bounding box of layer, which must be provided for tiled data. Comma-delimited,
in the format of: minx,miny,maxx,maxy

wcs_formats

• Description: (Optional) The formats which may be requested for this layer, separated by a space. (e.g.
“GTiff MrSID”)

wcs_keywords

• Description: (Optional) Short words for catalog searching.

wcs_label

• Description: (Required) A human-readable label for the layer.

wcs_metadatalink_format

• Description: (Optional) The file format MIME type of the metadata record (e.g. “text/plain”). The web
metadata wcs_metadatalink_type and wcs_metadatalink_href must also be specified.

wcs_metadatalink_href

9.1. OGC Support and Configuration 567

MapServer Documentation, Release 6.4.1

• Description: (Optional) The URL to the layer’s metadata. The web metadata wcs_metadatalink_format and
wcs_metadatalink_type must also be specified.

wcs_metadatalink_type

• Description: (Optional) The standard to which the metadata complies. Currently only two types are valid:
“TC211” which refers to [ISO 19115], and “FGDC” which refers to [FGDC-STD-001-1988]. The web
metadata wcs_metadatalink_format and wcs_metadatalink_href must also be specified.

wcs_name

• Description: (Optional) A name for the layer.

wcs_nativeformat

• Description: (Optional) The current format of the served raster layer. (e.g. “GTiff”) (used for WCS
1.0)

wcs_native_format

• Description: (Optional) The mime-type of the current format of the served raster layer (e.g. “im-
age/tiff”). This field is used when coverage metadata is provided by the layer metadata only (when
wcs_extent and wcs_size/wcs_resolution are set). When set, WCS 2.0 GetCoverage requests will use
this format when no other format is specified (the format parameter is optional then).

Axes Descriptions

MapServer allows you define a number of these for a layer. Individual axis are identified by name when defin-
ing specific metadata (e.g. description). All defined axes must be listed in the rangeset_axes metadata tag so
MapServer knows in advance what to expect. A special rangeset for multiband date is automatically generated by
adding the name “bands” to the rangeset_axes list. If found MapServer will automatically generate metadata for
the image bands. You may of course extend that basic support using the naming conventions below.

wcs_rangeset_axes

• Description: (Optional) Delimited list of defined range sets. If defined, you can also use the following nine
metadata items, where rangeset axis matches the axis name provided in this wcs_rangeset_axes metadata:

{rangeset axis}_semantic

{rangeset axis}_refsys

{rangeset axis}_refsyslabel

{rangeset axis}_description

{rangeset axis}_label

{rangeset axis}_values

{rangeset axis}_values_semantic

{rangeset axis}_values_type

{rangeset axis}_interval

wcs_rangeset_label

• Description: (Required for DescribeCoverage request)

wcs_rangeset_name

• Description: (Required for DescribeCoverage request)

wcs_srs

• Description: (Optional) Spatial reference system of the layer, in the form of: EPSG:code (e.g. EPSG:42304)

wcs_timeitem

• Description: (Optional) The attribute in the spatio/temporal index that contains time values.

wcs_timeposition

568 Chapter 9. OGC

MapServer Documentation, Release 6.4.1

• Description: (Optional) A list of the start and end time of a given coverage (i.e. “2000-11-
11T11:11:11Z,2001-11-11T11:11:11Z”), used when advertising GetCapabilities.

Rules for handling SRS in a MapServer WCS

TODO!

Spatio/Temporal Indexes

MapServer has long supported a method of breaking a dataset into smaller, more manageable pieces or tiles. In
this case a shapefile is used to store the boundary of each tile, and an attribute holds the location of the actual data.
Within a MapServer mapfile the layer keywords TILEINDEX and TILEITEM are used to activate tiling.

Consider the example where an organization wants to serve hundreds or even thousands of MODIS scenes. Five
images cover the spatial extent and each group of five varies by date of acquisition. This turns out to be a fairly
common scenario for organizations interested in WCS, one that the existing tiling support does not adequately
address. In previous versions of MapServer a developer would have to create one tile index and one layer definition
for each group of five images. This could result in configuration files that are prohibitively long and difficult to
manage.

In order to more efficiently support the WCS specification a new tiling scheme has been implemented within
MapServer. One that supports spatial sub-setting, but also ad hoc sub-setting based on any attributes found within
tile index. In many cases a temporal attribute could be used, but sub-setting is not limited to that case. The new
scheme introduces the concept of tile index layers, that is, a separate layer definition is used to describe the tile
index dataset. With this we get all the benefits of any MapServer layer, most importantly we can apply MapServer
filters to the data. Filters can be defined at runtime using MapServer CGI, MapScript or via the WCS server
interface. The syntax for the layer using the index remains unchanged except that the value for Tile Indexes refers
to the index layer instead of an external shapefile.

So, looking at the example above again we can reduce our MapServer configuration to two layer definitions, one
for the tile index and one for the imagery itself. Extracting a single dates worth of imagery is now a matter of
setting the appropriate filter within the tile index layer.

Building Spatio-Temporal Tile Indexes

Developing these tile indexes is more difficult than basic indexes simply because there are no ready-made tools to
do so. Fortunately we can leverage existing tool available within MapServer or supporting libraries such as GDAL
by post processing their output.

Taking the above example, building an index is relatively simple task if you are willing to roll up your sleeves and
write a bit of code. First, the basic spatial index needs to be built. The GDAL utility gdaltindex already does this.
Simply point gdaltindex at the directory containing the collection of MODIS images and it will build a shapefile
index suitable for use with MapServer. The next step would be to add the temporal information. The pseudo code
would look something like:

• open the index .dbf file for reading

• create a new column to hold the image acquisition date

• for each image; 1) extract the image acquisition date and 2) insert it into the new column

• close the index .dbf file

This general approach could be used for many cases. A scripting language such as Perl, PHP or Python works
well since they all have readily available modules for manipulating .dbf files. A worst case would involve hand
editing the resulting .dbf file using a desktop tool such as Mircosoft Access or ESRI Arcview.

9.1. OGC Support and Configuration 569

MapServer Documentation, Release 6.4.1

WCS 2.0 Application Profile - Earth Observation (EO-WCS)

OGC is currently discussing the adoption of an Earth Observation (EO) Application Profile for WCS 2.0 (EO-
WCS) (see public RFC on EO-WCS). For an implementation please refer to the Open Source project EOxServer
which already implements this proposed EO-WCS based on MapServer.

To-do Items and Known Limitations

• MapServer does not derive all of the metadata it could from a given dataset. For example, you must explicitly
list time periods covered by a layer. This should get better with time.

• Only spatial, simple temporal and radiometric band subsetting is possible with the current implementation.
Furture enhancements should allow for arbitrary subsets based on pixel values or tile/image attributes.

• The available set of WCS 2.0 specification documents is not yet complete. Thus, for some implementation
details, the content of some forthcoming extensions had to be anticipated based on the approaches taken for
WCS 1.1 and 1.0. The implementation will be adjusted as soon as new specification documents become
available.

• If you want to use libxml2 or its derived tools (like xmllint) for validation be aware that there is a currently
bug in libxml2 that breaks the validation of GML 3.2.1.

9.1.14 WCS Use Cases

Author Norman Barker

Contact nbarker at ittvis.com

Author Gail Millin

Contact nbarker at ittvis.com

Revision $Revision$

Date $Date$

Last Updated 2005/12/12

Contents

• WCS Use Cases
– Landsat
– SPOT
– DEM
– NetCDF

This document explains how to use MapServer to deliver Landsat, SPOT, DEM, and NetCDF temporal/banded
data through the MapServer WCS interface. Thanks go to Steve Lime and Frank Warmerdam for their assistance
with these projects

Landsat

To serve Landsat imagery through the MapServer Web Coverage Service specify the OUTPUTFORMAT object.
For format support install the GDAL library and from the command prompt and cd to where GDAL is installed
and use the command, gdalinfo –formats. A list of all supported formats will appear and will specify if the format
is read only <ro> or read and write <rw> for WCS the format needs to be supported for read and write (except
for GDAL’s own WCS format, however).

570 Chapter 9. OGC

http://www.opengeospatial.org/standards/requests/81
http://eoxserver.org

MapServer Documentation, Release 6.4.1

For the example below the Landsat 7 15m resolution mosaic is in a Enhanced Compressed Wavelets format
(ECW). By running the gdalinfo.exe program I could verify that the ECW format has write permissions, therefore
the format can be specified in the MapFile and requested using the GetCoverage request.

OUTPUTFORMAT
NAME "ECW"
DRIVER "GDAL/ECW"
MIMETYPE "image/ecw"
IMAGEMODE "BYTE"
EXTENSION "ecw"

END

LAYER
NAME "Landsat7"
STATUS OFF
TYPE RASTER
PROCESSING "SCALE=AUTO"
UNITS Meters
TILEINDEX "MapServer/wcs/landsat7/l7mosaic15m.shp"
TILEITEM "Location"
METADATA

"wcs_description" "Landsat 7 15m resolution mosaic"
"wcs_name" "Landsat7"
"wcs_label" "Landsat 7 15m resolution mosaic"
"ows_srs" "EPSG:27700"
"ows_extent" "0 0 700005 1050000"
"wcs_resolution" "75 75"
"wcs_bandcount" "3"
"wcs_formats" "ECW"
"wcs_enable_request" "*"

END
END

A GetCoverage request can then be requested (using the parameters set in the MapFile) by creating a URL with the
elements: - Your Server, MapServer Program, Location of MapFile, Type of Service (WCS), Request (GetCov-
erage), Coverage (Landsat7), BBOX (0,0,700005,1050000), CRS (EPSG:27700), ResX (75) ResY (75), Format
(ECW).

SPOT

SPOT imagery can be delivered through MapServer Web Coverage Service similarly to the Landsat example
above. The main difference is that as SPOT is a greyscale image the wcs_bandcount = 1 rather than a Landsat
image which consists of 3 bands. For this example the well known GeoTiff format will be used to demonstrate
what to specify in a MapFile for SPOT data.

OUTPUTFORMAT
NAME "GEOTIFF"
DRIVER "GDAL/GTiff"
MIMETYPE "image/tiff"
IMAGEMODE "BYTE"
EXTENSION "tif"

END
LAYER

NAME "SPOT"
STATUS OFF
TYPE RASTER
PROCESSING "SCALE=AUTO"
UNITS Meters
TILEINDEX "MapServer/wcs/orthospot/spot.shp"
TILEITEM "Location"
METADATA

"wcs_description" "Orthospot mosaic"

9.1. OGC Support and Configuration 571

MapServer Documentation, Release 6.4.1

"wcs_name" "SPOT"
"wcs_label" "Orthospot mosaic"
"ows_srs" "EPSG:27700"
"ows_extent" "375960 64480 497410 200590"
"wcs_resolution" "100 100"
"wcs_bandcount" "1"
"wcs_formats" "GEOTIFF"
"wcs_nativeformat" "8-bit GeoTIF"
"wcs_enable_request" "*"

END
END

The key parameters to specify in the WCS MapFile for any data layer and format are:

- Layer Name = Create a short name for the data
- Layer Type = Raster

The following examples further demonstrate how WCS can be implemented and also how to create WCS contain-
ing layers with a temporal dimension (see NetCDF example).

DEM

It is possible to deliver 16 bit DEM data through the MapServer Web Coverage Service.

Firstly it is necessary to specify the output format in the map file

OUTPUTFORMAT
NAME "GEOTIFFINT16"
DRIVER "GDAL/GTiff"
MIMETYPE "image/tiff"
IMAGEMODE "INT16"
EXTENSION "tif"

END

and the corresponding layer

LAYER
NAME "srtm"
STATUS OFF
TYPE RASTER
DATA "srtm.tif"
PROJECTION
"init=epsg:4326"

END
METADATA
"wcs_label" "SRTM WCS TIF Server"
"ows_extent" "-180 -90 180 90"
"wcs_resolution" "0.00083 -0.00083"
"ows_srs" "EPSG:4326"
"wcs_formats" "GEOTIFFINT16"
"wcs_nativeformat" "geotiff"
"wcs_enable_request" "*"

END
END

Performance gains can be made by using the gdaladdo utility described at
http://www.gdal.org/gdal_utilities.html#gdaladdo

NetCDF

Firstly GDAL doesn’t support all versions of netCDF (there are a lot, it is a generic format), so for stability it may
be necessary to convert the files into GeoTiff format first. This can be achieved using the netCDF libraries here

572 Chapter 9. OGC

http://www.gdal.org/gdal_utilities.html#gdaladdo

MapServer Documentation, Release 6.4.1

http://my.unidata.ucar.edu/content/software/netcdf/index.html. Denis Nadeau and Frank Warmerdam have added
netCDF CF as a read only format within GDAL, so it now possible to read the CF convention netCDF files directly
from disk.

We placed the Z-levels in the bands of the GDAL data file (either GeoTiff or netCDF), and created a shape index
for the time levels. GDAL data is a 2-D format (x,y) and bands. netCDF is an N-D file format, supporting time,
x,y,z, and experiment parameters. By using a set of GDAL netCDF / geoTiff files it is possible to represent this,
and to store the z-level (height) as bands within the data file. Although a hack, it is possible for a custom client
to receive important metadata from the describeCoverage operation of a WCS about the which z-level a band of a
geotiff represents by encoding this in the returned axes description tag.

To create the shape file for the temporal dimension we had to do some hacking with Java code, but we also got
it to work with Steve Lime’ s perl script in the MODIS MapServer demo download (which doesn’t seem to be
available now).

The perl script used in Modis demo by Steve Lime is as follows, and I have placed inline comments below. The
script assumes that gdaltindex has already been run in this directory to create a tile index shape and dbf file. It
assumes that the filenames of your data files have the date in the filename, for example myfileYYYYMMDDHH.tif

1 #!/usr/bin/perl
2 use XBase;
3 opendir(DIR, ’.’); # open the current directory
4 foreach $file (readdir(DIR)) {
5 next if !($file =~ /\.dbf$/); # read the dbf file in this directory created by gdaltindex
6 print "Working on $file...\n";
7 $tfile = ’temporary.dbf’;
8 system("mv $file $tfile");
9 $oldtable = new XBase $tfile or die XBase->errstr;

10 print join("\t", $oldtable->field_names) ."\n";
11 print join("\t", $oldtable->field_types) ."\n";
12 print join("\t", $oldtable->field_lengths) ."\n";
13 print join("\t", $oldtable->field_decimals) ."\n";
14 $newtable = XBase->create("name" => $file,
15 "field_names" => [$oldtable->field_names, "IMGDATE"], # this is the FILTERITEM in the corresponding tile index layer within your mapfile
16 "field_types" => [$oldtable->field_types, "C"], # character column type
17 "field_lengths" => [$oldtable->field_lengths, 13], # length of the date string
18 "field_decimals" => [$oldtable->field_decimals, undef]) or die "Error creating new table.";
19 foreach (0 .. $oldtable->last_record) {
20 ($deleted, @data) = $oldtable->get_record($_);
21 print " ...record $data[0]\n";
22 # extract the date
23 $year = substr $data[0], 8, 4; # year is at position 8 in the filename string
24 $month = substr $data[0], 12, 2; # month is at position 12 in the filename string
25 $day = substr $data[0], 14, 2; # day is at position 14 in the filename string
26 $hour = substr $data[0], 16, 2; # hour is at position 16 in the filename string
27 $date = "$year-$month-$day" . "T" . "$hour\n"; # format is YYYY-MM-DDTHH, or any ISO format
28 print "$date";
29 push @data, "$date";
30 $newtable->set_record($_, @data);
31 }
32 $newtable->close();
33 $oldtable->close();
34 unlink($tfile);
35 }

If have used the perl script then skip to the layer definitions below, if you wish to code your own the description is
here.

The DBF file has to have the column ‘location’ that indicates the location of the data file (either absolute path or
relative to the map file location, and the second column that can be called whatever you want but indexes time. In
our case we called it ‘time’ :-)

The corresponding shapefile then has to contain Polygons with the bounding boxes of the tif file for each time. So
OGRInfo timeIndex.shp looks something like:

9.1. OGC Support and Configuration 573

http://my.unidata.ucar.edu/content/software/netcdf/index.html

MapServer Documentation, Release 6.4.1

OGRFeature(timeIndex):116
location(String) = mytime.tif
time(String) = 2001-01-31T18:00:00
POLYGON ((xxx,xxxx,.......))

Define your output format as

OUTPUTFORMAT
NAME "GEOTIFF_FLOAT"
DRIVER ’GDAL/GTiff’
MIMETYPE ’image/tiff’
IMAGEMODE FLOAT32
EXTENSION ’tif’

END

Then you need to define your tile index within the map file

LAYER
NAME ’time_idx’
TYPE TILEINDEX
DATA ’timeIndex’
FILTERITEM ’time’
FILTER ’%time%’

END

and the actual layer

LAYER
NAME ’TempData’
STATUS OFF
TYPE RASTER
TILEINDEX ’time_idx’
PROJECTION
"init=epsg:4326"

END
METADATA
"wcs_label" ’Temperature data’
"ows_extent" ’-180 -90 180 90’
"wcs_resolution" ’1.125 -1.125’
"ows_srs" ’EPSG:4326’
"wcs_formats" ’GEOTIFF_FLOAT’
"wcs_nativeformat" ’netCDF’
"wcs_bandcount" ’27’
"wcs_rangeset_axes" ’bands’
"wcs_rangeset_label" ’Pressure (hPa units) Levels’
"wcs_rangeset_name" ’bands’
"wcs_rangeset_description" ’Z levels ’
"wcs_timeposition" ’2001-01-01T06:00:00,2001-01-01T12:00:00,2001-01-01T18:00:00,2001-01-02T00:00:00’
"wcs_timeitem" ’time’
"wcs_enable_request" "*"

END
END

The TempData coverage layer will now let you subset with the &bands=... &time=... subset parameters!

To do a coordinate reprojection specify in the request &Response_CRS=ESPG:xxxx

When you start doing temporal subsetting with WCS and MapServer you can see the need for an automatic way
of generating map files such as using an XSL stylesheet!

For a tile-index layer you need to provide the following extra metadata in order to use it for WCS:

"OWS_EXTENT" "10050 299950 280050 619650"
"WCS_RESOLUTION" "100 100"
"WCS_SIZE" "2700 3197"
"WCS_BANDCOUNT" "3"

574 Chapter 9. OGC

MapServer Documentation, Release 6.4.1

If your image has a colortable and only one band, it will come out greyscale unless you set the IMAGEMODE to
PC256 instead of BYTE.

9.1.15 SOS Server

Author Jeff McKenna

Contact jmckenna at gatewaygeomatics.com

Revision $Revision$

Date $Date$

Last Updated 2007/12/06

Table of Contents

• SOS Server
– Introduction
– Setting Up an SOS Server Using MapServer
– Limitations / TODO
– Reference Section
– Use of sos_procedure and sos_procedure_item

Introduction

SOS (Sensor Observation Service), currently an OGC discussion paper, is part of of the OGC’s SensorWeb En-
ablement (SWE) group of specifications. These specifications describe how applications and services will be able
to access sensors of all types over the Web. Specifically, SOS provides an API for managing deployed sensors and
retrieving sensor data.

SOS support is available in MapServer 4.10.0 or more recent. Note that no client tools currently exist in
MapServer for SOS. More SWE based software is available at http://www.52north.org/

SOS support was implemented in MapServer to the guidelines of MapServer rfc13.

This document assumes that you are already familiar with certain aspects of MapServer:

• MapServer application development and setting up .map files.

Links to SOS-Related Information

• SOS discussion paper

• Sensor Web Enablement and OpenGIS SensorWeb

Relevant Definitions

The following is taken from the SOS discussion paper:

Observation An observation is an event with a result which has a value describing some phenomenon.

Observation Offering An observation offering is a logical grouping of observations offered by a service that are
related in some way.

Observed Value A value describing a natural phenomenon, which may use one of a variety of scales including
nominal, ordinal, ratio and interval.

Sensor An entity capable of observing a phenomenon and returning an observed value. A sensor can be an
instrument or a living organism (e.g. a person).

9.1. OGC Support and Configuration 575

http://www.52north.org/
http://portal.opengeospatial.org/files/?artifact_id=12846
http://www.opengeospatial.org/functional/?page=swe

MapServer Documentation, Release 6.4.1

Setting Up an SOS Server Using MapServer

Install the Required Software

SOS requests are handled by the “mapserv” CGI program. The first step is to check that your mapserv ex-
ecutable includes SOS support. One way to verify this is to use the “-v” command-line switch and look for
“SUPPORTS=SOS_SERVER”.

Example 1. On Unix:

$./mapserv -v
MapServer version 4.9 OUTPUT=GIF OUTPUT=PNG OUTPUT=JPEG OUTPUT=WBMP
OUTPUT=SVG SUPPORTS=PROJ SUPPORTS=FREETYPE SUPPORTS=WMS_SERVER
SUPPORTS=WMS_CLIENT SUPPORTS=WFS_SERVER SUPPORTS=WFS_CLIENT
SUPPORTS=WCS_SERVER SUPPORTS=SOS_SERVER SUPPORTS=THREADS INPUT=JPEG
INPUT=OGR INPUT=GDAL INPUT=SHAPEFILE DEBUG=MSDEBUG

Example 2. On Windows:

C:\Apache\cgi-bin> mapserv -v
MapServer version 4.9 OUTPUT=GIF OUTPUT=PNG OUTPUT=JPEG OUTPUT=WBMP
OUTPUT=SVG SUPPORTS=PROJ SUPPORTS=FREETYPE SUPPORTS=WMS_SERVER
SUPPORTS=WMS_CLIENT SUPPORTS=WFS_SERVER SUPPORTS=WFS_CLIENT
SUPPORTS=WCS_SERVER SUPPORTS=SOS_SERVER SUPPORTS=THREADS INPUT=JPEG
INPUT=OGR INPUT=GDAL INPUT=SHAPEFILE DEBUG=MSDEBUG

If you don’t have SOS support in your MapServer build, then you must compile MapServer with the following in
mind:

• flag -DUSE_SOS_SVR is required

• requires either -DUSE_WMS_SVR or -DUSE_WFS_SVR flags to be enabled

• requires libxml2 and proj libraries

• requires ICONV support (-DUSE_ICONV) on Windows

For more help with MapServer compilation see the appropriate HowTo: Unix / Windows

Configure a Mapfile For SOS

Each instance of SOS server that you setup needs to have its own mapfile. It is just a regular MapServer mapfile
in which some parameters and some metadata entries are mandatory. Most of the metadata is required in order to
produce a valid GetCapabilites output.

Here is the list of parameters and metadata items that usually optional with MapServer, but are required (or
strongly recommended) for a SOS configuration:

MAP level:

• Map NAME

• Map PROJECTION

• Map Metadata (in the WEB Object):

– sos_title

– sos_onlineresource

– sos_srs

– sos_enable_request

– see the Reference Section of this document for a full list of metadata and descriptions

LAYER level:

576 Chapter 9. OGC

MapServer Documentation, Release 6.4.1

• Layer NAME

• Layer PROJECTION

• Layer METADATA

– sos_offering_id

– sos_observedproperty_id

– sos_observedproperty_id

– sos_describesensor_url

– see the Reference Section of this document for a full list of metadata and descriptions

Onlineresource URL The sos_onlineresource metadata is set in the map’s web object metadata and speci-
fies the URL that should be used to access your server. This is required for the GetCapabilities output. If
sos_onlineresource is not provided then MapServer will try to provide a default one using the script name
and hostname, but you shouldn’t count on that too much. It is strongly recommended that you provide the
sos_onlineresource metadata.

Here is a valid online resource URL:

http://my.host.com/cgi-bin/mapserv?map=mysos.map&

By creating a wrapper script on the server it is possible to hide the “map=” parameter from the URL and then your
server’s online resource URL could be something like:

http://my.host.com/cgi-bin/mapserv?

This is covered in more detail in the “More About the Online Resource URL” section of the WMS Server document.

Example SOS Server Mapfile

The following is an example of a bare minimum SOS Server mapfile. Note the comments for the required param-
eters.

MAP
NAME "SOS_DEMO"
STATUS ON
SIZE 300 300
EXTENT -66 44 -62 45
UNITS METERS
SHAPEPATH "./data/"
IMAGECOLOR 255 255 0
SYMBOLSET "./etc/symbols.sym"

IMAGETYPE png

WEB
IMAGEPATH "/ms4w/tmp/ms_tmp/"
IMAGEURL "/ms_tmp/"

METADATA
"sos_onlineresource" "http://127.0.0.1/mapserv?map=/sos/sos_test.map" ## REQUIRED
"sos_title" "My SOS Demo Server" ## Recommended
"sos_srs" "EPSG:4326" ## REQUIRED
"sos_enable_request" "*" # Necessary

END
END

PROJECTION
"init=epsg:4326"

9.1. OGC Support and Configuration 577

MapServer Documentation, Release 6.4.1

END

LAYER
NAME "test_sos_layer"
METADATA

"sos_procedure" "NS01EE0014" ## REQUIRED
"sos_offering_id" "WQ1289" ## REQUIRED
"sos_observedproperty_id" "Water Quality" ## REQUIRED
"sos_describesensor_url" "http://some/url/NS01EE0014.xml" ## REQUIRED

END
TYPE POINT
STATUS ON
DATA "sos_test"

PROJECTION
"init=epsg:4326"

END

CLASS
NAME "water quality"
STYLE

COLOR 255 0 0
SYMBOL "circle"
SIZE 8

END
END

END

END #map

Test Your SOS Server

GetCapabilities Request The GetCapabilities request allows the clients to retrieve service metadata about a
specific service instance. For an SOS service, it allows to identify such things as offerings and observed property
available, as well as information on sensors that are used.

Using a web browser, access your server’s online resource URL to which you add the parameters “SER-
VICE=SOS&REQUEST=GetCapabilities” to the end, e.g.

http://my.host.com/cgi-bin/mapserv?MAP=mysos.map&SERVICE=SOS&REQUEST=GetCapabilities

If everything went well, you should have a complete XML capabilities document. Search it for the word “WARN-
ING”... MapServer inserts XML comments starting with “<!–WARNING: ” in the XML output if it detects
missing mapfile parameters or metadata items. If you notice any warning in your XML output then you have to
fix all of them before you can try your server with an SOS client, otherwise things are likely not going to work.

Note: The SERVICE parameter is required for all SOS requests.

GetObservation Request The GetObservation request is designed to query sensor systems to retrieve observa-
tion data in the form defined in the Observation and Measurement specification (O&M), and more information on
this O&M spec can be found at http://www.opengeospatial.org/functional/?page=swe. Upon receiving a GetOb-
servation request, a SOS shall either satisfy the request or return an exception report.

The following is a list of the possible parameters for a GetObservation request:

request: (Required) value must be “GetObservation”.

service: (Required) value must be “SOS”.

version: (Required) value must be “1.0.0”.

578 Chapter 9. OGC

http://www.opengeospatial.org/functional/?page=swe

MapServer Documentation, Release 6.4.1

offering: (Required) The Offering identified in the capabilities document.

observedProperty: (Required) The property identified in the capabilities document.

responseFormat: (Required) The format / encoding to be returned by the response.

eventTime (Optional) Specifies the time period for which observations are requested.

procedure: (Optional) The procedure specifies the sensor system used. In this implementation,
the procedure is equivalent to be the sensor id that will be used when doing a DescribeSensor
request.

featureOfInterest: (Optional) In this implementation, this will be represented by a gml envelope
defining the lower and upper corners.

Result: (Optional) The Result parameter provides a place to put OGC filter expressions based
on property values.

resultModel: (Optional) Identifier of the result model to be used for the requested data. The re-
sultModel values supported by a SOS server are listed in the contents section of the service meta-
data (GetCapabilities). MapServer currently supports om:Observation and om:Measurement.
om:Measurement provides a flat model of the geometry and attributes, similar to WFS Get-
Feature output. om:Observations provides a more compact definition which includes an XML
header of the field names and defintions, followed by a “DataBlock” of delimited records (de-
fault is CSV delimited output). The default output is om:Measurement.

srsName: (Optional) srs (EPSG code) of the output response.

Here are some valid examples:

Example 1:

http://127.0.0.1/cgi-bin/mapserv.exe?map=D:/ms4w/apps/sos/sos_test.map&
Request=GetObservation&service=SOS&Offering=WQ1289&
observedproperty=Water Quality&version=1.0.0&
responseFormat=text/xml; subtype="om/1.0.0"

Example 2:

http://127.0.0.1/cgi-bin/mapserv.exe?map=D:/ms4w/apps/sos/sos_test.map&
Request=GetObservation&service=SOS&Offering=WQ1289&
observedproperty=Water Quality&eventtime=<ogc:TM_Equals><gml:TimePeriod>
<gml:beginPosition>1991-05-01</gml:beginPosition><gml:endPosition>
1993-02-02</gml:endPosition></gml:TimePeriod></ogc:TM_Equals>
&result=<Filter><Or><PropertyIsEqualTo><PropertyName>COLOUR
</PropertyName><Literal>180</Literal></PropertyIsEqualTo>
<PropertyIsEqualTo><PropertyName>COLOUR</PropertyName><Literal>200
</Literal></PropertyIsEqualTo></or></Filter>&version=1.0.0
&responseFormat=text/xml; subtype="om/1.0.0"

Example 3:

http://127.0.0.1/cgi-bin/mapserv.exe?map=D:/ms4w/apps/sos/sos_test.map&
Request=GetObservation&service=SOS&Offering=WQ1289&
observedproperty=Water Quality&featureofinterest=<gml:Envelope>
<gml:lowerCorner srsName=’EPSG:4326’>-66 43</gml:lowerCorner>
<gml:upperCorner srsName=’EPSG:4326’>-64 45</gml:upperCorner>
</gml:Envelope>&version=1.0.0&
responseFormat=text/xml; subtype="om/1.0.0"

Example 4:

http://127.0.0.1/cgi-bin/mapserv.exe?map=D:/ms4w/apps/sos/sos_test.map&
Request=GetObservation&service=SOS&Offering=WQ1289&
observedproperty=Water Quality&version=1.0.0&
responseFormat=text/xml; subtype="om/1.0.0"&resultModel=om:Observation

9.1. OGC Support and Configuration 579

MapServer Documentation, Release 6.4.1

DescribeSensor Request The DescribeSensor request gives the client the ability to retrieve the characteristics
of a particular sensor and return the information in a SensorML xml document. In this implementation, MapServer
does not generate the SensorML document but only redirect the request to an existing SensorML document.

The following is a list of the possible parameters for a DescribeSensor request:

request: (Required) value must be “DescribeSensor”

service: (Required) value must be “SOS”.

version: (Required) value must be “1.0.0”.

procedure: (Required) This is the sensor id, which was specified in the “sos_procedure” meta-
data.

outputFormat: (Required) The format encoding to be returned by the response.

Here is a valid example:

http://127.0.0.1/cgi-bin/mapserv.exe?map=D:/ms4w/apps/sos/sos_test.map&
Request=DescribeSensor&procedure=urn:ogc:def:procedure:NS01EE0014&
service=SOS&version=1.0.0&outputFormat=text/xml; subtype="sensorML/1.0.0"

Limitations / TODO

1. Have MapServer generate the SensorML document, instead of redirecting the request to an existing SensorML
document.

Reference Section

The following metadata are available in the setup of the SOS Server mapfile:

Note: Each of the metadata below can also be referred to as ‘ows_*’ instead of ‘sos_*’. MapServer tries
the ‘sos_*’ metadata first, and if not found it tries the corresponding ‘ows_*’ name. Using this reduces the
amount of duplication in mapfiles that support multiple OGC interfaces since “ows_*” metadata can be used
almost everywhere for common metadata items shared by multiple OGC interfaces.

Web Object Metadata

ows_allowed_ip_list (or sos_allowed_ip_list)

• Description: (Optional) A list of IP addresses that will be allowed access to the service.

Example:

METADATA
"ows_allowed_ip_list" "123.45.67.89 11.22.33.44"

END

ows_denied_ip_list (or sos_denied_ip_list)

• Description: (Optional) A list of IP addresses that will be denied access to the service.

Example:

METADATA
"ows_denied_ip_list" "123.45.67.89 11.22.33.44"

END

ows_language

580 Chapter 9. OGC

MapServer Documentation, Release 6.4.1

• Description: (Optional) Descriptive narrative for more information about the server. Identifier of the lan-
guage used by all included exception text values. These language identifiers shall be as specified in IETF
RFC 1766. When this attribute is omitted, the language used is not identified. Examples: “en-CA”, “fr-CA”,
“en-US”. Default is “en-US”.

ows_schemas_location

• Description: (Optional) (Note the name ows_schemas_location and not sos/_... this is because all OGC Web
Services (OWS) use the same metadata) Root of the web tree where the family of OGC SOS XMLSchema
files are located. This must be a valid URL where the actual .xsd files are located if you want your
SOS output to validate in a validating XML parser. Default is http://www.opengeospatial.net/sos. See
http://ogc.dmsolutions.ca for an example of a valid schema tree.

ows_updatesequence

• Description: (Optional) The updateSequence parameter can be used for maintaining the consistency of a
client cache of the contents of a service metadata document. The parameter value can be an integer, a
timestamp in [ISO 8601:2000] format, or any other number or string.

sos_abstract

• Description: (Optional) Descriptive narrative for more information about the server.

sos_accessconstraints

• Description: (Optional) Text describing any access constraints imposed by the service provider on the SOS
or data retrieved from this service.

sos_addresstype, sos_address, sos_city, sos_country, sos_postcode, sos_stateorprovince

• Description: Optional contact address information. If provided then all six metadata items are required.

sos_contactelectronicmailaddress

• Description: Optional contact Email address.

sos_contactfacsimiletelephone

• Description: Optional contact facsimile telephone number.

sos_contactinstructions

• Description: (Optional) Supplemental instructions on how or when to contact the individual or organization.

sos_contactorganization, sos_contactperson, sos_contactposition

• Description: Optional contact information. If provided then all three metadata items are required.

sos_contactvoicetelephone

• Description: Optional contact voice telephone number.

sos_enable_request (or ows_enable_request)

• Description: Space separated list of requests to enable. The default is none. The following requests can be
enabled: GetCapabilities, GetObservation and DescribeSensor. A ”!” in front of a request will disable the
request. “*” enables all requests.

• Examples:

To enable only GetCapabilities and GetObservation:

"sos_enable_request" "GetCapabilities GetObservation"

To enable all requests except GetCapabilities

"sos_enable_request" "* !GetCapabilities"

sos_encoding_blockSeparator

• Description: (Optional) For GetObservation requests using resultModel=om:Observation (SWE DataBlock
encoding). Record separator to be used. Default is ‘\n’

9.1. OGC Support and Configuration 581

http://www.opengeospatial.net/sos
http://ogc.dmsolutions.ca

MapServer Documentation, Release 6.4.1

sos_encoding_tokenSeparator

• Description: (Optional) For GetObservation requests using resultModel=om:Observation (SWE DataBlock
encoding). Token (field) separator to be used. Default is ‘,’

sos_fees

• Description: (Optional) Fees information. Use the reserved word “none” if there are no fees.

sos_hoursofservice

• Description: (Optional) Time period (including time zone) when individuals can contact the organization
or individual.

sos_keywordlist

• Description: (Optional) A comma-separated list of keywords or keyword phrases to help catalog searching.

sos_maxfeatures

• Description: (Optional) The number of elements to be returned by the SOS server. If the not set all obser-
vations are returned

sos_onlineresource

• Description: (Required) The URL that will be used to access this OGC server. This value is used in the
GetCapabilities response.

• See the section “Onlineresource URL” above for more information.

sos_role

• Description: (Optional) Function performed by the responsible party. Possible values of this Role shall
include the values and the meanings listed in Subclause B.5.5 of ISO 19115:2003.

sos_service_onlineresource

• Description: (Optional) Top-level onlineresource URL.

sos_srs

• Description: (Required) Contains a list of EPSG projection codes that should be advertized as being avail-
able for all layers in this server. The value can contain one or more EPSG:<code> pairs separated by spaces
(e.g. “EPSG:4269 EPSG:4326”) This value should be upper case (EPSG:42304.....not epsg:42304) to avoid
problems with case sensitive platforms.

sos_title

• Description: (Recommended) A human-readable name for this Layer.

Layer Object Metadata

ows_allowed_ip_list Same as ows_allowed_ip_list in the Web Object.

ows_denied_ip_list Same as ows_denied_ip_list in the Web Object.

sos_describesensor_url

• Description: (Required) This metadata item is only a temporary measure until the describe sensor is gener-
ated from MapServer. Right now when a DescribeSensor request is sent with a procedure (sensorid), it will
redirect it to the url defined by this metadata item.

• In MapServer 5.0, it is possible to use variable substituion on the url. For example “sos_describesensor_url”
“http://foo/foo?mysensor=%procedure%”will substitute the %procedure% in the metadata with the proce-
dure value coming from the request.

"sos_describesensor_url" "http://some/url/NS01EE0014.xml"

sos_enable_request (or ows_enable_request)

582 Chapter 9. OGC

MapServer Documentation, Release 6.4.1

• Description: Space separated list of requests to enable. The default is none. The following requests can be
enabled: GetCapabilities, GetObservation and DescribeSensor. A ”!” in front of a request will disable the
request. “*” enables all requests.

• Examples:

To enable only GetCapabilities and GetObservation:

"sos_enable_request" "GetCapabilities GetObservation"

To enable all requests except GetCapabilities

"sos_enable_request" "* !GetCapabilities"

sos_[item name]_alias

• Description: (Optional) An alias for an attribute’s name that will be returned when executing a GetObser-
vation request.

sos_[item name]_definition

• Description: (Optional) An associated definition (usually a URN) for a component, that will be returned
when executing a GetObservation request. Default is “urn:ogc:object:definition”

sos_[item name]_uom

• Description: (Optional) An associated unit of measure URN) for a component, that will be returned when
executing a GetObservation request. Default is “urn:ogc:object:uom”

sos_observedproperty_authority

• Description: (Optional) An associated authority for a given component of an observed property

sos_observedproperty_id

• Description: (Required) ID of observed property, possibly in number format.

sos_observedproperty_name

• Description: (Optional) Name of observed property, possibly in string format.

sos_observedproperty_version

• Description: (Optional) An associated version for a given component of an observed property

sos_offering_description

• Description: (Optional) Description of offering.

sos_offering_extent

• Description: (Optional) Spatial extents of offering, in minx, miny, maxx, maxy format:

"sos_offering_extent" "-66, 43, -62, 45"

The logic for the bounding box returned as part of the offering is the following:

– note that it is a mandatory element that needs an espg code and lower/upper corner coordinates

– looks for the espg parameter in the first layer of the offering (this could be an ows/sos_srs or a projec-
tion object with the epsg code (mandatory)

– looks for sos_offering_extent. If the metadata is not available, the extents of all layers in the offering
will be used to compute it.

Here is an example result from a GetCapabilities request:

<gml:boundedBy>
<gml:Envelope>

<gml:lowerCorner srsName="EPSG:4326">-66 43</gml:lowerCorner>
<gml:upperCorner srsName="EPSG:4326">-62 45</gml:upperCorner>

9.1. OGC Support and Configuration 583

MapServer Documentation, Release 6.4.1

</gml:Envelope>
</gml:boundedBy>

sos_offering_id

• Description: (Required) ID of offering, possibly in number format.

sos_offering_intendedapplication

• Description: (Optional) The intended category of use for this offering.

sos_offering_name

• Description: (Optional) Name of offering, possibly in string format.

sos_offering_timeextent

• Description: (Optional) Time extent of offering, in the format of “begin/end”. Here is an example:

"sos_offering_timeextent" "1990/2006"

If end is not specified it will be set to now. Here is an example result from a GetCapabilities request:

<sos:eventTime>
<gml:TimePeriod>

<gml:beginPosition>1990</gml:beginPosition>
<gml:endPosition>2006</gml:endPosition>

</gml:TimePeriod>
</sos:eventTime>

sos_procedure

• Description: (Required) Normally a sensor unique id. One per layer:

"sos_procedure" "NS01EE0014"

Note: sos_procedure can also be a list, separated by spaces, i.e.:

"sos_procedure" "35 2147 604"

All sos_procedure links from layers in the offerings will be outputed together, such as the following taken
from a GetCapabilities response:

<procedure xlink:href="urn:ogc:object:feature:Sensor:3eTI:csi-sensor-1"/>
<procedure xlink:href="urn:ogc:object:feature:Sensor:3eTI:csi-sensor-2"/>

sos_procedure_item

• Description: (Required if sos_procedure is not present): See section 5 for more details

"sos_procedure_item" "attribute_field_name"

sos_timeitem

• Description: (Optional) Name of the time field. It will be used for queries when a GetObservation request
is called with an EVENTTIME parameter. It is layer specific and should be set on all layers.

"sos_timeitem" "TIME"

Use of sos_procedure and sos_procedure_item

In MapServer 5.0 SOS support has been upgraded to use a new metadata called sos_procedure_item. The value for
sos_procedure_item is the field/attribute name containing the procedure values. The use of this metadata as well
as the sos_procedure is described here per type of request (refer to http://trac.osgeo.org/mapserver/ticket/2050 for
more description):

584 Chapter 9. OGC

http://trac.osgeo.org/mapserver/ticket/2050

MapServer Documentation, Release 6.4.1

It should be noted that, for very large datasets defined only with sos_procedure_item, this may result in costly
processing, because MapServer has to process attribute data. It is advised to setup and manage datasets accordingly
if dealing with large observation collections.

GetCapabilities

• if sos_procedure is defined, use it

• if not look for sos_procedure_item : procedure values are extracted from the layer’s attribute specified by
this metadata. Not that this can be time consuming for layers with a large number of features.

• if none is defined return an exception

DescribeSensor

• if sos_procedure is defined, use it

• if not look for sos_procedure_item : procedure values are extracted from the layer’s attribute specified by
this metadata

• if none is defined return an exception

GetObservation

Both sos_procedure and sos_procedure_item can be define. Here are the cases:

• case 1 [only sos_procedure is defined.]

– Use this metadata to match the layer with the procedure value sent in the request

– When outputing the <member/procedure> output the value of the metadata

Note: If more than one procedure is defined per LAYER object, output observations will have incor-
rect sos:procedure values, because there is no way to map procedures to observations. This is where
sos_procedure_item should be used (i.e. when more than one procedure makes up a LAYER object).

• case 2: only procedure_item is defined.

– Use the sos_procedure_item and do a query on the layer to match the procedure with the layer.

– When outputting the <member/procedure> use the procedure_item as a way to only output the
attribute value corresponding to the feature.

• case 3: both are defined.

– check in sos_procedure to match the procedure with the layer.

– When outputting the <member/procedure> use the procedure_item as a way to only output the
attribute value corresponding to the feature.

9.1.16 How to set up MapServer as a client to access a service over https

Revision $Revision: 12521 $

Date $Date: 2011-09-06 19:48:20 +0200 (Tue, 06 Sep 2011) $

9.1. OGC Support and Configuration 585

MapServer Documentation, Release 6.4.1

Table of Contents

• How to set up MapServer as a client to access a service over https
– Introduction
– Requirements
– Default Installation (with apt-get install, rpm, manual, etc)
– Non-Standard Installation (common with ms4w and fgs)
– Remote Server with a Self-Signed SSL Certificate

Introduction

The following documentation explains how to set up MapServer as a client to access a WMS/WFS server through
a secure SSL connection using the HTTPS protocol. It describes the common problems a user could encounter
and how to solve them.

Requirements

MapServer 5.4.1 and up, compiled with Curl. Curl must be built with SSL support.

Default Installation (with apt-get install, rpm, manual, etc)

The Curl CA bundle file should be located in the default directory.

Verify your connection with the Curl command line:

curl https://targethostname:port/gmap-demo/gmap75.phtml

Edit your map file to add the WMS connection URL. For example:

CONNECTION "https://domainname:port/cgi-bin/mapserv?map=/path/to/wms.map"
CONNECTIONTYPE WMS

If the layer is displayed correctly you do not need to read on.

Non-Standard Installation (common with ms4w and fgs)

If you get the following error, it means that your CA bundle is not found.

curl https://localhost:port/gmap-demo/gmap75.phtml
curl: (77) error setting certificate verify locations:

CAfile: /home/nsavard/fgsfull/share/curl/cacert.pem
CApath: none

It may be caused by the CURL_CA_BUNDLE environment variable pointing to the wrong location or the CA
bundle file not beeing present. Follow the steps below to correct either case.

Set the CURL_CA_BUNDLE environment variable to point to the bundle file (e.g. export
CURL_CA_BUNDLE=/path/to/my-ca-bundle.ext where my-ca-bundle.ext could be cacert.pem or ca-bundle.crt).

Download the CA bundle file “cacert.pem” found at http://curl.haxx.se/docs/caextract.html or if you have the Curl
source you could create the CA bundle by executing “make ca-bundle” or “make ca-firefox” (if you have Firefox
and the certutil tool installed). If you used the second choice, the bundle file will be named ca-bundle.crt and will
be found in the lib directory under the Curl root directory. See http://curl.haxx.se/docs/caextract.html for more
details. Store this file in the location pointed to by the URL_CA_BUNDLE environment variable.

Verify your connection using the Curl command line:

586 Chapter 9. OGC

http://curl.haxx.se/docs/caextract.html
http://curl.haxx.se/docs/caextract.html

MapServer Documentation, Release 6.4.1

curl https://targethostname:port/gmap-demo/gmap75.phtml

Note: If you use ms4w, osgeo4w or fgs installation, these installers should take care of this problem for you.

Remote Server with a Self-Signed SSL Certificate

If you get the following error, it means that your remote server probably use a self-signed SSL certificate and the
server certificate is not included in your CA bundle file.

curl: (60) SSL certificate problem, verify that the CA cert is OK. Details:
error:14090086:SSL routines:SSL3_GET_SERVER_CERTIFICATE:certificate verify failed
More details here: http://curl.haxx.se/docs/sslcerts.html

curl performs SSL certificate verification by default, using a "bundle"
of Certificate Authority (CA) public keys (CA certs). If the default
bundle file isn’t adequate, you can specify an alternate file
using the --cacert option.
If this HTTPS server uses a certificate signed by a CA represented in
the bundle, the certificate verification probably failed due to a
problem with the certificate (it might be expired, or the name might
not match the domain name in the URL).
If you’d like to turn off curl’s verification of the certificate, use
the -k (or --insecure) option.

To get the remote server certificate you have to execute this command:

openssl s_client -connect domainname:port

Copy everything from the “—–BEGIN CERTIFICATE—–” tag to “—–END CERTIFICATE—–” tag. Paste it at
the end of the my-ca-bundle.ext file.

Verify your connection with the Curl command line:

curl https://targethostname:port/gmap-demo/gmap75.phtml

Note: If you get the following error, it means that the domain name in the URL request is not corresponding to
the one that was declared when creating the remote server certificate.

curl: (51) SSL: certificate subject name ’domainname’ does not match target host name ’domainname’

You have to use the exact same domain name as the one appearing in the “Common Name” prompt used when
generating the remote server certificate. You cannot use the remote server ip for instance. It means that the
following URL is not acceptable.

CONNECTION "https://xxx.xxx.xxx.xxx:port/cgi-bin/mapserv?map=/path/to/wms.map"
CONNECTIONTYPE WMS

9.1.17 MapScript Wrappers for WxS Services

Author Frank Warmerdam

Contact warmerdam at pobox.com

Revision $Revision$

Date $Date$

9.1. OGC Support and Configuration 587

MapServer Documentation, Release 6.4.1

Contents

• MapScript Wrappers for WxS Services
– Introduction
– Python Examples
– Perl Example
– Java Example
– PHP Example
– Use in Non-CGI Environments (mod_php, etc)
– Post Processing Capabilities

Introduction

With the implementation of MapServer rfc16 in MapServer 4.9, MapScript now has the ability to invoke
MapServer’s ability to execute OGC Web Service requests such as WMS, WCS, and WFS as well as capturing
the results of processing the requests.

This makes it possible to dynamically configure a map object based on information in the original request, and to
capture the output of processing requests for further post-processing.

Warning: MapServer CGI Controls and Run-time Substitution are not applied when using mapscript WxS
wrappers. It is up to the mapscript code you are writing to apply any mapfile modifications.

Python Examples

The following trivial example, in Python, demonstrates a script that internally provides the map name, but other-
wise uses normal mapserver processing.

import mapscript

req = mapscript.OWSRequest()
req.loadParams()

map = mapscript.mapObj(’/u/www/maps/ukpoly/ukpoly.map’)
map.OWSDispatch(req)

The OWSRequest object is used to manage a parsed list of OWS processing options. In the above example they are
loaded from the environment using the loadParams() call which fetches and parses them from QUERY_STRING
in the same way the mapserv executable would.

Then we load a map, and invoke OWSDispatch with the given arguments on that map. By default the results of
the dispatched request are written to stdout which returns them back to the client.

The following example ignores all passed in arguments, and manually constructs a request argument by argument.
It is likely more useful for testing purposes than for deploying WxS services, but demonstrates direct manipulation
of the request object.

import mapscript

req = mapscript.OWSRequest()
req.setParameter(’SERVICE’, ’WMS’)
req.setParameter(’VERSION’, ’1.1.0’)
req.setParameter(’REQUEST’, ’GetCapabilities’)

map = mapscript.mapObj(’/u/www/maps/ukpoly/ukpoly.map’)
map.OWSDispatch(req)

588 Chapter 9. OGC

MapServer Documentation, Release 6.4.1

The previous example have all let results be returned directly to the client. But in some cases we want to be able
to capture, and perhaps modify the results of our requests in some custom way. In the following example we force
the hated OGC required mime type for errors to simple text/xml (warning - non-standard!)

import mapscript

req = mapscript.OWSRequest()
req.loadParams()

map = mapscript.mapObj(’/u/www/maps/ukpoly/ukpoly.map’)

mapscript.msIO_installStdoutToBuffer()
map.OWSDispatch(req)

content_type = mapscript.msIO_stripStdoutBufferContentType()
content = mapscript.msIO_getStdoutBufferBytes()

if content_type == ’vnd.ogc.se_xml’:
content_type = ’text/xml’

print ’Content-type: ’ + content_type
print
print content

This example demonstrates capture capturing output of OWSRequest to a buffer, capturing the “Content-type:”
header value, and capturing the actual content as binary data. The msIO_getStdoutBufferBytes() function returns
the stdout buffer as a byte array. If the result was known to be text, the msIO_getStdoutBufferString() function
could have been used to fetch it as a string instead, for easier text manipulation.

Perl Example

Most of the same capabilities are accessable in all SWIG based mapscript languages. In perl, we could script
creation of a request like this:

#!/usr/bin/perl

use mapscript;

$req = new mapscript::OWSRequest();
$req->setParameter("SERVICE", "WMS");
$req->setParameter("VERSION", "1.1.0");
$req->setParameter("REQUEST", "GetCapabilities");

$map = new mapscript::mapObj("/u/www/maps/ukpoly/ukpoly.map");

mapscript::msIO_installStdoutToBuffer();

$dispatch_out = $map->OWSDispatch($req);

printf "%s\n", mapscript::msIO_getStdoutBufferString();

One issue in Perl is that there is currently no wrapping for binary buffers so you cannot call
msIO_getStdoutBufferBytes(), and so cannot manipulate binary results.

More Perl example code

#!/usr/bin/perl
##
#
Name: wxs.pl
Project: MapServer

9.1. OGC Support and Configuration 589

MapServer Documentation, Release 6.4.1

Purpose: MapScript WxS example
#
Author: Tom Kralidis
#
##
#
Copyright (c) 2007, Tom Kralidis
#
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
#
The above copyright notice and this permission notice shall be included in
all copies of this Software or works derived from this Software.
#
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
##/

use CGI::Carp qw(fatalsToBrowser);
use mapscript;
use strict;
use warnings;
use XML::LibXSLT;
use XML::LibXML;

my $dispatch;

uber-trivial XSLT document, as a file
my $xsltfile = "/tmp/foo.xslt";

here’s the actual document inline for
testing save and alter $xsltFile above

=comment
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:wfs="http://www.opengis.net/wfs">
<xsl:output method="xml" indent="yes"/>
<xsl:template match="/">
<WFSLayers>
<xsl:for-each select="//wfs:FeatureType">
<wfs_layer>
<name><xsl:value-of select="wfs:Name"/></name>
<title><xsl:value-of select="wfs:Title"/></title>

</wfs_layer>
</xsl:for-each>
</WFSLayers>

</xsl:template>
</xsl:stylesheet>
=cut

my $mapfile = "/tmp/config.map";
init OWSRequest object

590 Chapter 9. OGC

MapServer Documentation, Release 6.4.1

my $req = new mapscript::OWSRequest();

pick up CGI paramters passed
$req->loadParams();

init mapfile
my $map = new mapscript::mapObj($mapfile);

if this is a WFS GetCapabilities request, then intercept
what is normally returned, process with an XSLT document
and then return that to the client
if ($req->getValueByName(’REQUEST’) eq "GetCapabilities" && $req->getValueByName(’SERVICE’) eq "WFS") {

push STDOUT to a buffer and run the incoming request
my $io = mapscript::msIO_installStdoutToBuffer();
$dispatch = $map->OWSDispatch($req);

at this point, the client’s request is sent

pull out the HTTP headers
my $ct = mapscript::msIO_stripStdoutBufferContentType();

and then pick up the actual content of the response
my $content = mapscript::msIO_getStdoutBufferString();

my $xml = XML::LibXML->new();
my $xslt = XML::LibXSLT->new();

load XML content
my $source = $xml->parse_string($content);

load XSLT document
my $style_doc = $xml->parse_file($xsltfile);
my $stylesheet = $xslt->parse_stylesheet($style_doc);

invoke the XSLT transformation
my $results = $stylesheet->transform($source);
print out the result (header + content)
print "Content-type: $ct\n\n";
print $stylesheet->output_string($results);

}

else process as normal
else {

$dispatch = $map->OWSDispatch($req);
}

Java Example

One benefit of redirection of output to a buffer is that it is thread-safe. Several threads in the same process can
be actively processing requests and writing their results to distinct output buffers. This Java example, used to test
multi-threaded access demonstrates that.

import edu.umn.gis.mapscript.mapObj;
import edu.umn.gis.mapscript.OWSRequest;
import edu.umn.gis.mapscript.mapscript;

class WxSTest_thread extends Thread {

public String mapName;
public byte[] resultBytes;

9.1. OGC Support and Configuration 591

MapServer Documentation, Release 6.4.1

public void run() {
mapObj map = new mapObj(mapName);

map.setMetaData("ows_onlineresource", "http://dummy.org/");

OWSRequest req = new OWSRequest();

req.setParameter("SERVICE", "WMS");
req.setParameter("VERSION", "1.1.0");
req.setParameter("REQUEST", "GetCapabilities");

mapscript.msIO_installStdoutToBuffer();

int owsResult = map.OWSDispatch(req);

if(owsResult != 0)
System.out.println("OWSDispatch Result (expect 0): " + owsResult);

resultBytes = mapscript.msIO_getStdoutBufferBytes();
}

}

public class WxSTest {
public static void main(String[] args) {

try {
WxSTest_thread tt[] = new WxSTest_thread[100];
int i;
int expectedLength=0, success = 0, failure=0;

for(i = 0; i < tt.length; i++)
{

tt[i] = new WxSTest_thread();
tt[i].mapName = args[0];

}

for(i = 0; i < tt.length; i++)
tt[i].start();

for(i = 0; i < tt.length; i++)
{

tt[i].join();
if(i == 0)
{

expectedLength = tt[i].resultBytes.length;
System.out.println("Document Length: " + expectedLength + ", expecting somewhere around 10000 or more.");

}
else if(expectedLength != tt[i].resultBytes.length)
{

System.out.println("Document Length:" + tt[i].resultBytes.length + " Expected:" + expectedLength);
failure++;

}
else

success++;
}

System.out.println("Successes: " + success);
System.out.println("Failures: " + failure);

} catch(Exception e) {
e.printStackTrace();

}
}

592 Chapter 9. OGC

MapServer Documentation, Release 6.4.1

}

PHP Example

Most of the same capabilities are accessible in php mapscript. Here is an example displaying a wms capabilities.

Example1 : get the capabilities
This is for example what a url could look like :
http://.../php/ows.php?service=WMS&version=1.1.1&Request=GetCapabilities

<?php

dl("php_mapscript_4.10.0.dll");

$request = ms_newowsrequestobj();

$request->loadparams();

/*exampple on how to modify the parameters :
forcing the version from 1.1.1 to 1.1.0 */

$request->setParameter("VeRsIoN","1.1.0");

ms_ioinstallstdouttobuffer();

$oMap = ms_newMapobj("../../service/wms.map");

$oMap->owsdispatch($request);

$contenttype = ms_iostripstdoutbuffercontenttype();

$buffer = ms_iogetstdoutbufferstring();

header(’Content-type: application/xml’);
echo $buffer;

ms_ioresethandlers();

?>

Example2 : get the map
This is for example what a url could look like :

http://.../php/ows.php?SERVICE=WMS&VeRsIoN=1.1.1&Request=GetMap&
LAYERS=WorldGen_Outline

<?php

dl("php_mapscript_4.10.0.dll");

$request = ms_newowsrequestobj();

$request->loadparams();

ms_ioinstallstdouttobuffer();

$oMap = ms_newMapobj("../../service/wms.map");

$oMap->owsdispatch($request);

9.1. OGC Support and Configuration 593

MapServer Documentation, Release 6.4.1

$contenttype = ms_iostripstdoutbuffercontenttype();

if ($contenttype == ’image/png’)
header(’Content-type: image/png’);

ms_iogetStdoutBufferBytes();

ms_ioresethandlers();

?>

Use in Non-CGI Environments (mod_php, etc)

The loadParams() call establish parses the cgi environment varabiables (QUERY_STRING, and RE-
QUEST_METHOD) into parameters in the OWSRequest object. In non-cgi environments, such as when php,
python and perl are used as “loaded modules” in Apache, or Java with Tomcat, the loadParams() call will not
work - in fact in 4.10.x it will terminate the web server instance.

It is necessary in these circumstances for the calling script/application to parse the request url into keyword/value
pairs and assign to the OWSRequest object by other means, as shown in some of the above examples explicitly
setting the request parameters.

Post Processing Capabilities

In the following python example, we process any incoming WxS request, but if it is a GetCapabilities request we
replace the Service section in the capabilities with a section read from a file, that is carefully tailored the way we
want.

#!/usr/bin/env python

import sys
import elementtree.ElementTree as ET

import mapscript

req = mapscript.OWSRequest()
req.loadParams()

map = mapscript.mapObj(’/u/www/maps/ukpoly/ukpoly.map’)

#
Handle anything but a GetCapabilities call normally.
#
if req.getValueByName(’REQUEST’) <> ’GetCapabilities’:

map.OWSDispatch(req)

#
Do special processing for GetCapabilities
#
else:
mapscript.msIO_installStdoutToBuffer()

map.OWSDispatch(req)

ct = mapscript.msIO_stripStdoutBufferContentType()
content = mapscript.msIO_getStdoutBufferString()
mapscript.msIO_resetHandlers()

Parse the capabilities.

594 Chapter 9. OGC

MapServer Documentation, Release 6.4.1

tree = ET.fromstring(content)

Strip out ordinary Service section, and replace from custom file.

tree.remove(tree.find(’Service’))
tree.insert(0,ET.parse(’./Service.xml’).getroot())

Stream out adjusted capabilities.

print ’Content-type: ’ + ct
print
print ET.tostring(tree)

9.1. OGC Support and Configuration 595

MapServer Documentation, Release 6.4.1

596 Chapter 9. OGC

CHAPTER

TEN

TINYOWS

10.1 TinyOWS

Author Olivier Courtin

Contact olivier dot courtin at oslandia.com

TinyOWS is a lightweight and fast implementation of the OGC WFS-T specification. Web Feature Service (WFS)
allows to query and to retrieve features. The transactional profile (WFS-T) allows then to insert, update or delete
such features.

From a technical point of view WFS-T is a Web Service API in front of a spatial database. TinyOWS is so deeply
tighed to PostgreSQL/PostGIS.

TinyOWS is already safely used in quite big GIS infrastructure arch, for instance, to allow European farmers to
report the locations and crops on their fields (and then to be paid by EEC accordingly). http://foss4g-cee.org/wp-
content/uploads/2012/04/IPA-Online.pdf

TinyOWS implement strictly OGC standards and pass successfully all WFS OGC CITE tests (and even beta ones).

TinyOWS is part of MapServer Suite, but provided as a distinct module (i.e you could use it in conjonction
with MapServer and MapCache, or as a standalone app) But both MapServer and TinyOWS could use the same
configuration file, if you want to (or native TinyOWS XML config file).

10.1.1 TinyOWS Installation

Requires

TinyOWS need following libraries/applications:

• LibXML2 (2.8 version or later)

• PostGIS (1.5.x version or later)

• PostgreSQL (with libpq headers)

• A working Web Server with cgi-bin support

• Fast-CGI is recommended

Installing from a stable source release

An example of a typical download, configure, make, make install:

$ wget http://download.osgeo.org/mapserver/tinyows-1.1.0.tar.bz2
$ tar xvjf tinyows-1.1.0.tar.bz2
$ cd mapserver-tinyows
$./configure

597

http://foss4g-cee.org/wp-content/uploads/2012/04/IPA-Online.pdf
http://foss4g-cee.org/wp-content/uploads/2012/04/IPA-Online.pdf

MapServer Documentation, Release 6.4.1

$ make
$ sudo make install
$ sudo make install-demo

Then copy the tinyows binary to your cgi-bin directory.

Installing the Current Trunk from GIT

To build from git, you must first install the autoconf utility, and git application .

$ git clone git://github.com/mapserver/tinyows.git
$ cd tinyows
$ autoconf
$./configure
$ make
$ sudo make install
$ sudo make install-demo

Then copy the tinyows binary to your cgi-bin directory.

Installing from source on Windows (oldies so dunno if still up to date)

• From GIT with Visual C++ for Win32 (written by Alexander Bruy)

10.1.2 Configuring TinyOWS with an XML File

The simplest way to configure TinyOWS is with a single XML file called tinyows.xml.

The default path is /etc/tinyows.xml. You can also use TINYOWS_CONFIG_FILE environment variable
to set your own path.

Configuration file simple Example

An example config.xml file is in the demo directory:

<tinyows online_resource="http://127.0.0.1/cgi-bin/tinyows"
schema_dir="/usr/local/tinyows/schema/">

<pg host="127.0.0.1" user="postgres" password="postgres" dbname="tinyows_demo" port="5432"/>

<metadata name="TinyOWS Server"
title="TinyOWS Server - Demo Service" />

<layer retrievable="1"
writable="1"
ns_prefix="tows"
ns_uri="http://www.tinyows.org/"
name="world"
title="World Administrative Boundaries" />

<layer retrievable="1"
writable="1"
ns_prefix="tows"
ns_uri="http://www.tinyows.org/"
name="france"
title="French Administrative Sub Boundaries (IGN - GeoFLA Departements)" />

</tinyows>

598 Chapter 10. TinyOWS

http://gis-lab.info/qa/tinyows-compile-vce-eng.html

MapServer Documentation, Release 6.4.1

Testing your config.xml file

Once you have a config.xml file related to your service, launch TinyOWS with the –check option to validate your
configuration file, test your database connection, and list the layers to be used:

./tinyows --check
TinyOWS version: 1.1.0
FCGI support: Yes
Config File Path: /etc/tinyows.xml (TinyOWS XML)
PostGIS Version: 2.1.0
PostGIS dsn: host=127.0.0.1 user=postgres password=postgres dbname=foo port=5432
Output Encoding: UTF-8
Database Encoding: UTF8
Schema dir: /usr/local/share/tinyows/schema/
Display bbox: Yes
Estimated extent: No
Check schema: Yes
Check valid geoms: No
Available layers:
- public.commune (2154) -> tows.commune [RW]
- public.world (4326) -> tows.world [RW]

Structure of the config.xml file

TinyOWS Element

TinyOWS is the root element. He is mandatory, and must contains some system informations about the service
itself. Some globals service options could also be switched on or off at this level.

At-
tribute

Re-
quired?

De-
fault

Description

on-
line_resource

manda-
tory

URL where the service is located, e.g:
http://127.0.0.1/cgi-bin/tinyows

schema_dir manda-
tory

Path where TinyOWS schema dir is located e.g:
/usr/local/tinyows/schema/

log op-
tional

Path where TinyOWS logs input requests. e.g: /var/log/tinyows.log.
This file must be writable by the user that owns the TinyOWS process.

log_level op-
tional

0 Bit field value to indicate what to log: 1: ERROR, 2: EVENT, 4: HTTP
QUERY, 8: SQL. e.g: 15 to log all.

de-
gree_precision

op-
tional

6 Indicate how many digits of decimal precision when coordinates are express in
latitude/longitude.

me-
ter_precision

op-
tional

0 Indicate how many digits of decimal precision to use when coordinates are
projected (so meter unit).

dis-
play_bbox

op-
tional

1 Flag to indicate if bounding box should be computed for WFS GML
GetFeature output. It’s mandatory in WFS specification. But as it’s time
consuming it could be interesting to be able to deactivate it.

esti-
mated_extent

op-
tional

0 Flag to indicate if TinyOWS should use estimated_extent (faster but slightly less
accurate).

check_schemaop-
tional

1 Flag to indicate if input data must be checked against schema before to be
executed. Caution, schema validation is an important part of security. Disable
this attribute at your peril.

check_valid_geomop-
tional

1 Flag to indicate if OGC SFS 1.1 geometry validation should be done prior to
execute a transaction.

encoding op-
tional

UTF-
8

Output encoding. Other values could be ISO-8859-1 for instance. No encoding
conversion is done on data; this attribute is declarative.

ex-
pose_pk

op-
tional

0 Flag to indicate if TinyOWS should expose PK in schema (and so require them
in Transaction query).

wfs_default_versionop-
tional

String version to indicate WFS default version, 1.0.0 or 1.1.0 for instance.

10.1. TinyOWS 599

MapServer Documentation, Release 6.4.1

Limits Element

Limits Element provides a maximum for the server output. It could help to prevent a denial of service attack, or
an abnormally large user query, from crashing your server. This element is optional.

Limits attributes

At-
tribute

Re-
quired?

De-
fault

Description

features optional Use to set maximum number of features returned to WFS client, on
GetFeature request

geobbox optional Geographic bounding bbox, used to indicate maximum extent:
East,West,North,South

<tinyows>
...
<limits features="10000" />
...

</tinyows>

PostgreSQL Connection

PostgreSQL connection element. This element is mandatory.

At-
tribute

Re-
quired?

De-
fault

Description

host optional local-
host

Name (or IP) to PostgreSQL server (default is localhost)

user optional PostgreSQL user to connect (default is the system user used to run the server)
pass-
word

optional PostgreSQL password connection

db-
name

optional PostGIS database (by default, same as the system user used to run the server

port optional 5432 PostgreSQL port number
encod-
ing

optional UTF-
8

PostgreSQL DB encoding, as specified in
http://www.postgresql.org/docs/9.0/static/multibyte.html#CHARSET-TABLE

<tinyows>
...
<pg host="127.0.0.1"

user="postgres"
password="postgres"
dbname="gis_data"
port="5432" />

...
</tinyows>

Metadata and Contact Elements

Used to provide information about the service itself. These two elements are mandatory.

Metadata attributes

Attribute Required? Default Description
name mandatory Web Service Name
title mandatory Web Service Title
keywords optional Web Service Keywords list (comma separated list)
fees optional Web Service Fees
access_constraints optional Web Service Access Constraints

600 Chapter 10. TinyOWS

http://www.postgresql.org/docs/9.0/static/multibyte.html#CHARSET-TABLE

MapServer Documentation, Release 6.4.1

Abstract Element The Abstract element is an optional child element of Metadata. It is a place for a free-
formatted text description of the service.

Contact attributes

Attribute Required? Default Description
name mandatory Web Service Contact Name
site mandatory Web Service Contact URL
email mandatory Web Service Contact Email
individual_name optional Web Service Contact Individual Name
position optional Web Service Contact Position
phone optional Web Service Contact Phone
fax optional Web Service Contact Fax
online_resource optional Web Service Contact URL (e.g additional Metadatas)
address optional Web Service Contact Postal Address
postcode optional Web Service Contact Postcode
city optional Web Service Contact City
administrative_area optional Web Service Contact Administrative Area
country optional Web Service Contact Country
hours_of_service optional Web Service Contact Hours of Services
contact_instructions optional Web Service Contact Instructions ||

Contact and Metadata example with only mandatory attributes:

<metadata name="TinyOWS Server"
title="TinyOWS Server - Demo Service" />

<contact name="TinyOWS Server"
site="http://www.tinyows.org/"
email="tinyows-users@lists.maptools.org" />

Layer Element

Layer element is used to set all layers provided by the service. Although this element is technically optional,
omitting it will cause no layer at all to be provided.

10.1. TinyOWS 601

MapServer Documentation, Release 6.4.1

At-
tribute

Re-
quired?

De-
fault

In-
her-
its?

Description

ns_prefix manda-
tory

Yes Layer’s Namespace Prefix used in WFS

ns_uri manda-
tory

Yes Layer’s Namespace URI used in WFS

name manda-
tory

No Layer’s Name

title op-
tional

No Layer’s Title

retriev-
able

op-
tional

false Yes If true, layer is retrievable on WFS GetFeature request

writable op-
tional

false Yes If true, layer is editable with WFS Transaction request

schema op-
tional

‘pub-
lic’

Yes PostgreSQL Schema name.

table op-
tional

No PostgreSQL table name (default is to use layer’s name).

abstract op-
tional

No Abstract text

key-
words

op-
tional

Yes Keywords (comma separated list)

srid op-
tional

Yes Comma separated list of output SRID

geobbox op-
tional

Yes WGS-84 bbox of max extent: East,West,North,South

in-
clude_items

op-
tional

Yes Comma separated list of columns to retrieve (only)

ex-
clude_items

op-
tional

Yes Comma separated list of columns to not retrieve

pkey op-
tional

Yes Column name to use as a Primary Key, when there’s no
PostgreSQL one (e.g usefull to use with VIEW)

<tinyows>
...

<layer retrievable="1"
writable="1"
ns_prefix="tows"
ns_uri="http://www.tinyows.org/"
name="world"
title="World Administrative Boundaries" />

...
</tinyows>

Nested Layers Layer entities could be nested, properties in this case are inherited. A Layer without title is then
considered as a ‘virtual’ layer.

<tinyows>
...

<layer name="root"
retrievable="1" writable="1"
ns_prefix="tows"
ns_uri="http://www.tinyows.org/"
schema="my_db_schema">

<layer name="foo" title="foo" />
<layer name="bar" title="bar" />

602 Chapter 10. TinyOWS

MapServer Documentation, Release 6.4.1

</layer>

...
</tinyows>

10.1.3 Configuring TinyOWS with a standard Mapfile

Mapfile Config File support for TinyOWS

TinyOWS supports as a configuration file a standard MapServer Mapfile. This allow a single file to configure both
MapServer and TinyOWS. (e.g could be usefull if you use them both, as one for WMS and the other as WFS-T)

TinyOWS does not handle all of the parameters in a Mapfile, but will ignore, without error, any extra parameters
that are not implemented in TinyOWS.

If you prefer, you can configure TinyOWS using an XML file (Configuring TinyOWS with an XML File).

To indicate where your Mapfile is located, to TinyOWS binary, use the ‘’TINYOWS_MAPFILE” environment
variable.

Here an example of a single Mapfile:

MAP
NAME "TinyOWS"

WEB
METADATA

"tinyows_schema_dir" "/usr/local/share/tinyows/schema/"
"tinyows_onlineresource" "127.0.0.1/cgi-bin/tinyows.fcgi"
"wfs_title" "TinyOWS service provided by a MapFile"
"wfs_contact" "foo@bar.net"

END
END

LAYER
NAME ’France’
CONNECTIONTYPE postgis
CONNECTION "host=127.0.0.1 user=postgres password=postgres dbname=tinyows_demo port=5432"
METADATA

’wfs_title’ ’France’
’wfs_namespace_prefix’ ’tows’
’wfs_namespace_uri’ ’http://www.tinyows.org/’
’wfs_srs’ ’EPSG:27582’
’tinyows_table’ ’france’
’tinyows_writable’ ’1’
’tinyows_retrievable’ ’1’

END
DUMP TRUE

END
END

Current concepts and limitations:

• Only the PostGIS CONNECTIONTYPE is handled

• TinyOWS does not support all of the WFS parameters available in a Mapfile. But on the other hand, you
are able to configure every part of TinyOWS with a Mapfile.

• The CONNECTION string value in each layer must be the same.

• Mapfile PROJECTION content is not parsed, so use explicit wfs_srs.

• Mapfile LAYER and FILTER are not parsed.

• Default values are TinyOWS ones, even for common properties shared by both TinyOWS and MapServer.

10.1. TinyOWS 603

MapServer Documentation, Release 6.4.1

• TinyOWS does not use DATA element from Mapfile, so you have to use tinyows_table (and
tinyows_schema if needed) in each layer.

• If DUMP is not set to TRUE on a layer, both read and write access are disabled for the layer.

Mapfile path of each TinyOWS config element

Original TinyOWS XML Config File Mapfile counterpart
/tinyows@online_resource /map/metadata@tinyows_onlineresource
/tinyows@schema_dir /map/metadata@tinyows_schema_dir
/tinyows@log /map/metadata@tinyows_log
/tinyows@log_level /map/metadata@tinyows_log_level
/tinyows@degree_precision /map/metadata@tinyows_degree_precision
/tinyows@meter_precision /map/metadata@tinyows_meter_precision
/tinyows@display_bbox /map/metadata@tinyows_display_bbox
/tinyows@estimated_extent /map/metadata@tinyows_estimated_extent
/tinyows@check_schema /map/metadata@tinyows_check_schema
/tinyows@check_valid_geom /map/metadata@tinyows_check_valid_geom
/tinyows@encoding /map/metadata@wfs_encoding
/tinyows@db_encoding /map/metadata@tinyows_db_encoding
/tinyows@expose_pk /map/metadata@tinyows_expose_pk
/tinyows/limits@features /map/metadata@wfs_maxfeatures
/tinyows/limits@geobbox /map/metadata@tinyows_geobbox
/tinyows/pg@host /map/layer@connection
/tinyows/pg@user /map/layer@connection
/tinyows/pg@password /map/layer@connection
/tinyows/pg@dbname /map/layer@connection
/tinyows/pg@port /map/layer@connection
/tinyows/pg@encoding /map/metadata@tinyows_db_encoding
/tinyows/metadata@name /map@name
/tinyows/metadata@title /map/metadata@wfs_title
/tinyows/metadata@keywords /map/metadata@wfs_keywordlist
/tinyows/metadata/abstract /map/metadata@wfs_abstract
/tinyows/metadata@fees /map/metadata@wfs_fees
/tinyows/metadata@access_constraints /map/metadata@wfs_accessconstraints
/tinyows/layer@ns_prefix /map/layer/metadata@wfs_namespace_prefix or /map/metadata@wfs_namespace_prefix
/tinyows/layer@ns_uri /map/layer/metadata@wfs_namespace_uri or /map/metadata@wfs_namespace_uri
/tinyows/layer@name /map/layer@name
/tinyows/layer@title /map/layer/metadata@wfs_title
/tinyows/layer@retrievable /map/layer/metadata@tinyows_retrievable and /map/layer@dump
/tinyows/layer@writable /map/layer/metadata@tinyows_writable and /map/layer@dump
/tinyows/layer@schema /map/layer/metadata@tinyows_schema
/tinyows/layer@keywords /map/layer/metadata@wfs_keywordlist
/tinyows/layer/abstract /map/layer/metadata@wfs_abstract
/tinyows/layer@srid /map/metadata@wfs_srs and /map/layer/metadata@wfs_srs
/tinyows/layer@geobbox /map/layer/metadata@tinyows_geobbox
/tinyows/layer@include_items /map/layer/metadata@include_items
/tinyows/layer@exclude_items /map/layer/metadata@exclude_items
/tinyows/layer@pkey /map/layer/metadata@pkey
/tinyows/contact@name /map/metadata@ows_contactorganization
/tinyows/contact@site
/tinyows/contact@email /map/metadata@ows_contactelectronicmailaddress
/tinyows/contact@individual_name /map/metadata@ows_contactperson
/tinyows/contact@position /map/metadata@ows_contactposition
/tinyows/contact@phone /map/metadata@ows_contactvoicetelephone

Continued on next page

604 Chapter 10. TinyOWS

MapServer Documentation, Release 6.4.1

Table 10.1 – continued from previous page
Original TinyOWS XML Config File Mapfile counterpart

/tinyows/contact@fax /map/metadata@ows_contactfacsimiletelephone
/tinyows/contact@online_resource
/tinyows/contact@address /map/metadata@ows_address
/tinyows/contact@city /map/metadata@ows_city
/tinyows/contact@administrative_area
/tinyows/contact@country /map/metadata@ows_country
/tinyows/contact@hours_of_service
/tinyows/contact@contact_instructions

10.1.4 Sample: WFS-T with TinyOWS and OpenLayers

0. Install PostGIS and TinyOWS (TinyOWS Installation)

1. Within PostGIS, create a spatial database called ‘tinyows’

createdb -U postgres tinyows
psql -U postgres -d tinyows < ‘pg_config --sharedir‘/contrib/postgis-2.0/postgis.sql
psql -U postgres -d tinyows < ‘pg_config --sharedir‘/contrib/postgis-2.0/spatial_ref_sys.sql

2. Import Frida data (we will use the parks layer) into your PostGIS database

wget ftp://ftp.intevation.de/freegis/frida/frida-1.0.1-shp.tar.gz
tar xvzf frida-1.0.1-shp.tar.gz
cd frida-1.0.1-shp
shp2pgsql -g geom -s 31467 -W LATIN1 -I gruenflaechen.shp frida | psql -U postgres -d tinyows

3. Configure TinyOWS by editing /usr/local/tinyows/config.xml

<tinyows online_resource="http://127.0.0.1/cgi-bin/tinyows"
schema_dir="/usr/local/share/tinyows/schema/">

<pg host="127.0.0.1" user="postgres" password="postgres" dbname="tinyows" port="5432"/>

<metadata name="TinyOWS Server"
title="TinyOWS Server - WFS-T Frida Service" />

<contact name="TinyOWS Server"
site="http://www.tinyows.org/"
email="tinyows-users@lists.maptools.org" />

<layer retrievable="1"
writable="1"
ns_prefix="tows"
ns_uri="http://www.tinyows.org/"
name="frida"
title="Frida Parks" />

</tinyows>

4. Test your installations of TinyOWS and PostGIS

./YOUR_CGI-BIN_PATH/tinyows --check
TinyOWS version: 1.1.0
FCGI support: Yes
Config File Path: /etc/tinyows.xml (TinyOWS XML)
PostGIS Version: 2.0.1
PostGIS dsn: host=127.0.0.1 user=postgres password=postgres dbname=tinyows port=5432
Output Encoding: UTF-8
Database Encoding: UTF8
Schema dir: /usr/local/share/tinyows/schema/

10.1. TinyOWS 605

MapServer Documentation, Release 6.4.1

Display bbox: Yes
Estimated extent: No
Check schema: Yes
Check valid geoms: Yes
Available layers:
- public.frida (31467) -> tows:frida [RW]

5. Install OpenLayers

wget http://openlayers.org/download/OpenLayers-2.12.tar.gz
tar xvzf OpenLayers-2.12.tar.gz
sudo mv OpenLayers-2.12 /YOUR/SERVER/HTDOCS/

6. Install the OpenLayers proxy (you need the Python interpreter to make it work)

sudo cp OpenLayers-2.12/examples/proxy.cgi /YOUR/SERVER/CGI-BIN/

7. Add your server IP to proxy allowedHosts in (/YOUR/SERVER/CGI-BIN/proxy.cgi)

allowedHosts = [’127.0.0.1’, ’www.openlayers.org’, ’openlayers.org’, ...]

8. Create a new file at OpenLayers-2.12/examples/tinyows.html

<html>
<head>

<link rel="stylesheet" href="../theme/default/style.css" type="text/css" />
<link rel="stylesheet" href="style.css" type="text/css" />
<script src="../lib/OpenLayers.js"></script>
<style>

#map {
width: 800px;
height: 500px;
float: left;
border: 1px solid #ccc;

}
#message {

position: relative;
left: 5px;

}
#docs {

float: left;
}
.customEditingToolbar {

float: right;
right: 0px;
height: 30px;
width: 200px;

}
.customEditingToolbar div {

float: right;
margin: 5px;
width: 24px;
height: 24px;

}
.olControlNavigationItemActive {

background-image: url("../theme/default/img/editing_tool_bar.png");
background-repeat: no-repeat;
background-position: -103px -23px;

}
.olControlNavigationItemInactive {

background-image: url("../theme/default/img/editing_tool_bar.png");
background-repeat: no-repeat;
background-position: -103px -0px;

}

606 Chapter 10. TinyOWS

MapServer Documentation, Release 6.4.1

.olControlDrawFeaturePolygonItemInactive {
background-image: url("../theme/default/img/editing_tool_bar.png");
background-repeat: no-repeat;
background-position: -26px 0px;

}
.olControlDrawFeaturePolygonItemActive {

background-image: url("../theme/default/img/editing_tool_bar.png");
background-repeat: no-repeat;
background-position: -26px -23px ;

}
.olControlModifyFeatureItemActive {

background-image: url(../theme/default/img/move_feature_on.png);
background-repeat: no-repeat;
background-position: 0px 1px;

}
.olControlModifyFeatureItemInactive {

background-image: url(../theme/default/img/move_feature_off.png);
background-repeat: no-repeat;
background-position: 0px 1px;

}
.olControlDeleteFeatureItemActive {

background-image: url(../theme/default/img/remove_point_on.png);
background-repeat: no-repeat;
background-position: 0px 1px;

}
.olControlDeleteFeatureItemInactive {

background-image: url(../theme/default/img/remove_point_off.png);
background-repeat: no-repeat;
background-position: 0px 1px;

}
</style>
<script src="tinyows.js"></script>
</head>
<body onload="init()">

<h1 id="title">WFS Transaction Example, (TinyOWS ans OpenLayers)</h1>
<div id="tags"></div>
<p id="shortdesc">

Shows the use of the WFS Transactions (WFS-T).
Parks of Osnabruck (Frida).

Base layers is OpenStreetMap from Omniscale WMS Server.

</p>
<div id="map"></div>

<div id="message"></div>
<div id="docs">

<p>
The WFS protocol allows for creation of new features and
reading, updating, or deleting of existing features.

</p>
<p>

Use the tools to create, modify, and delete (in order from left
to right) features. Use the save tool (picture of a disk) to
save your changes. Use the navigation tool (hand) to stop
editing and use the mouse for map navigation.

</p>
<p>

See the
wfs-protocol-transactions.js source to see how this is done.

</p>
</div>

</body>
</html>

10.1. TinyOWS 607

MapServer Documentation, Release 6.4.1

9. Create a new file at OpenLayers-2.12/examples/tinyows.js (and replace all 127.0.0.1 adresses by your IP
server if necessary)

var map, wfs;
OpenLayers.ProxyHost = "/cgi-bin/proxy.cgi?url=";
var DeleteFeature = OpenLayers.Class(OpenLayers.Control, {
initialize: function(layer, options) {

OpenLayers.Control.prototype.initialize.apply(this, [options]);
this.layer = layer;
this.handler = new OpenLayers.Handler.Feature(

this, layer, {click: this.clickFeature}
);

},
clickFeature: function(feature) {

// if feature doesn’t have a fid, destroy it
if(feature.fid == undefined) {

this.layer.destroyFeatures([feature]);
} else {

feature.state = OpenLayers.State.DELETE;
this.layer.events.triggerEvent("afterfeaturemodified",

{feature: feature});
feature.renderIntent = "select";
this.layer.drawFeature(feature);

}
},
setMap: function(map) {

this.handler.setMap(map);
OpenLayers.Control.prototype.setMap.apply(this, arguments);

},
CLASS_NAME: "OpenLayers.Control.DeleteFeature"

});
function showMsg(szMessage) {

document.getElementById("message").innerHTML = szMessage;
setTimeout(

"document.getElementById(’message’).innerHTML = ’’",2000);
}
function showSuccessMsg(){

showMsg("Transaction successfully completed");
};
function showFailureMsg(){

showMsg("An error occured while operating the transaction");
};
function init() {

map = new OpenLayers.Map(’map’, {
projection: new OpenLayers.Projection("EPSG:31467"),
units: "m",
maxResolution: "auto",
maxExtent: new OpenLayers.Bounds(3427000,5788000,3444000,5800000),
controls: [

new OpenLayers.Control.PanZoom()
]

});
var osm = new OpenLayers.Layer.WMS(

"OSM by Omniscale WMS",
"http://osm.omniscale.net/proxy/service",
{layers: ’osm’, format: ’image/jpeg’},
{projection:"EPSG:31467", units: "m", maxResolution: "auto", maxExtent: new OpenLayers.Bounds(3427000,5788000,3444000,5800000)}

);
var saveStrategy = new OpenLayers.Strategy.Save();
saveStrategy.events.register("success", ’’, showSuccessMsg);
saveStrategy.events.register("fail", ’’, showFailureMsg);
wfs = new OpenLayers.Layer.Vector("Editable Features", {

strategies: [new OpenLayers.Strategy.BBOX(), saveStrategy],

608 Chapter 10. TinyOWS

MapServer Documentation, Release 6.4.1

projection: new OpenLayers.Projection("EPSG:31467"),
protocol: new OpenLayers.Protocol.WFS({

version: "1.1.0",
srsName: "EPSG:31467",
url: "http://127.0.0.1/cgi-bin/tinyows",
featureNS : "http://www.tinyows.org/",
featureType: "frida",
geometryName: "geom",
schema: "http://127.0.0.1/cgi-bin/tinyows?service=wfs&request=DescribeFeatureType&version=1.1.0&typename=tows:frida"

})
});
map.addLayers([osm, wfs]);
var panel = new OpenLayers.Control.Panel(

{’displayClass’: ’customEditingToolbar’}
);
var navigate = new OpenLayers.Control.Navigation({

title: "Pan Map"
});
var draw = new OpenLayers.Control.DrawFeature(

wfs, OpenLayers.Handler.Polygon,
{

title: "Draw Feature",
displayClass: "olControlDrawFeaturePolygon",
multi: true

}
);
var edit = new OpenLayers.Control.ModifyFeature(wfs, {

title: "Modify Feature",
displayClass: "olControlModifyFeature"

});
var del = new DeleteFeature(wfs, {title: "Delete Feature"});
var save = new OpenLayers.Control.Button({

title: "Save Changes",
trigger: function() {

if(edit.feature) {
edit.selectControl.unselectAll();

}
saveStrategy.save();

},
displayClass: "olControlSaveFeatures"

});
panel.addControls([navigate, save, del, edit, draw]);
panel.defaultControl = navigate;
map.addControl(panel);
map.zoomToMaxExtent();

}

10.1.5 Server Tuning: How to speed up your TinyOWS server

Tips and Tricks for PostgreSQL / PostGIS databases

• Use Spatial Indexes on your geometry/geography columns PostGIS Spatial Indexes.

• Index any column that could be used frequently as a filter

• General PostGIS Performance tips

• General PostgreSQL Performance tips

• Even more tips on Tuning PostgreSQL

10.1. TinyOWS 609

http://postgis.refractions.net/docs/ch04.html#id2628096
http://postgis.refractions.net/docs/ch06.html
http://wiki.postgresql.org/wiki/Performance_Optimization
http://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server

MapServer Documentation, Release 6.4.1

Tips and Tricks for Apache

Using Fast-CGI

• Check that your TinyOWS is compiled with FastCGI support:

[user@host mapserver]$ tinyows --check
TinyOWS version: 1.1.0
FCGI support: Yes
...

Fast-CGI in Apache

• In Apache, activate mod_fastcgi

$ sudo apt-get install -y libapache2-mod-fastcgi
$ sudo a2enmod fastcgi

• Apache fast-cgi configuration:

#in your cgi-bin directive, add the following to run all cgi-bin using FastCGI
SetHandler fastcgi-script

#in your FastCGI config file (typically something like /etc/apache2/mods-enabled/fastcgi.conf)
FastCgiServer /usr/lib/cgi-bin/tinyows.fcgi -processes 10

Fast-CGI in MS4W

• Please refer to the fastcgi doc in ms4w

• Add the following 2 lines:

DefaultInitEnv TINYOWS_CONFIG_FILE "/ms4w/apps/tinyows/config.xml"
DefaultInitEnv TINYOWS_SCHEMA_DIR "/ms4w/apps/tinyows/schema/"

HTTP GZip compression

• In Apache, activate mod_deflate

• Deflate basic configuration, (note we’re including xml so gml and json):

AddOutputFilterByType DEFLATE text/html text/plain text/xml application/xml application/json

10.1.6 Working Around the LibXML2 XSD Schema GML Bug

Issue

TinyOWS makes use of GML, an XML-based language that encodes geometry. Frequently the input and the
output of TinyOWS are in GML.

Even if LibXML2 is a great lib, older versions (i.e previous to 2.8) didn’t handled correctly GML 3.1.1 XSD
Schema (see https://bugzilla.gnome.org/show_bug.cgi?id=630130).

610 Chapter 10. TinyOWS

http://www.maptools.org/ms4w/index.phtml?page=README_INSTALL.html#f-fastcgi
http://httpd.apache.org/docs/2.0/mod/mod_deflate.html
https://bugzilla.gnome.org/show_bug.cgi?id=630130

MapServer Documentation, Release 6.4.1

Workaround and options

For TinyOWS users, you have several options

• Take a recent libxml2 version (i.e 2.8 or later)

• Patch your oldest copy of LibXML2 release and link TinyOWS against your local copy:

--- xmlschemas.c.orig 2011-04-24 14:58:16.000000000 +0000
+++ xmlschemas.c 2011-04-24 15:47:50.000000000 +0000
@@ -15158,7 +15158,11 @@

}
if ((WXS_IS_LIST(type) || WXS_IS_UNION(type)) &&

(WXS_IS_RESTRICTION(type) == 0) &&
- (! WXS_IS_ANY_SIMPLE_TYPE(baseType))) {
+ (
+ (! WXS_IS_ANY_SIMPLE_TYPE(baseType))
+ && (baseType->type != XML_SCHEMA_TYPE_SIMPLE)
+)
+) {

xmlSchemaPCustomErr(ctxt,
XML_SCHEMAP_ST_PROPS_CORRECT_1,
WXS_BASIC_CAST type, NULL,

}}}

• Modify the XSD GML Schema itself (but you violate the OGC License if you do this!):

Index: schema/gml/3.1.1/base/valueObjects.xsd
===
--- schema/gml/3.1.1/base/valueObjects.xsd (revision 550)
+++ schema/gml/3.1.1/base/valueObjects.xsd (revision 561)
@@ -200,11 +200,13 @@

<group name="ValueExtent">
<choice>

+<!--
<element ref="gml:CategoryExtent"/>
<element ref="gml:QuantityExtent"/>

+-->
<element ref="gml:CountExtent"/>

</choice>
</group>

- <!-- ==
- <element name="QuantityExtent" type="gml:QuantityExtentType" substitutionGroup="gml:_Value"> -->
+ <!-- ==
+ <element name="QuantityExtent" type="gml:QuantityExtentType" substitutionGroup="gml:_Value">

<element name="QuantityExtent" type="gml:QuantityExtentType">
<annotation>

@@ -212,5 +214,4 @@
</annotation>

</element>
- <!-- -->

<complexType name="QuantityExtentType">
<annotation>

@@ -223,6 +224,7 @@
</simpleContent>

</complexType>
+-->

<!-- ==
- <element name="CategoryExtent" type="gml:CategoryExtentType" substitutionGroup="gml:_Value"> -->
+ <element name="CategoryExtent" type="gml:CategoryExtentType" substitutionGroup="gml:_Value">

<element name="CategoryExtent" type="gml:CategoryExtentType">
<annotation>

@@ -230,5 +232,4 @@
</annotation>

10.1. TinyOWS 611

MapServer Documentation, Release 6.4.1

</element>
- <!-- -->

<complexType name="CategoryExtentType">
<annotation>

@@ -241,4 +242,5 @@
</simpleContent>

</complexType>
+-->

<!-- ==
<element name="CountExtent" type="gml:CountExtentType" substitutionGroup="gml:_Value"> -->

• Or choose to use only GML 2.1.2 in the meantime.

See Also:

Developer documentation

(French) Utiliser TinyOWS comme serveur WFS-T

612 Chapter 10. TinyOWS

http://www.tinyows.org/trac/wiki/DeveloperDocumentation
http://www.geotribu.net/node/264

CHAPTER

ELEVEN

OPTIMIZATION

11.1 Optimization

11.1.1 Debugging MapServer

Author Jeff McKenna

Contact jmckenna at gatewaygeomatics.com

Last Updated 2013-07-02

Table of Contents

• Debugging MapServer
– Introduction

* Links to Related Information
– Steps to Enable MapServer Debugging

* Step 1: Set the MS_ERRORFILE Variable
* Step 2: Set the DEBUG Level
* Step 3: Turn on CPL_DEBUG (optional)
* Step 4: Turn on PROJ_DEBUG (optional)
* Step 5: Test your Mapfile
* Step 6: Check your Web Server Logs
* Step 7: Verify your Application Settings

– Debugging MapServer using Compiler Debugging Tools
* Running MapServer in GDB (Linux/Unix)

– Debugging Older Versions of MapServer (before 5.0)

Introduction

When developing an application for the Internet, you will inevitably across problems many problems in your
environment. The goal of this guide is to assist you with locating the problem with your MapServer application.

Links to Related Information

• RFC 28: Redesign of LOG/DEBUG output mechanisms

• MapServer Errors

613

MapServer Documentation, Release 6.4.1

Steps to Enable MapServer Debugging

Starting with MapServer 5.0, you are able to control the levels of debugging/logging information returned to you
by MapServer, and also control the location of the output log file.

In technical terms, there are msDebug() calls in various areas of the MapServer code that generate information
that may be useful in tuning and troubleshooting applications.

Step 1: Set the MS_ERRORFILE Variable

The MS_ERRORFILE variable is used to specify the output of debug messages from MapServer. You can pass
the following values to MS_ERRORFILE:

[filename] Full path and filename of a log file, to contain MapServer’s debug messages. Any file extension can
be used, but .log or .txt is recommended. The file will be created, if it does not already exist.

Starting with MapServer 6.0, a filename with relative path can be passed via the CONFIG MS_ERRORFILE
directive, in which case the filename is relative to the mapfile location. Note that setting MS_ERRORFILE
via an environment variable always requires an absolute path since there would be no mapfile to make the
path relative to.

stderr Use this to send MapServer’s debug messages to the Web server’s log file (i.e. “standard error”). If you are
using Apache, your debug messages will be placed in the Apache error_log file. If you are using Microsoft
IIS, your debug messages will be sent to stdout (i.e. the browser), so its use is discouraged. With IIS it is
recommended to direct output to a file instead.

stdout Use this to send MapServer’s debug messages to the standard output (i.e. the browser), combined with the
rest of MapServer’s output.

windowsdebug Use this to send MapServer’s debug messages to the Windows OutputDebugString API, allowing
the use of external programs like SysInternals debugview to display the debug output.

Through the Mapfile The recommended way to set the MS_ERRORFILE variable is in your mapfile, within
the MAP object, such as:

MAP
...
CONFIG "MS_ERRORFILE" "/ms4w/tmp/ms_error.txt"
...
LAYER
...

END
END

Through an Environment Variable You can also set the MS_ERRORFILE variable as an environment vari-
able on your system. Apache users can set the environment variable in Apache’s httpd.conf file, such as:

SetEnv MS_ERRORFILE "/ms4w/tmp/ms_error.txt"

Windows users can alternatively set the environment variable through the Windows System Properties; but make
sure to set a SYSTEM environment variable.

Note: If both the MS_ERRORFILE environment variable is set and a CONFIG MS_ERRORFILE is also set, then
the CONFIG directive takes precedence.

Step 2: Set the DEBUG Level

You can retrieve varying types of debug messages by setting the DEBUG parameter in the Mapfile. You can place
the DEBUG parameter in any LAYER in the mapfile for layer-specific debug information, or instead, set it once

614 Chapter 11. Optimization

MapServer Documentation, Release 6.4.1

in the MAP object to get general debug information. Use the value of the DEBUG parameter to set the type of
information returned, as follows:

DEBUG Levels

Level 0 Errors only (DEBUG OFF, or DEBUG 0)

In level 0, only msSetError() calls are logged to MS_ERORFILE. No msDebug() output at all. This is the
default and corresponds to the original behavior of MS_ERRORFILE in MapServer 4.x

Level 1 Errors and Notices (DEBUG ON, or DEBUG 1)

Level 1 includes all output from Level 0 plus msDebug() warnings about common pitfalls, failed assertions
or non-fatal error situations (e.g. missing or invalid values for some parameters, missing shapefiles in
tileindex, timeout error from remote WMS/WFS servers, etc.)

Level 2 Map Tuning (DEBUG 2)

Level 2 includes all output from Level 1 plus notices and timing information useful for tuning mapfiles and
applications. this is the recommended minimal debugging level

Level 3 Verbose Debug (DEBUG 3)

All of Level 2 plus some debug output useful in troubleshooting problems such as WMS connection URLs
being called, database connection calls, etc.

Level 4 Very Verbose Debug (DEBUG 4)

Level 3 plus even more details...

Level 5 Very Very Verbose Debug (DEBUG 5)

Level 4 plus any msDebug() output that might be more useful to developers than to users.

Mapfile Example: Map-Level Debug The following example is the recommended method to set the DEBUG
parameter for the map-level:

MAP
...
CONFIG "MS_ERRORFILE" "/ms4w/tmp/ms_error.txt"
DEBUG 5
...
LAYER
...

END
END

Mapfile Example: Layer-Level Debug The following example is the recommended method to set the DEBUG
parameter for a layer:

MAP
...
CONFIG "MS_ERRORFILE" "/ms4w/tmp/ms_error.txt"
...
LAYER
DEBUG 5
...

END
END

11.1. Optimization 615

MapServer Documentation, Release 6.4.1

The MS_DEBUGLEVEL Environment Variable Instead of setting the DEBUG Debug level in each of your
mapfiles, you can also be set the level globally by using the MS_DEBUGLEVEL environment variable.

When set, this value is used as the default debug level value for all map and layer objects as they are loaded by
the mapfile parser. This option also sets the debug level for any msDebug() call located outside of the context
of a map or layer object, for instance for debug statements relating to initialization before a map is loaded. If a
DEBUG value is also specified in the mapfile in some map or layer objects then the local value (in the mapfile)
takes precedence over the value of the environment variable.

Apache users can set the environment variable in Apache’s httpd.conf file, such as:

SetEnv MS_DEBUGLEVEL 5

Windows users can alternatively set the environment variable through the Windows System Properties; but make
sure to set a SYSTEM environment variable.

Step 3: Turn on CPL_DEBUG (optional)

MapServer relies on the GDAL library to access most data layers, so you may wish to turn on GDAL debugging, to
hopefully get more information on how GDAL is accessing your data file. This could be very helpful for problems
with accessing raster files and PostGIS tables. You can trigger this GDAL output by setting the CPL_DEBUG
variable in your mapfile, within the MAP object, such as:

MAP
...
CONFIG "CPL_DEBUG" "ON"
...
LAYER
...

END
END

Step 4: Turn on PROJ_DEBUG (optional)

MapServer relies on the PROJ.4 library to handle data projections, so you may wish to turn on PROJ debugging,
to hopefully get more information back from the PROJ library. You can trigger this PROJ output by setting the
PROJ_DEBUG variable in your mapfile, within the MAP object, such as:

MAP
...
CONFIG "PROJ_DEBUG" "ON"
...
LAYER
...

END
END

Step 5: Test your Mapfile

Once you have set the MS_ERRORFILE and DEBUG level in your mapfile, you should now test your mapfile and
read your generated log file.

Using shp2img The recommended way to test your mapfile is to use the MapServer commandline utility
shp2img, to verify that your mapfile creates a valid map image. shp2img should be included in your MapServer
installation (MS4W users need to execute setenv.bat before using the utility).

You can set the DEBUG level by passing the shp2img following parameters to your commandline call:

616 Chapter 11. Optimization

http://www.gdal.org/
http://trac.osgeo.org/proj/
http://www.maptools.org/ms4w

MapServer Documentation, Release 6.4.1

Note: If you have already set MS_ERRORFILE in your mapfile, you must comment this out in order to use these
shp2img options

Note: When using shp2img to debug, your layer’s STATUS should be set to ON or DEFAULT. If the layer’s
STATUS is set to OFF, you must additionally pass the layer name to shp2img by using the “-l layername”
syntax

-all_debug Use this setting to set the debug level for the MAP object and all layers. this is the recommended
switch to use

shp2img -m spain.map -o test.png -all_debug 5

msLoadMap(): 0.002s
msDrawMap(): Layer 0 (spain provinces), 0.012s
msDrawRasterLayerLow(orthophoto): entering.
msDrawGDAL(): src=0,0,3540,2430, dst=188,48,1,1
source raster PL (-793.394,-1712.627) for dst PL (188,48).
msDrawGDAL(): red,green,blue,alpha bands = 1,2,3,0
msDrawMap(): Layer 1 (orthophoto), 0.150s
msDrawMap(): Layer 2 (urban areas), 0.004s
msDrawMap(): Layer 3 (species at risk), 0.008s
msDrawMap(): Layer 4 (populated places), 1.319s
msDrawMap(): Drawing Label Cache, 0.014s
msDrawMap() total time: 1.513s
msSaveImage() total time: 0.039s
msFreeMap(): freeing map at 0218C1A8.
freeLayer(): freeing layer at 0218F5E0.
freeLayer(): freeing layer at 030C33A0.
freeLayer(): freeing layer at 030C3BC8.
freeLayer(): freeing layer at 030C4948.
freeLayer(): freeing layer at 030C7678.
shp2img total time: 1.567s

-map_debug Use this setting to set the debug level for the MAP object only.

shp2img -m spain.map -o test.png -map_debug 5

msDrawMap(): Layer 0 (spain provinces), 0.012s
msDrawRasterLayerLow(orthophoto): entering.
msDrawMap(): Layer 1 (orthophoto), 0.144s
msDrawMap(): Layer 2 (urban areas), 0.004s
msDrawMap(): Layer 3 (species at risk), 0.008s
msDrawMap(): Layer 4 (populated places), 1.323s
msDrawMap(): Drawing Label Cache, 0.013s
msDrawMap() total time: 1.511s
msSaveImage() total time: 0.039s
msFreeMap(): freeing map at 0205C1A8.

-layer_debug Use this setting to set the debug level for one layer object only.

shp2img -m spain.map -o test.png -layer_debug orthophoto 5

msDrawRasterLayerLow(orthophoto): entering.
msDrawGDAL(): src=0,0,3540,2430, dst=188,48,1,1
source raster PL (-793.394,-1712.627) for dst PL (188,48).
msDrawGDAL(): red,green,blue,alpha bands = 1,2,3,0
msDrawMap(): Layer 1 (orthophoto), 0.151s
freeLayer(): freeing layer at 02F23390.

11.1. Optimization 617

MapServer Documentation, Release 6.4.1

Set CPL_DEBUG At the commandline execute the following:

set CPL_DEBUG=ON

shp2img -m spain.map -o test.png -layer_debug orthophoto 5

msDrawRasterLayerLow(orthophoto): entering.
GDAL: GDALOpen(D:\ms4w\apps\spain\map/.\../data/ov172068_200904_c100u50x75c24n.jpg, this=0
4059840) succeeds as JPEG.
msDrawGDAL(): src=0,0,3540,2430, dst=188,48,1,1
source raster PL (-793.394,-1712.627) for dst PL (188,48).
msDrawGDAL(): red,green,blue,alpha bands = 1,2,3,0
GDAL: GDALDefaultOverviews::OverviewScan()
msDrawMap(): Layer 1 (orthophoto), 0.155s
freeLayer(): freeing layer at 03113390.
GDAL: GDALDeregister_GTiff() called.

Reading Errors Returned by shp2img If there is a problem with your mapfile, shp2img should output the line
number in your mapfile that is causing the trouble. The following tells us that there is a problem on line 85 of my
mapfile:

getSymbol(): Symbol definition error. Parsing error near (truetype2):(line 85)

If you are using mapfile INCLUDEs, it may be tricky to track down this line number, but most of the time the line
number is useful.

Using mapserv CGI Another handy way to test your mapfile is to call the mapserv CGI executable at the
commandline, such as the following:

mapserv -nh "QUERY_STRING=map=/ms4w/apps/spain/map/spain.map&mode=map"

ON_MISSING_DATA If you are using tile indexes to access your data, you should also be aware of the configu-
ration settings added in MapServer 5.4 that allow you to tell MapServer how to handle missing data in tile indexes.
Please see the CONFIG parameter’s ON_MISSING_DATA setting in the MAP object for more information.

Hint: You can check the attributes in the tileindex by executing “ogrinfo -al” on your data file

Step 6: Check your Web Server Logs

Once you have verified that there are no problems with you mapfile, next you should check your Web server log
files, for any related information that may help you narrow down your problem.

Apache Unix users will usually find Apache’s error_log file in a path similar to:

/var/log/apache2/

Windows users will usually find Apache’s log files in a path similar to:

C:\Program Files\Apache Group\Apache2\logs

MapServer for Windows (MS4W) users will find Apache’s log files at:

\ms4w\Apache\logs

618 Chapter 11. Optimization

http://www.maptools.org/ms4w

MapServer Documentation, Release 6.4.1

Microsoft IIS IIS log files can be located by:

1. Go to Start -> Control Panel -> Administrative Tools

2. Open the Internet Information Services (IIS) Manager.

3. Find your Web site under the tree on the left.

4. Right-click on it and choose Properties.

5. On the Web site tab, you will see an option near the bottom that says “Active Log Format.” Click on the
Properties button.

6. At the bottom of the General Properties tab, you will see a box that contains the log file directory and the
log file name. The full log path is comprised of the log file directory plus the first part of the log file name,
for example:

C:\WINDOWS\system32\LogFiles\W3SVC1\ex100507.log

You may also want to check the Windows Event Viewer logs, which is located at:

1. Go to Start -> Control Panel -> Administrative Tools

2. Computer Management

3. Event Viewer

11.1. Optimization 619

MapServer Documentation, Release 6.4.1

Warning: As mentioned previously, in IIS the MapServer stderr debug output is returned to the client instead
of routed to the Web Server logs, so be sure to log the output to a file, using:

CONFIG "MS_ERRORFILE" "/ms4w/tmp/ms_error.txt"

CGI Error - The specified CGI application misbehaved by not returning a complete set of HTTP headers
This error is often caused by missing DLL files. You should try to execute “mapserv -v at the commandline, to
make sure that MapServer loads properly.

Step 7: Verify your Application Settings

If you have verified that MapServer creates a valid map image through shp2img, you’ve checked your MapServer
log files, and there are no problems noted in your Web server logs, then you should focus your attention on possible
application configuration problems. “Application” here means how you are displaying your map images on the
Web page, such as with OpenLayers.

PHP MapScript If you are using PHP MapScript in your application, here are some important notes for debug-
ging:

1. Make sure your php.ini file is configured to show all errors, by setting:

display_errors = On

2. To enable debugging in PHP MapScript, if you are using MapServer 5.6.0 or more recent, make sure to
define ZEND_DEBUG in the PHP source.

If you are using MapServer < 5.6.0, then:

• open the file /mapscript/php3/php_mapscript.c

• change the following:

#define ZEND_DEBUG 0

to

#define ZEND_DEBUG 1

Debugging MapServer using Compiler Debugging Tools

Running MapServer in GDB (Linux/Unix)

Section author: Frank Warmerdam

Building with Symbolic Debug Info It is not strictly necessary to build MapServer with debugging enabled
in order to use GDB on linux, but it does ensure that more meaningful information is reported within GDB. To
enable full symbolic information use the –enable-debug configure switch. Note that use of this switch disables
optimization and so it should not normally be used for production builds where performance is important.

./configure --enable-debug <other switches>
make clean
make

620 Chapter 11. Optimization

http://www.openlayers.org
http://www.gnu.org/software/gdb/

MapServer Documentation, Release 6.4.1

Running in the Debugger To run either mapserv or shp2img, give the name of the executable as an argument
to the “gdb” command. If it is not in the path, you will need to provide the full path to the executable.

gdb shp2img
GNU gdb (GDB) 7.0-ubuntu
Copyright (C) 2009 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.
This GDB was configured as "x86_64-linux-gnu".
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>...
Reading symbols from /wrk/home/warmerda/mapserver/shp2img...done.
(gdb)

Once you are at the “(gdb)” prompt you can use the run command with the arguments you would normally have
passed to the mapserv or shp2img executable.

(gdb) run -m test.map -o out.png
Starting program: /wrk/home/warmerda/mapserver/shp2img -m test.map -o out.png
[Thread debugging using libthread_db enabled]

Program received signal SIGSEGV, Segmentation fault.
0x00007ffff67594a2 in JP2KAKDataset::Identify (poOpenInfo=0x0)

at jp2kakdataset.cpp:962
962 if(poOpenInfo->nHeaderBytes < (int) sizeof(jp2_header))
Current language: auto
The current source language is "auto; currently c++".
(gdb)

If the program is crashing, you will generally get a report like the above indicating the function the crash occurred
in, and some minimal information on why. It is often useful to request a traceback to see what functions led to the
function that crashed. For this use the “where” command.

(gdb) where
#0 0x00007ffff67594a2 in JP2KAKDataset::Identify (poOpenInfo=0x0)

at jp2kakdataset.cpp:962
#1 0x00007ffff67596d2 in JP2KAKDataset::Open (poOpenInfo=0x7fffffffb6f0)

at jp2kakdataset.cpp:1025
#2 0x00007ffff6913339 in GDALOpen (

pszFilename=0x83aa60 "/home/warmerda/data/jpeg2000/spaceimaging_16bit_rgb.jp
2", eAccess=GA_ReadOnly) at gdaldataset.cpp:2170
#3 0x00007ffff69136bf in GDALOpenShared (

pszFilename=0x83aa60 "/home/warmerda/data/jpeg2000/spaceimaging_16bit_rgb.jp
2", eAccess=GA_ReadOnly) at gdaldataset.cpp:2282
#4 0x0000000000563c2d in msDrawRasterLayerLow (map=0x81e450, layer=0x839140,

image=0x83af90, rb=0x0) at mapraster.c:566
#5 0x000000000048928f in msDrawRasterLayer (map=0x81e450, layer=0x839140,

image=0x83af90) at mapdraw.c:1390
#6 0x0000000000486a48 in msDrawLayer (map=0x81e450, layer=0x839140,

image=0x83af90) at mapdraw.c:806
#7 0x00000000004858fd in msDrawMap (map=0x81e450, querymap=0) at mapdraw.c:459
#8 0x0000000000446410 in main (argc=5, argv=0x7fffffffd918) at shp2img.c:300
(gdb)

It may also be helpful to examine variables used in the line where the crash occured. Use the print command for
this.

(gdb) print poOpenInfo
$1 = (GDALOpenInfo *) 0x0

In this case we see that the program crashed because poOpenInfo was NULL (zero). Including a traceback like
the above in bug report can help the developers narrow down a problem more quickly, especially if it is one that is

11.1. Optimization 621

MapServer Documentation, Release 6.4.1

difficult for the developers to reproduce themselves.

Debugging Older Versions of MapServer (before 5.0)

1. Make sure that MapServer is compiled in debug mode (on unix this is enabled through ./configure –enable-
debug).

You can verify that your build was compiled in debug mode, by executing the following at the commandline
(look for “DEBUG=MSDEBUG”):

./mapserv -v

MapServer version 4.10.2 OUTPUT=GIF OUTPUT=PNG OUTPUT=WBMP
OUTPUT=SVG SUPPORTS=PROJ SUPPORTS=FREETYPE SUPPORTS=WMS_SERVER
SUPPORTS=WMS_CLIENT SUPPORTS=WCS_SERVER SUPPORTS=THREADS SUPPORTS=GEOS
INPUT=EPPL7 INPUT=POSTGIS INPUT=OGR INPUT=GDAL INPUT=SHAPEFILE
DEBUG=MSDEBUG

2. Set the MS_ERRORFILE variable is in your mapfile, within the MAP object, such as:

MAP
...
CONFIG "MS_ERRORFILE" "/ms4w/tmp/ms_error.txt"
...
LAYER

...
END

END

3. If you don’t use the MS_ERRORFILE variable, you can use the LOG parameter in your WEB object of the
mapfile, such as:

MAP
...
WEB

LOG "mapserver.log"
END
...
LAYER

...
END

END

4. Specify DEBUG ON in your MAP object, or in your LAYER objects, such as:

MAP
...
WEB

LOG "mapserver.log"
END
DEBUG ON
...
LAYER

...
END

END

5. Note that only errors will be written to the log file; all DEBUG output goes to stderr, in the case of Apache
that is Apache’s error_log file. If you are using Microsoft IIS, debug output is routed to stdout (i.e. the
browser), so be sure to remove DEBUG ON statements if using IIS on a production server.

.

622 Chapter 11. Optimization

MapServer Documentation, Release 6.4.1

11.1.2 FastCGI

Author Frank Warmerdam

Contact warmerdam at pobox.com

Author Howard Butler

Contact hobu.inc at gmail.com

Revision $Revision$

Date $Date$

Last Updated 2008/07/15

Table of Contents

• FastCGI
– Introduction
– Obtaining the necessary software
– mod_fcgid Configuration
– Deprecated mod_fcgi Configuration
– Common mod_fcgid/mod_fcgi Configuration
– Common Problems
– FastCGI on Win32

Introduction

FastCGI is a protocol for keeping cgi-bin style web applications running as a daemon to take advantage of pre-
serving memory caches, and amortizing other high startup costs (like heavy database connections) over many
requests.

Obtaining the necessary software

1. There are three pieces to the MapServer FastCGI puzzle. First, you need the actual FastCGI library. This
can be downloaded from http://www.fastcgi.com/. This library does the usual configure, make, make install
dance. One added complication is that it installs by default in /usr/local, and you might give the configure
command a –prefix=/usr to put it in a location that is already visible to ldconfig.

2. Assuming you are running Apache, the next piece you need is the fastcgi module. There are two fastcgi
implementations for apache:

• mod_fcgid: mod_fcgid is the newer and recommended way to run fastcgi programs under recent
apache versions. It can be downloaded from the Apache fcgid homepage

• deprecated mod_fcgi: Mod_fcgi depends on the version of Apache you are running, so make sure to
download the correct fork (Apache 1.3 vs. Apache 2).

3. The third and final piece is to compile MapServer with FastCGI support. This is pretty straightforward, and
all you need to do is tell configure where the FastCGI library is installed. If you changed the prefix variable
as described above, this would be:

./configure [other options] --with-fastcgi=/usr/local

With those pieces in place, the MapServer CGI (mapserv) should now be FastCGI-enabled. You can verify this by
testing it on with the command line:

[hobu@kenyon mapserver-6.2.0]# ./mapserv -v
MapServer version 6.2.0 OUTPUT=GIF OUTPUT=PNG OUTPUT=JPEG OUTPUT=WBMP
SUPPORTS=PROJ SUPPORTS=FREETYPE SUPPORTS=WMS_SERVER SUPPORTS=WMS_CLIENT
SUPPORTS=WFS_SERVER SUPPORTS=WFS_CLIENT SUPPORTS=FASTCGI INPUT=EPPL7

11.1. Optimization 623

http://www.fastcgi.com/
http://httpd.apache.org
http://httpd.apache.org/mod_fcgid/

MapServer Documentation, Release 6.4.1

INPUT=SDE INPUT=ORACLESPATIAL INPUT=OGR INPUT=GDAL
INPUT=SHAPEFILE DEBUG=MSDEBUG

mod_fcgid Configuration

1. Modify http.conf to load the FastCGI module.

LoadModule fcgid_module modules/mod_fcgid.so

2. Add an Apache handler for FastCGI applications.

AddHandler fcgid-script fcgi

3. Set FastCGI processing information

<IfModule mod_fcgid.c>
FcgidMaxProcessesPerClass 30
FcgidInitialEnv PROJ_LIB /usr/local/share/proj
FcgidInitialEnv LD_LIBRARY_PATH "/usr/local/lib:/usr/local/pgsql/lib:/usr3/pkg3/oracle9/lib"

</IfModule>

Deprecated mod_fcgi Configuration

This section is left for reference. The recommended way to run fastcgi programs under apache is to use mod_fcgid,
as detailed above.

1. Modify http.conf to load the FastCGI module.

LoadModule fastcgi_module /usr/lib/apache/1.3/mod_fastcgi.so

2. Add an Apache handler for FastCGI applications.

AddHandler fastcgi-script fcgi

3. Set FastCGI processing information

FastCgiConfig -initial-env PROJ_LIB=/usr/local/share/proj
-initial-env LD_LIBRARY_PATH=/usr/local/lib:/usr/local/pgsql/lib:/usr3/pkg3/oracle9/lib
-appConnTimeout 60 -idle-timeout 60 -init-start-delay 1
-minProcesses 2 -maxClassProcesses 20 -startDelay 5

Common mod_fcgid/mod_fcgi Configuration

1. Install a copy of the mapserv executable (originally mapserv or mapserv.exe) into the cgi-bin directory
with the extension .fcgi (ie. mapserv.fcgi). Use this executable when you want to utilize fastcgi support.

For some platforms, the MapServer link would then have to changed from:

http://your.domain.name/cgi-bin/mapserv?MAP=/path/to/mapfile.map

To:

http://your.domain.name/cgi-bin/mapserv.fcgi?MAP=/path/to/mapfile.map

For other platforms, the MapServer link would then have to changed from:

http://your.domain.name/cgi-bin/mapserv.exe?MAP=/path/to/mapfile.map

To:

http://your.domain.name/cgi-bin/mapserv.fcgi?MAP=/path/to/mapfile.map

624 Chapter 11. Optimization

MapServer Documentation, Release 6.4.1

2. In your mapfile, set a PROCESSING directive to tell FastCGI to cache the connections and layer information
on all layers for which connection caching is desired - ie. all slow layers.

PROCESSING "CLOSE_CONNECTION=DEFER"

Common Problems

File permissions

Fedora Core 3 doesn’t allow FastCGI to write to the process logs (when you use RedHat’s Apache 2 rather than
your own). This is described here.

Also, FastCGI needs to write its socket information somewhere. This can be directed with the FastCgiIpcDir
directive.

FastCGI on Win32

MS4W Users

MS4W (MapServer for Windows) >= version 2.2.2 contains MapServer compiled with FastCGI support. MS4W
version >= 2.2.8 also contains the required Apache module (mod_fcgid), and users must follow the README
instructions to setup FastCGI with their application.

Building fcgi-2.4.0

I used libfcgi-2.4.0 for use with Apache2 from http://www.fastcgi.com.

Binary IO Patch

It is critical that stdio be in binary mode when PNG and other binary images are written to it. To accomplish
this for stdio handled through the FastCGI library, I had to do the following hack to libfcgi/fcgi_stdio.c within the
fcgi-2.4.0 distribution.

In FCGI_Accept() made he following change

if(isCGI) {
FCGI_stdin->stdio_stream = stdin;
FCGI_stdin->fcgx_stream = NULL;
FCGI_stdout->stdio_stream = stdout;
FCGI_stdout->fcgx_stream = NULL;
FCGI_stderr->stdio_stream = stderr;
FCGI_stderr->fcgx_stream = NULL;

/* FrankWarmerdam: added so that returning PNG and other binary data
will still work */

#ifdef _WIN32
_setmode(_fileno(stdout), _O_BINARY);
_setmode(_fileno(stdin), _O_BINARY);

#endif

} else {

Also, add the following just before the FCGI_Accept() function

#ifdef _WIN32
#include <fcntl.h>
#include <io.h>
#endif

11.1. Optimization 625

http://www.fastcgi.com/archives/fastcgi-developers/2005-March/003638.html
http://www.maptools.org/ms4w/
http://www.maptools.org/ms4w/index.phtml?page=README_INSTALL.html#f-fastcgi
http://www.maptools.org/ms4w/index.phtml?page=README_INSTALL.html#f-fastcgi
http://www.fastcgi.com

MapServer Documentation, Release 6.4.1

I’m sure there is a better way of accomplishing this. If you know how, please let me know!

Building libfcgi

The makefile.nt should be fine. Just ensure you have run VCVARS32.BAT (as is needed for building MapServer)
and then issue the command:

nmake /f makefile.nt

Then the .lib and .dll will be in libfcgi/Debug?. Make sure you copy the DLL somewhere appropriate (such as
your cgi-bin directory).

Other Issues

1) FastCGI’s receive a very limited environment on win32, seemingly even more restricted than normal cgi’s
started by apache. Make sure that all DLLs required are either in the fastcgi directory or in windowssystem32.
Any missing DLLs will result in very cryptic errors in the error_log, including stuff about Overlapping read
requests failing or something like that.

2) Make sure you use a libfcgi.dll built against the same runtime library as your mapserv.exe (and possibly
libmap_fcgi.dll) or you will suffer a world of pain! Different runtime libraries have different “environ” vari-
ables (as well as their own stdio and heaps). You can check that everything is using MSVCRT.DLL (or all using
MSVCRTD.DLL) using the MS SDK Dependency Walker.

11.1.3 Mapfile

Author David Fawcett

Contact david.fawcett at gmail.com

Revision $Revision$

Date $Date$

Last Updated 2007/08/01

Table of Contents

• Mapfile
– Introduction

Introduction

The contents of a Map File are used by MapServer for configuration, data access, projection, and more. Because
the Map File is parsed every time a map image is requested, it is important to think about what you include in the
file in order to optimize performance. The optimal Map File is one that doesn’t include or reference anything that
isn’t needed.

1. Projections

There are two ways to define projections in a Map File. You can either use inline projection parameters or specify
an EPSG code for that projection. If you use the EPSG code method, Proj.4 looks up the projection parameters
in the Proj4 database using the EPSG code as an ID. This database lookup takes significantly more resources than
when the projection parameters are defined inline. This lookup takes place for each projection definition using
EPSG codes in a Map File.

Projection defined using inline projection parameters

626 Chapter 11. Optimization

MapServer Documentation, Release 6.4.1

PROJECTION
"proj=utm"
"ellps=GRS80"
"datum=NAD83"
"zone=15"
"units=m"
"north"
"no_defs"

END

Projection defined using EPSG Code

PROJECTION
"init=epsg:26915"

END

Optimization Suggestions

• Use inline projection parameter definitions in place of EPSG codes.

• If you want to use EPSG codes, remove all unneeded projection definition records from the Proj.4 EPSG
database.

2. Layers

For every layer in a Map File that has a status of ON or DEFAULT, MapServer will load that layer and prepare it
for display, even if that layer never gets displayed.

Optimization Suggestions

• Build lean Map Files, only include layers that you plan to use.

• Turn off unnecessary layers; the more layers MapServer is displaying, the more time it takes. Have your
opening map view show only the minimum necessary to orient the user, and allow them to turn on additional
layers as needed. This is particularly true of remote WMS or very large rasters.

• Related to turning off layers, is turning them on but using MINSCALEDENOM and MAXSCALEDENOM
to determine at what zoomlevels the layer is available. If a map’s display is outside of the layer’s MIN-
SCALEDENOM and MAXSCALEDENOM range, then MapServer can skip processing that layer. It also
makes for a really cool effect, that the national boundaries magically change to state boundaries.

• If you have a complex application, consider using multiple simple and specific Map Files in place of one
large ‘do everything’ Map File.

• In a similar vein, each class also supports MINSCALEDENOM and MAXSCALEDENOM. If your dataset
has data that are relevant at different zoomlevels, then you may find this a very handy trick. For example,
give a MINSCALEDENOM of 1:1000000, county roads a MINSCALEDENOM of 1:100000, and streets a
MAXSCALEDENOM of 1:50000. You get the cool effect of new data magically appearing, but you don’t
have MapServer trying to draw the nation’s roads when the entire nation is in view!

• Classes are processed in order, and a feature is assigned to the first class that matches. So try placing the
most commonly-used classes at the top of the class list, so MapServer doesn’t have to try as many classes
before finding a match. For example, if you wanted to highlight the single state of Wyoming, you would
probably do this:

CLASS
EXPRESSION (’[NAME]’ eq ’WY’])
STYLE

COLOR 255 0 0
END

END
CLASS

STYLE
COLOR 128 128 128

11.1. Optimization 627

MapServer Documentation, Release 6.4.1

END
END

But it would be a lot more efficient to do this, since 98% of cases will be matched on the first try:

CLASS
EXPRESSION (’[NAME]’ ne ’WY’])
STYLE
COLOR 128 128 128

END
END
CLASS

STYLE
COLOR 255 0 0

END
END

• Use tile indexes instead of multiple layers.

3. Symbols

When the Map File is loaded, each raster symbol listed in the symbols file is located on the filesystem and loaded.

Optimization Suggestions

• Only include raster symbols in your symbols file if you know that they will be used by your application.

4. Fonts

To load a font, MapServer opens up the fonts.list FONTSET file which contains an alias for the font and the path
for that font file. If you have a fonts.list file with a long list of fonts, it will take more time for MapServer to locate
and load the font that you need.

Optimization Suggestions

• Limit the entries in fonts.list to fonts that you actually use.

11.1.4 Raster

Author HostGIS

Revision $Revision$

Date $Date$

Last Updated 2008/08/08

Table of Contents

• Raster
– Overviews
– Tileindexes and Internal Tiling
– Image formats
– Remote WMS

Overviews

TIFF supports the creation of “overviews” within the file, which is basically a downsampled version of the raster
data suitable for use at lower resolutions. Use the “gdaladdo” program to add overviews to a TIFF, and MapServer

628 Chapter 11. Optimization

MapServer Documentation, Release 6.4.1

(via GDAL) will automagically choose which downsampled layer to use. Note that overviews significantly in-
crease the disk space required by a TIFF, and in some cases the extra disk reading may offset the performance
gained by MapServer not having to resample the image. You’ll just have to try it for yourself and see how it works.

Tileindexes and Internal Tiling

Tiling is mostly effective for cases where one commonly requests only a very small area of the image.

A tileindex is how one creates an on-the-fly mosaic from many rasters. This is described in the Tile Indexes. That
document describes common cases where a tileindex makes sense. In particular, if you have a very large raster
and most requests are for a very small spatial area within it, you may want t consider slicing it and tileindexing it.

As an alternative to slicing and mosaicing, TIFFs do support a concept of internal tiling. Like a tileindex, this
is mostly effective when the requests are for a small portion of the raster. Internal tiling is done by adding “-co
TILED=YES” to gdal_translate, e.g.:

gdal_translate -co TILED=YES original.tif tiled.tif

Image formats

The TIFF image format is the fastest to “decipher”, but once you get beyond a certain point, the disk reading
(since TIFF is very large) may become slow enough to make it worthwhile to consider other image formats.

For TIFFs larger than 1 GB, ECW images tend to render faster than TIFFs, since decompressing the data (CPU
and RAM) is faster than reading the uncompressed data (disk). The downside is that ECW is not open-source, and
the licensing is often prohibitive.

JPEG2000 is a very slow image format, as is JPEG.

Remote WMS

Remote WMS servers are often slow, especially the public ones such as TerraServer or NASA’s Landsat server.
There’s nothing you can do about that, except to reconsider when the remote WMS layer should be used.

For example, there may be a different WMS server (or a different set of imagery, or even vector outline maps)
suitable for drawing the countries or states to orient the user. You could then have the WMS layer come on at a
certain scale, or have the layer always available but turned off so the user can choose when to turn it on.

See Also:

Raster Data

11.1.5 Tile Indexes

Author HostGIS

Revision $Revision$

Date $Date$

Last Updated 2013/07/04

11.1. Optimization 629

MapServer Documentation, Release 6.4.1

Table of Contents

• Tile Indexes
– Introduction
– What is a tileindex and how do I make one?
– Using the tileindex in your mapfile
– Tileindexes may make your map faster
– Tileindexes with tiles in different projections

Introduction

An introduction to tileindexes, MapServer’s method for doing on-the-fly mosaicing.

What is a tileindex and how do I make one?

A tileindex is a shapefile that ties together several datasets into a single layer. Therefore, you don’t need to create
separate layers for each piece of imagery or each county’s road data; make a tileindex and let MapServer piece the
mosaic together on the fly.

Making a tileindex is easy using gdaltindex for GDAL data sources (rasters) and ogrtindex for OGR data sources
(vectors). You just run them, specifying the index file to create and the list of data sources to add to the index.

For example, to make a mosaic of several TIFFs:

gdaltindex imagery.shp imagery/*.tif

And to make a mosaic of vectors:

ogrtindex strees.shp tiger/CA/*.shp tiger/NV/*.shp

Note: ogrtindex and gdaltindex add the specified files to the index. Sometimes you’ll have to delete the index
file to avoid creating duplicate entries.

Using the tileindex in your mapfile

Using a tileindex as a layer is best explained by an example:

LAYER
NAME "Roads"
STATUS ON
TYPE LINE
TILEINDEX "tiger/index.shp"
TILEITEM "LOCATION"

END

There are two items of note here: TILEINDEX and TILEITEM. TILEINDEX is simply the path to the index file,
and TILEITEM specifies the field in the shapefile which contains the filenames referenced by the index. The
TILEITEM will usually be “LOCATION” unless you specified the -tileindex option when running gdaltindex or
ogrtindex.

Two important notes about the pathnames:

• The path to TILEINDEX follows the same conventions as for any other data source, e.g. using the
SHAPEPATH or else being relative to the location of the mapfile.

• The filenames specified on the command line to gdaltindex or ogrtindex will be used with the same con-
ventions as well, following the SHAPEPATH or else being relative to the mapfile’s location. I find it very

630 Chapter 11. Optimization

http://www.gdal.org/gdaltindex.html
http://www.gdal.org/ogrtindex.html

MapServer Documentation, Release 6.4.1

useful to change into the SHAPEPATH directory and then run ogrtindex/gdaltindex from there; this ensures
that I specify the correct pathnames.

Tileindexes may make your map faster

A tileindex is often a performance boost for two reasons:

• It’s more efficient than having several separate layers.

• MapServer will examine the tileindex to determine which datasets fall into the map’s view, and will open
only those datasets. This can result in a great savings for a large dataset, especially for use cases where
most of the time only a very small spatial region of the data is being used. (for example, citywide maps with
nationwide street imagery)

A tileindex will not help in the case where all/most of the data sources will usually be opened anyway (e.g. street
data by county, showing states or larger regions). In that case, it may even result in a decrease in performance,
since it may be slower to open 100 files than to open one giant file.

The ideal case for a tileindex is when the most typically requested map areas fall into very few tiles. For example,
if you’re showing state and larger regions, try fitting your data into state-sized blocks instead of county-sized
blocks; and if you’re showing cities and counties, go for county-sized blocks.

You’ll just have to experiment with it and see what works best for your use cases.

Tileindexes with tiles in different projections

Starting with MapServer 6.4, a raster tileindex can contain rasters in different projections. Such tileindex can be
generated with gdaltindex (GDAL 2.0 or later), with the -t_srs and -src_srs_name options. The -t_srs instructs
gdaltindex to write the envelope of each raster tile into a common target projection, so that the geometries written
in the tile index are consistant. This common projection must be the projection of the raster layer.

gdaltindex -t_srs EPSG:4326 -src_srs_name src_srs imagery.shp imagery/*.tif

The corresponding LAYER definition will need to specify the TILESRS keyword with the value of the -
src_srs_name option.

e.g:

LAYER
NAME "My Imagery"
STATUS ON
TYPE RASTER
TILEINDEX "imagery.shp"
TILEITEM "LOCATION"
TILESRS "src_srs"
PROJECTION

AUTO
or :
"+init=EPSG:4326"

END
END

MapServer will then be able to proceed to on-the-fly mosaicing and reprojection.

For layers that must be exposed as WCS layers, a few metadata fields (“wcs_extent”, “wcs_size”,
“wcs_resolution”) must be specified in the LAYER definition, so as to define a “virtual dataset” coverage (see
WCS Server). The GDAL wcs_virtds_params.py sample script can help generating those metadata fields.

Note: this support of tileindex with mixed projections is only available for raster layers for now.

11.1. Optimization 631

http://www.gdal.org/gdaltindex.html

MapServer Documentation, Release 6.4.1

11.1.6 Vector

Author HostGIS

Revision $Revision$

Date $Date$

Last Updated 2008/08/08

Table of Contents

• Vector
– Splitting your data
– Shapefiles
– PostGIS
– Databases in General (PostGIS, Oracle, MySQL)

Splitting your data

If you find yourself making several layers, all of them using the same dataset but filtering to only use some of the
records, you could probably do it better. If the criteria are static, one approach is to pre-split the data.

The ogr2ogr utility can select on certain features from a datasource, and save them to a new data source. Thus,
you can split your dataset into several smaller ones that are already effectively filtered, and remove the FILTER
statement.

Shapefiles

Use shptree to generate a spatial index on your shapefile. This is quick and easy (“shptree foo.shp”) and generates
a .qix file. MapServer will automagically detect an index and use it.

MapServer also comes with the sortshp utility. This reorganizes a shapefile, sorting it according to the values in
one of its columns. If you’re commonly filtering by criteria and it’s almost always by a specific column, this can
make the process slightly more efficient.

Although shapefiles are a very fast data format, PostGIS is pretty speedy as well, especially if you use indexes
well and have memory to throw at caching.

PostGIS

The single biggest boost to performance is indexing. Make sure that there’s a GIST index on the geometry column,
and each record should also have an indexed primary key. If you used shp2pgsql, then these statements should
create the necessary indexes:

ALTER TABLE table ADD PRIMARY KEY (gid);
CREATE INDEX table_the_geom ON table (the_geom) USING GIST;

PostgreSQL also supports reorganizing the data in a table, such that it’s physically sorted by the index. This allows
PostgreSQL to be much more efficient in reading the indexed data. Use the CLUSTER command, e.g.

CLUSTER the_geom ON table;

Then there are numerous optimizations one can perform on the database server itself, aside from the geospatial
component. The easiest is to increase max_buffers in the postgresql.conf file, which allows PostgreSQL to use
more memory for caching. More information can be found at the PostgreSQL website.

632 Chapter 11. Optimization

http://www.postgresql.org/

MapServer Documentation, Release 6.4.1

Databases in General (PostGIS, Oracle, MySQL)

By default, MapServer opens and closes a new database connection for each database-driven layer in the mapfile.
If you have several layers reading from the same database, this doesn’t make a lot of sense. And with some
databases (Oracle) establishing connections takes enough time that it can become significant.

Try adding this line to your database layers:

PROCESSING "CLOSE_CONNECTION=DEFER"

This causes MapServer to not close the database connection for each layer until after it has finished processing the
mapfile and this may shave a few seconds off of map generation times.

11.1. Optimization 633

MapServer Documentation, Release 6.4.1

634 Chapter 11. Optimization

CHAPTER

TWELVE

UTILITIES

12.1 Utilities

12.1.1 legend

Purpose

Creates a legend from a mapfile. Output format depends on the graphics library used for rendering.

Syntax

legend [mapfile] [output image]

12.1.2 msencrypt

Purpose

Used to create an encryption key or to encrypt portions of connection strings for use in mapfiles (added in v4.10).
Typically you might want to encrypt portions of the CONNECTION parameter for a database connection. The
following CONNECTIONTYPEs are supported for using this encryption method:

OGR
Oracle Spatial
PostGIS
SDE

Syntax

To create a new encryption key:

msencrypt -keygen [key_filename]

To encrypt a string:

msencrypt -key [key_filename] [string_to_encrypt]

Use in Mapfile

The location of the encryption key can be specified by two mechanisms, either by setting the environment variable
MS_ENCRYPTION_KEY or using a CONFIG directive in the MAP object of your mapfile. For example:

635

MapServer Documentation, Release 6.4.1

CONFIG MS_ENCRYPTION_KEY "/path/to/mykey.txt"

Use the { and } characters as delimiters for encrypted strings inside database CONNECTIONs in your mapfile.
For example:

CONNECTIONTYPE ORACLESPATIAL
CONNECTION "user/{MIIBugIBAAKBgQCP0Yj+Seh8==}@service"

Example

LAYER
NAME "provinces"
TYPE POLYGON
CONNECTIONTYPE POSTGIS
CONNECTION "host=127.0.0.1 dbname=gmap user=postgres password=iluvyou18 port=5432"
DATA "the_geom FROM province using SRID=42304"
STATUS DEFAULT
CLASS
NAME "Countries"
COLOR 255 0 0

END
END

Here are the steps to encrypt the password in the above connection:

1. Generate an encryption key (note that this key should not be stored anywhere within your web server’s
accessible directories):

msencrypt -keygen "E:\temp\mykey.txt"

And this generated key file might contain something like:

2137FEFDB5611448738D9FBB1DC59055

2. Encrypt the connection’s password using that generated key:

msencrypt -key "E:\temp\mykey.txt" "iluvyou18"

Which returns the password encrypted, at the commandline (you’ll use it in a second):

3656026A23DBAFC04C402EDFAB7CE714

3. Edit the mapfile to make sure the ‘mykey.txt’ can be found, using the “MS_ENCRYPTION_KEY” environ-
ment variable. The CONFIG parameter inside the MAP object can be used to set an environment variable
inside a mapfile:

MAP
...
CONFIG "MS_ENCRYPTION_KEY" "E:/temp/mykey.txt"
...

END #mapfile

4. Modify the layer’s CONNECTION to use the generated password key, making sure to use the “{}” brackets
around the key:

CONNECTION "host=127.0.0.1 dbname=gmap user=postgres
password={3656026A23DBAFC04C402EDFAB7CE714} port=5432"

5. Done! Give your new encrypted mapfile a try with the shp2img utility!

636 Chapter 12. Utilities

MapServer Documentation, Release 6.4.1

12.1.3 scalebar

Purpose

Creates a scalebar from a mapfile. Output is either PNG or GIF depending on what version of the GD library used.

Syntax

scalebar [mapfile] [output image]

12.1.4 shp2img

Purpose

Creates a map image from a mapfile. Output is either PNG or GIF depending on what version of the GD library
is used. This is a useful utility to test your mapfile. You can simply provide the path to your mapfile and the name
of an output image, and an image should be returned. If an image cannot be created an error will be displayed at
the command line that should refer to a line number in the mapfile.

Syntax

shp2img -m mapfile [-o image] [-e minx miny maxx maxy] [-s sizex sizey]
[-l "layer1 [layers2...]"] [-i format]
[-all_debug n] [-map_debug n] [-layer_debug n] [-p n] [-c n] [-d

layername datavalue]
-m mapfile: Map file to operate on - required
-i format: Override the IMAGETYPE value to pick output format
-o image: output filename (stdout if not provided)
-e minx miny maxx maxy: extents to render
-s sizex sizey: output image size
-l layers: layers to enable - make sure they are quoted and space separated

if more than one listed
-all_debug n: Set debug level for map and all layers
-map_debug n: Set map debug level
-layer_debug layer_name n: Set layer debug level
-c n: draw map n number of times
-p n: pause for n seconds after reading the map
-d layername datavalue: change DATA value for layer

Example #1

shp2img -m vector_blank.map -o test.png

Result A file named ‘test.png’ is created, that you can drag into your browser to view.

Example #2

shp2img -m gmap75.map -o test2.png -map_debug 3

Result A file named ‘test2.png’ is created, and layer draw speeds are returned such as:

msDrawRasterLayerLow(bathymetry): entering
msDrawMap(): Layer 0 (bathymetry), 0.601s
msDrawMap(): Layer 3 (drain_fn), 0.200s
msDrawMap(): Layer 4 (drainage), 0.300s

12.1. Utilities 637

MapServer Documentation, Release 6.4.1

msDrawMap(): Layer 5 (prov_bound), 0.191s
msDrawMap(): Layer 6 (fedlimit), 0.030s
msDrawMap(): Layer 9 (popplace), 0.080s
msDrawMap(): Drawing Label Cache, 0.300s
msDrawMap() total time: 1.702s
msSaveImage() total time: 0.040s

Example #3

shp2img -m gmap75.map -o test3.png -all_debug 3

Result A file named ‘test3.png’ is created, layer draw speeds are returned, and some warnings that index qix files
are not found, such as:

msLoadMap(): 0.671s
msDrawRasterLayerLow(bathymetry): entering.
msDrawGDAL(): src=72,417,3077,2308, dst=0,0,400,300
msDrawGDAL(): red,green,blue,alpha bands = 1,0,0,0
msDrawMap(): Layer 0 (bathymetry), 0.090s
msSearchDiskTree(): Search returned no results. Unable to open spatial index
for D:\ms4w\apps\gmap\htdocs/.\../data/drain_fn.qix. In most cases you can
safely ignore this message, otherwise check file names and permissions.
msDrawMap(): Layer 3 (drain_fn), 0.010s
msDrawMap(): Layer 4 (drainage), 0.050s
msSearchDiskTree(): Search returned no results. Unable to open spatial index
for D:\ms4w\apps\gmap\htdocs/.\../data/province.qix. In most cases you can
safely ignore this message, otherwise check file names and permissions.
msDrawMap(): Layer 5 (prov_bound), 0.030s
msSearchDiskTree(): Search returned no results. Unable to open spatial index
for D:\ms4w\apps\gmap\htdocs/.\../data/fedlimit.qix. In most cases you can
safely ignore this message, otherwise check file names and permissions.
msDrawMap(): Layer 6 (fedlimit), 0.010s
msDrawMap(): Layer 9 (popplace), 0.010s
msDrawMap(): Drawing Label Cache, 0.201s
msDrawMap() total time: 0.401s
msSaveImage() total time: 0.010s
shp2img total time: 1.082s

12.1.5 shptree

Purpose

Creates a quadtree-based spatial index for a Shape data set. The default tree depth is calculated so that each tree
node (quadtree cell) contains 8 shapes. Do not use the default with point files, a value between 6 and 10 seems to
work ok. Your millage may vary and you’ll need to do some experimenting.

The shptree wiki page may also contain information on this utility.

Description

This utility is a must for any MapServer application that uses Shape data sets. Shptree creates a spatial index of
your Shape data set, using a quadtree method. This means that MapServer will use this index to quickly find the
appropriate shapes to draw. It creates a file of the same name as your Shape data set, with a .qix file extension.
The quadtree method breaks the file into 4 quadrants, recursively until only a few shapes are contained in each
quadrant. This minimum number can be set with the <depth> parameter of the command.

638 Chapter 12. Utilities

https://github.com/mapserver/mapserver/wiki/ShpTree

MapServer Documentation, Release 6.4.1

Syntax

shptree <shpfile> [<depth>] [<index_format>]
Where:
<shpfile> is the name of the .shp file to index.
<depth> (optional) is the maximum depth of the inde

to create, default is 0 meaning that shptre
will calculate a reasonable default depth.

<index_format> (optional) is one of:
NL: LSB byte order, using new index format
NM: MSB byte order, using new index format

The following old format options are deprecated
N: Native byte order
L: LSB (intel) byte order
M: MSB byte order

The default index_format on this system is: NL

Example

shptree us_states.shp
creating index of new LSB format

Result A file named ‘us_states.qix’ is created in the same location. (note that you can use the shptreevis utility,
described next, to view the actual quadtree quadrants that are used by MapServer in this qix file)

Mapfile Notes

Shape data sets are native to MapServer, and therefore do not require the .shp extension in the DATA path of
the LAYER. In fact, in order for MapServer to use the .qix extension you MUST NOT specify the extension, for
example:

LAYER
...
DATA "us_states" #MapServer will search for us_states.qix and will use it
...

END

LAYER
...
DATA "us_states.shp" #MapServer will search for us_states.shp.qix and won’t find it
...

END

Note: As of MapServer 5.2 the qix will be used even when the .shp extension is specified

12.1.6 shptreetst

Purpose

Executes a spatial query on an existing spatial index (.qix), that was created by the shptree utility. This utility is
useful to understand how a search of a Shape data set and its qix index works.

Syntax

shptreetst shapefile {minx miny maxx maxy}

Example

12.1. Utilities 639

MapServer Documentation, Release 6.4.1

shptreetst esp 879827.480246 4317203.699447 884286.289767 4321662.508967

This new LSB index supports a shapefile with 48 shapes, 4 depth
shapes 6, node 4, -13702.315770,3973784.599548,1127752.921471,4859616.714055
shapes 5, node 3, -13702.315770,3973784.599548,614098.064712,4460992.262527
shapes 1, node 1, -13702.315770,3973784.599548,331587.893495,4241748.814186
shapes 1, node 0, 141678.278400,3973784.599548,331587.893495,4121164.917599
shapes 1, node 0, 268807.855447,4193028.047889,614098.064712,4460992.262527
shapes 1, node 0, 268807.855447,3973784.599548,614098.064712,4241748.814186
shapes 7, node 4, -13702.315770,4372409.051076,614098.064712,4859616.714055
shapes 1, node 0, -13702.315770,4372409.051076,331587.893495,4640373.265714
shapes 3, node 1, -13702.315770,4591652.499417,331587.893495,4859616.714055
shapes 1, node 0, -13702.315770,4712236.396004,176207.299326,4859616.714055
shapes 2, node 0, 268807.855447,4372409.051076,614098.064712,4640373.265714
shapes 3, node 2, 268807.855447,4591652.499417,614098.064712,4859616.714055
shapes 2, node 0, 424188.449617,4712236.396004,614098.064712,4859616.714055
shapes 1, node 0, 424188.449617,4591652.499417,614098.064712,4739032.817468
shapes 2, node 1, 499952.540988,3973784.599548,1127752.921471,4460992.262527
shapes 2, node 0, 499952.540988,4193028.047889,845242.750254,4460992.262527
shapes 5, node 3, 499952.540988,4372409.051076,1127752.921471,4859616.714055
shapes 1, node 1, 499952.540988,4372409.051076,845242.750254,4640373.265714
shapes 1, node 0, 655333.135158,4372409.051076,845242.750254,4519789.369127
shapes 1, node 0, 499952.540988,4591652.499417,845242.750254,4859616.714055
read entire file now at quad box rec 20 file pos 1084
result of rectangle search was
8, 10, 36, 37, 38, 39, 42, 46,

Result The above output from the shptreetst command tells us that the existing .qix index is for a Shape data set
that contains 48 shapes; indeed the Shape data set used in this example, esp.shp, contains 48 polygons of
Spain. The command also tells us that qix file has a quadtree depth of 4.

Most importantly, the resulting shape IDs (or feature IDs) that were contained in the bounding box that we
passed in our example were returned at the bottom of the output: “8, 10, 36, 37, 38, 39, 42, 46”. You can
use a tool such as QGIS to view those feature IDs and check what shapes MapServer is querying when a
user clicks within that bounding box.

. index:: pair: Utility; shptreevis

12.1.7 shptreevis

Purpose

This utility can be used to view the quadtree quadrants that are part of a .qix file (that was created with the shptree
utility).

Syntax

shptreevis shapefile new_shapefile

Example

shptreevis us_states.shp quad.shp
This new LSB index supports a shapefile with 2895 shapes, 10 depth

Result A Shape data set named ‘quad.shp’ is created. You can now view this Shape data set in a desktop GIS
(such as QGIS for example) to see the quadtrees that were created with the shptree command, as shown
below.

640 Chapter 12. Utilities

http://www.qgis.org/

MapServer Documentation, Release 6.4.1

Figure: shptreevis result displayed in QGIS

12.1.8 sortshp

Purpose Sorts a Shape data set based on a single column in ascending or descending order. Supports
INTEGER, DOUBLE and STRING column types. Useful for prioritizing shapes for rendering
and/or labeling.

Description The idea here is that if you know that you need to display a certain attribute classed by
a certain value, it will be faster for MapServer to access that value if it is at the beginning of the
attribute file.

Syntax

sortshp [infile] [outfile] [item] [ascending|descending]

Example This example uses a roads file (‘roads_ugl’) that has a field with road classes in integer
format (‘class1’).

sortshp roads_ugl roads-sort class1 ascending

Result A new Shape data set named ‘roads-sort.shp’ is created with shapes sorted in ascending order,
according to the values in the ‘class1’ field, as shown below.

Figure1: Attributes Before sortshp

12.1. Utilities 641

MapServer Documentation, Release 6.4.1

Figure2: Attributes After sortshp

642 Chapter 12. Utilities

MapServer Documentation, Release 6.4.1

12.1.9 sym2img

Purpose

Creates a graphic dump of a symbol file. Output is either PNG or GIF depending on what version of the GD
library used. (this utility is not currently included in pre-compiled packages, due to issues mentioned in bug#506)

Syntax

sym2img [symbolfile] [outfile]

12.1.10 tile4ms

Purpose

Creates a tile index Shape data set for use with MapServer’s TILEINDEX feature. The program creates a Shape
data set of rectangles from extents of all the Shape data sets listed in [metafile] (one Shape data set name per
line) and the associated DBF with the filename for each shape tile in a column called LOCATION as required by
mapserv.

Note: Similar functionality can be found in the GDAL commandline utilities ogrtindex (for vectors) and gdaltin-
dex (for rasters).

12.1. Utilities 643

http://trac.osgeo.org/mapserver/ticket/506
http://www.gdal.org/ogrtindex.html
http://www.gdal.org/gdaltindex.html
http://www.gdal.org/gdaltindex.html

MapServer Documentation, Release 6.4.1

Description

This utility creates a Shape data set containing the MBR (minimum bounding rectangle) of all shapes in the files
provided, which can then be used in the LAYER object’s TILEINDEX parameter of the mapfile. The new filed
created with this command is used by MapServer to only load the files assocated with that extent (or tile).

Syntax

tile4ms <meta-file> <tile-file> [-tile-path-only]
<meta-file> INPUT file containing list of Shape data set names

(complete paths 255 chars max, no extension)
<tile-file> OUTPUT shape file of extent rectangles and names

of tiles in <tile-file>.dbf
-tile-path-only Optional flag. If specified then only the path to the

shape files will be stored in the LOCATION field
instead of storing the full filename.

Short Example

Create tileindex.shp for all tiles under the /path/to/data directory:

<on Unix>

cd /path/to/data
find . -name "/*.shp" -print > metafile.txt
tile4ms metafile.txt tileindex

<on Windows>

dir /b /s *.shp > metafile.txt
tile4ms metafile.txt tileindex

Long Example

This example uses TIGER Census data, where the data contains files divided up by county (in fact there are over
3200 counties, a very large dataset indeed). In this example we will show how to display all lakes for the state of
Minnesota. (note that here we have already converted the TIGER data into Shape format, but you could keep the
data in TIGER format and use the ogrtindex utility instead) The TIGER Census data for Minnesota is made up of
87 different counties, each containing its own lakes file (‘wp.shp’).

1. We need to create the ‘meta-file’ for the tile4ms command. This is a text file of the paths to all ‘wp.shp’
files for the MN state. To create this file we can use a few simple commands:

DOS: dir wp.shp /b /s > wp_list.txt
(this includes full paths to the data, you might want to edit the txt
file to remove the full path)

UNIX: find -name *wp.shp -print > wp_list.txt

The newly created file might look like the following (after removing the full path):

001\wp.shp
003\wp.shp
005\wp.shp
007\wp.shp
009\wp.shp
011\wp.shp
013\wp.shp
015\wp.shp

644 Chapter 12. Utilities

MapServer Documentation, Release 6.4.1

017\wp.shp
019\wp.shp
...

2. Execute the tile4ms command with the newly created meta-file to create the index file:

tile4ms wp_list.txt index
Processed 87 of 87 files

3. A new file named ‘index.shp’ is created. This is the index file with the MBRs of all ‘wp.shp’ files for the
entire state, as shown in Figure1. The attribute table of this file contains a field named ‘LOCATION’, that
contains the path to each ‘wp.shp file’, as shown in Figure2.

Figure 1: Index file created by tile4ms utility

Figure 2: Attributes of index file created by tile4ms utility

12.1. Utilities 645

MapServer Documentation, Release 6.4.1

4. The final step is to use this in your mapfile.

• LAYER object’s TILEINDEX - must point to the location of the index file

• LAYER object’s TILEITEM - specify the name of the field in the index file containing the paths
(default is ‘location’)

• do not need to use the LAYER’s DATA parameter

For example:

LAYER
NAME ’mn-lakes’
STATUS ON
TILEINDEX "index"
TILEITEM "location"
TYPE POLYGON
CLASS

NAME "mn-lakes"
STYLE

COLOR 0 0 255
END

END
END

When you view the layer in a MapServer application, you will notice that when you are zoomed into a small area
of the state only those lakes layers are loaded, which speeds up the application.

12.1.11 Batch Scripting

If you need to run the utilities on multiple files/folders, here are some commands that will help you:

646 Chapter 12. Utilities

MapServer Documentation, Release 6.4.1

Windows

type the following at the command prompt:

for %f in (*.shp) do shptree %f

or to run recursively (throughout all subfolders):

for /R %f in (*.shp) do shptree %f

Linux

find /path/to/data -name "*.shp" -exec shptree {} \;

12.1.12 File Management

File Placement

MapServer requires a number of different files to execute. Except for graphics that are referenced in output
templates (i.e. web pages) none of the data or configuration files need be accessible via a web server. File naming
for MapServer follows two rules:

1. Files may be given using their full system path. or

2. Files may be given using a relative path where the path is relative to the location of the file they are being
referenced from.

So, for files referenced in the Mapfile they can be given relative to the location of the Mapfile. Same holds true
for symbol sets and font sets.

Temporary Files

MapServer also can produce a number of files (i.e. maps, legends, scalebars, etc...). These files must be accessible
using a web server. To accomplish this MapServer creates these files in a scratch directory. The location of that
directory is given using the IMAGEPATH and IMAGEURL parameters in the web section of a Mapfile. The
scratch directory must be writable by the user that the web server runs under, usually nobody. It is recommended
for security reasons that the web user own the scratch directory rather than making it world writable. The scratch
area will need to be cleaned periodically. On busy sites this may need to happen several times an hour. Here’s an
example shell script that could be run using cron:

#!/bin/csh

find /usr/local/www/docs/tmp -follow -name "*.gif" -exec rm {} \;

Windows

The following .bat file can be used in ‘Scheduled Tasks’ to remove these temporary images daily:

REM this script deletes the contents of the ms_tmp directory
REM (i.e. the MapServer-created gifs)

cd D:\ms4w\tmp\ms_tmp
echo Y | del *.*

12.1. Utilities 647

MapServer Documentation, Release 6.4.1

648 Chapter 12. Utilities

CHAPTER

THIRTEEN

CGI

13.1 CGI

Date 2008/09/09

Author Daniel Morissette

Contact dmorissette at mapgears.com

Author Jeff McKenna

Contact jmckenna at gatewaygeomatics.com

Author Frank Koormann

13.1.1 MapServer CGI Introduction

Notes

• Variable names are not case sensitive.

• In cases where multiple values are associated with a variable (eg. mapext), the values must be seperated by
spaces (or their escaped equivalents for GET requests).

• Variable contents are checked for appropriate data types and magnitude as they are loaded.

• Any CGI Variable not listed below is simply stored and can be referenced within a template file.

Changes

From MapServer version 4.x to version 5.x

• Modifying map parameters through a URL has changed to allow for chunks of a mapfile to be modified at
once. The syntax has changed accordingly, so please see the Changing map file parameters via a form or a
URL section.

From MapServer version 3.x to version 4.x

• New way to perform attribute queries: No longer do you set a layer filter, but rather you pass a query string
(and optionally a query item) to the query function. To do this two new CGI parameters were added to
MapServer: QSTRING and QITEM.

• SAVEMAP is switched off: The SAVEMAP functionality is considered insecure, since the saved files are
accessible by everyone.

649

MapServer Documentation, Release 6.4.1

• TEMPLATE has been removed, since the map_web_template syntax can be used to alter a template file.
Simplifies security maintenance by only having to deal with this option in a single place. Note that the
TEMPLATEPATTERN of the mapfile has to be used to enable this feature.

13.1.2 mapserv

The CGI interface can be tested at the commandline by using the “QUERY_STRING” switch, such as:

mapserv "QUERY_STRING=map=/ms4w/apps/gmap/htdocs/gmap75.map&mode=map"

To suppress the HTTP headers, you can use the “-nh” switch, such as:

mapserv -nh "QUERY_STRING=map=/ms4w/apps/gmap/htdocs/gmap75.map&mode=map"

To save the output into an image file, use the pipe command such as:

mapserv -nh "QUERY_STRING=map=/ms4w/apps/gmap/htdocs/gmap75.map&mode=map" > test.png

13.1.3 Map Context Files

Support for Local Map Context Files

There is a CGI parameter called CONTEXT that is used to specify a local context file. The user can then use
MapServer to request a map using the following syntax:

http://localhost/mapserver.cgi?MODE=map&MAP=/path/to/mapfile.map&CONTEXT=
/path/to/contextfile.xml&LAYERS=layer_name1 layers_name2

Note: All layers created from a context file have their status set to ON. To be able to display layers, the user
needs to add the LAYERS argument in the URL.

Support for Context Files Accessed Through a URL

The syntax of using a web accessible context file would be similar to accessing a local context file:

http://localhost/mapserver.cgi?MODE=map&MAP=/path/to/mapfile.map&CONTEXT=
http://URL/path/to/contextfile.xml&LAYERS=layers_name1 layer_name2

Due to security concerns loading a file from a URL is disabled by default. To enable this functionality, the
user needs to set a CONFIG parameter called CGI_CONTEXT_URL in the default map file that will allow this
functionality. Here is an example of a map file with the CONFIG parameter:

Start of map file
NAME DEMO
STATUS ON
SIZE 400 300
EXTENT -2200000 -712631 3072800 3840000
UNITS METERS
IMAGECOLOR 255 255 255
IMAGETYPE png
CONFIG "CGI_CONTEXT_URL" "1"
...

Default Map File

To smoothly run a MapServer CGI application with a Map Context, the application administrator needs to provide
a default map file with at least the basic required parameters that will be used with the Context file. This default

650 Chapter 13. CGI

MapServer Documentation, Release 6.4.1

map file can contain as little information as the imagepath and imageurl or contain a list of layers. Information
coming from the context (e.g.: layers, width, height, âC¦) would either be appended or will replace values found
in the map file.

Here is an example of a default map file containing the minimum required parameters:

NAME CGI-CONTEXT-DEMO
STATUS ON
SIZE 400 300
EXTENT -2200000 -712631 3072800 3840000
UNITS METERS
IMAGECOLOR 255 255 255
IMAGETYPE png
#
Start of web interface definition
#
WEB

MINSCALE 2000000
MAXSCALE 50000000

#
On Windows systems, /tmp and /tmp/ms_tmp/ should be created at the root
of the drive where the .MAP file resides.
#

IMAGEPATH "/ms4w/tmp/ms_tmp/"
IMAGEURL "/ms_tmp/"

END
END # Map File

13.1.4 MapServer CGI Controls

Variables

Variable names are not case sensitive.

BUFFER [distance] A distance, in the same coordinate system as the map file, used in conjunction with MAPXY
to create an new map extent.

CLASSGROUP [name] The name of a LAYER CLASSGROUP. Set the LAYER CLASSGROUP to name for all
layers that have at least one CLASS that is using the given CLASSGROUP name.

CONTEXT [filename] Path to a context file. Path is relative to the map file to be used, or can also be a URL
path (See the section “Map Context Support Through CGI” below for more details).

ICON [layername],[classindex] Used in MODE=legendicon to generate a legend icon for a layer. The class
index value is optional and defaults to 0.

ID [id-string] By default MapServer generates a uniq session id based on system time and process id. This
parameter overwrites the default.

IMG The name associated with the inline map image used to record user clicks. What actually is passed are two
variables, img.x and img.y.

For the CGI Applications this is an essential variable, see the examples for sample usage.

IMGBOX [x1] [y1] [x2] [y2] Coordinates (in pixels) of a box drag in the image. Most often used in conjunction
with Java based front ends to the MapServer.

IMGEXT [minx] [miny] [maxx] [maxy] The spatial extent of the existing inline image, that is, the image the
users can see in their browser.

IMGSHAPE [x1 y1 x2 y2 x3 y3 ...] | [WKT] An arbitrary polygon shape (specified using image coordinates)
to be used for query purposes.

The polygon is specified by listing its coordinates (multiple instances simply add parts to the shape so it is
possible to construct a shape with holes) or by specifying the WKT (Well Known Text) representation.

13.1. CGI 651

MapServer Documentation, Release 6.4.1

Used with the NQUERY mode.

IMGSIZE [cols] [rows] The size (in pixels) of the exiting inline image.

IMGXY [x] [y] Coordinates (in pixels) of a single mouse click. Used most often in conjunction with Java based
front ends to the MapServer.

LAYER [name] The name of a layer as it appears in the map file. Sending mapserv a layer name sets that layer’s
STATUS to ON.

LAYERS [name name ...] The names of the layers to be turned on. Layer names must be seperated by spaces.

Version 4.4 and above: passing ‘LAYERS=all’ will automatically turn on all layers.

MAP [filename] Path, relative to the CGI directory, of the map file to be used.

MAPEXT [minx] [miny] [maxx] [maxy] , MAPEXT (shape) The spatial extent of the map to be created.

Can be set to shape as an alternative option. In this case mapextent is set to the extent of a selected shape.
Used with queries.

MAPSHAPE [x1 y1 x2 y2 x3 y3 ...] | [WKT] An arbitrary polygon shape (specified using map coordinates) to
be used for query purposes.

The polygon is specified by listing its coordinates (multiple instances simply add parts to the shape so it is
possible to construct a shape with holes) or by specifying a WKT (Well Known Text) representation of the
polygon.

Used with the NQUERY mode.

MAPSIZE [cols] [rows] The size (in pixels) of the image to be created. Useful for allowing users to change the
resolution of the output map dynamically.

MAPXY [x] [y] , MAPXY (shape) A point, in the same coordinate system as the shapefiles, to be used in con-
juction with a buffer or a scale to construct a map extent.

Can be set to shape as an alternative option. In this case mapextent is set to the extent of a selected shape.
Used with queries.

MINX | MINY | MAXX | MAXY [number] Minimum/Maximum x/y coordinate of the spatial extent for a new
map/query. This set of parameters are the pieces of MAPEXT.

MODE [value] Mode of operation. The following options are supported:

BROWSE Fully interactive interface where maps (and interactive pages) are created. This is the default
mode.

FEATURENQUERY A spatial search that uses multiple features from SLAYER to query other layers.

FEATUREQUERY A spatial search that uses one feature from SLAYER to query other layers.

INDEXQUERY Looks up a feature based on the values of SHAPEINDEX and TILEINDEX parameters.
SHAPEINDEX is required, TILEINDEX is optional and is only used with tiled shapefile layers.

ITEMFEATURENQUERY A text search of attribute data is triggered using a QSTRING. Returns all
matches. Layer to be searched is defined using slayer parameter. The results of this search are applied
to other searchable layers (which can be limited using the QLAYER parameter).

ITEMFEATUREQUERY A text search of attribute data is triggered using a QSTRING. Returns first
match. Layer to be searched is defined using slayer parameter. The results of this search are applied
to other searchable layers (which can be limited using the QLAYER parameter).

ITEMNQUERY A text search of attribute data is triggered using a QSTRING. Returns all matches.

ITEMQUERY A text search of attribute data is triggered using a layer QSTRING. Returns 1st match.

LEGEND The created legend is returned. Used within an tag.

LEGENDICON A legend icon is returned. The ICON parameter must also be used to specify the layer-
name and a class index. Class index value is optional and defaults to 0. For example:

652 Chapter 13. CGI

MapServer Documentation, Release 6.4.1

mapserv.exe?map=/mapfiles/gmap75.map&MODE=legendicon&ICON=popplace,0

MAP The created map is returned. Used within an tag.

NQUERY A spatial search (finds all) is triggered by a click in a map or by user-define selection box.

QUERY A spatial search (finds closest) is triggered by a click in a map.

REFERENCE The created reference map is returned. Used within an tag.

SCALEBAR The created scalebar is returned. Used within an tag.

ZOOMIN Switch to mode BROWSE with ZOOMDIR=1

ZOOMOUT Switch to mode BROWSE with ZOOMDIR=-1

COORDINATE To be clarified.

Note: The previously available map-only query modes, e.g. ITEMQUERYMAP, are no longer supported.
The QFORMAT parameter is now used instead.

QFORMAT [outputformat | mime/type] (optional) The OUTPUTFORMAT name or mime/type to be used to
process a set of query results (corresponds to the WEB object’s QUERYFORMAT parameter). The param-
eter is optional and used in conjunction with query MODEs. The default is text/html.

Example (map output):

...&mode=nquery&qformat=png24&...

QITEM [name] (optional) The name of an attribute in a layer attribute table to query on. The parameter is
optional and used in conjunction with the QSTRING for attribute queries.

QLAYER [name] Query layer. The name of the layer to be queried as it appears in the map file.

QSTRING [expression] Attribute queries: Query string passed to the query function. Since 5.0, qstring
will have to be specified in the VALIDATION parameter of the LAYER for qstring queries to work
(qstring_validation_pattern LAYER-level METADATA for MapServer versions prior to 5.4).

QUERYFILE [filename] Used with BROWSE or NQUERY mode. This option identifies a query file to load
before any regular processing. In BROWSE mode this result in a query map being produced instead of a
regular map. This is useful when you want to hilite a feature while still in a pan/zoom mode. In NQUERY
mode you’d gain access to any of the templates used in normally presenting the query, so you have access
to query maps AND attribute information. See the SAVEQUERY option.

REF The name associated with the inline reference map image used to record user clicks. What actually is passed
are two variables, ref.x and ref.y.

For the CGI Applications this is an essential variable when reference maps are used, see the examples for
sample usage.

REFXY [x] [y] Coordinates (in pixels) of a single mouse click in the reference image. Used in conjunction with
Java based front ends to the MapServer.

SAVEQUERY When used with any of the query modes this tells the MapServer to save the query results to a
temporary file for use in subsequent operations (see QUERYFILE). Useful for making queries persistent.

SCALEDENOM [number] Scale to create a new map at. Used with mapxy. Scale is given as the denominator of
the actual scale fraction, for example for a map at a scale of 1:24,000 use 24000. Implemented in MapServer
5.0, to replace the deprecated SCALE parameter.

SCALE [number] - deprecated Since MapServer 5.0 the proper parameter to use is SCALEDENOM instead.
The deprecated SCALE is the scale to create a new map at. Used with mapxy. Scale is given as the
denominator of the actual scale fraction, for example for a map at a scale of 1:24,000 use 24000.

SEARCHMAP It is possible to do pan/zoom interfaces using querymaps. In these cases you will likey want
information about the contents of the new map rather than the previous map which is the normal way

13.1. CGI 653

MapServer Documentation, Release 6.4.1

queries work. When searchmap is specified the new map is created and it’s extent is used to query layers.
Useful with NQUERY mode only.

SHAPEINDEX [index] Used for index queries (in conjunction with INDEXQUERY).

SLAYER [name] Select layer. The name of the layer to be used for any of the feature (i.e. staged) query modes.
The select layer must be a polygon layer. The selection feature(s) are available for presentation to the user.

TILEINDEX [index] Used for index queries (in conjunction with INDEXQUERY), used with tiled shapefile
layers.

ZOOM [number] Zoom scaling to apply to the creation of the new map. Values greater than 0 resulting in
zooming in, 0 is a pan, and values less than zero are for zooming out. A value of 2 means “zoom in twice”.

ZOOM can be used as a shortcut for the combination ZOOMDIR/ZOOMSIZE. The zoom is limited by the
MINZOOM/MAXZOOM settings compiled into the MapServer (-25/25) by default.

ZOOMDIR [1 | 0 | -1] Direction to zoom. See above.

ZOOMSIZE [number] Absolute magnitude of a zoom. Used with ZOOMDIR.

ZOOMDIR is limited to MAXZOOM compiled into the MapServer (25 by default).

Changing map file parameters via a form or a URL

Beginning with version 3.3 it is possible to change virtually any map file value from a form or a URL (see Run-
time Substitution). The syntax for this is fairly straightforward, and depends on what version of MapServer you
are using. One potentially very powerful use of this ability to change mapfile parameters through a URL involves
changing class expressions on-the-fly. VALIDATION is used to control run-time substition. Try it out.

Warning: This functionality is only available via the mapserv CGI application. Within MapScript this is easy
to do by yourself since the developer has complete control over how input is handled.

Using MapServer version >= 5

Previous versions of the MapServer CGI program allowed certain parameters to be changed via a URL using a
cumbersome syntax such as map_layer_0_class_0_color=255+0+0 which changes the color in one classObj. So,
in the past you had to change parameters one-at-a-time. Now you can pass chunks of mapfiles (with security
restrictions) to the CGI interface. The map_object notation is still necessary to identify which object you want to
modify but you can change multiple properties at one time. Note that you can use either a ‘_’ or a ‘.’ to seperate
identifiers.

Example 1, changing a scalebar object:

...&map.scalebar=UNITS+MILES+COLOR+121+121+121+SIZE+300+2&...

Example 2, changing a presentation style:

...&map.layer[lakes].class[0].style[0]=SYMBOL+crosshatch+COLOR+151+51+151+SIZE+15&...

Example 3, creating a new feature:

...&map_layer[3]=FEATURE+POINTS+500000+1000000+END+TEXT+’A+test+point’+END&...

Example 4, set multiple web object parameters:

...&map_web=imagepath+/ms4w/tmp/ms_tmp/+imageurl+/ms_tmp/

Example 5, set the map size:

...&map_size=800+400

The variable identifies an object uniquely (by name or index in the case of layerObj’s and classObj’s). The value
is a snippet of a mapfile. You cannot create new objects other than inline features at this point.

654 Chapter 13. CGI

MapServer Documentation, Release 6.4.1

Using MapServer version < 5

For MapServer version < 5, any value can be expressed using the hierarchy used in a map file. A map contains a
layer, which contains a class, which contains a label, which has a color. This hierarchy is expressed as a sequence
of MapServer keywords seperated by underscores. For example to change the color of a layer called “lakes” with
only one class defined you would use a form variable named “map_lakes_class_color” and could assign it a color
like “0 0 255”. Layers can be referenced by index (i.e. map_layer_0...) or by name as shown above. Layer classes
are referenced by index value (i.e. map_layer_0_class_2). If there is only 1 class for a layer then the index should
be ommited. These variables must always begin with the sequence “map_”. Values assigned must conform to the
syntax of a map file.

It is also possible to define inline features using this mechanism. This is the only case where you can add on to
the map file. You can edit/change layer parameters but you cannot create a new layer. With inline features you
have to first create a feature and then build upon it, however, the layer the feature belongs to must exist. Here’s a
snippet from a GET request that adds a feature to a webuser layer:

...&map_webuser_feature=new&map_webuser_feature_points=12345.6789+12345.6789
&map_webuser_feature_text=My+House!&...

The “map_webuser_feature=new” creates a new feature for the webuser layer. All subsequent calls to the feature
object for that layer will modify the new feature. You can repeat the process to create additional features. This is
really intended for very small (point, rectangle) amounts of data.

Specifying the location of mapfiles using an Apache variable

Apache variables can be used to specify the location of map files (instead of exposing full mapfile paths to the
outside world).

1. Set the variable (in this example MY_MAPFILE) in Apache’s httpd.conf:

SetEnv MY_MAPFILE "/opt/mapserver/map1/mymapfile.map"

2. Refer to the variable in the mapserver CGI URL:

http://localhost/cgi-bin/mapserv?map=MY_MAPFILE&mode=...

ROSA-Applet Controls

note: Active development and maintenance of the ROSA Applet has stopped

The ROSA Applet parameters were added to the CGI MapServer in version 3.6. This Java Applet provides a more
intuitive user interface to MapServer. The MapTools site provides detailed information on the ROSA Applet.

The parameters can also be used by other interfaces/tools, if set to the right values. Please note that the two
parameters have to be handed over to te CGI application in the order identified below.

INPUT_TYPE (auto_rect | auto_point) The INPUT_TYPE parameter is needed to identify if the coordinates
handed over to the mapserver have to be interpreted as rectangular or point data.

INPUT_COORD [minx,miny;maxx,maxy] The ROSA-Applet always fills the pair of coordinates. In case of a
point (input_type=auto_point) min and max coordinate are equal (MapServer uses the min value).

13.1.5 Run-time Substitution

Author Steve Lime

Contact steve.lime at DNR.STATE.MN.US

Revision $Revision$

Last Updated $Date$

13.1. CGI 655

MapServer Documentation, Release 6.4.1

Table of Contents

• Run-time Substitution
– Introduction
– Basic Example
– Parameters Supported
– Default values if not provided in the URL
– VALIDATION
– Magic values

Introduction

Run-time substitution for the MapServer CGI has been around since version 4.0 and it’s use has continued to
expand. In short, it allows you to alter portions of a mapfile based on data passed via a CGI request.

Warning: This functionality is only available via the mapserv CGI application. Within MapScript this is easy
to do by yourself since the developer has complete control over how input is handled.

Case sensitivity

Since version 6.4, CGI parameter names are not case sensitive. CGI parameter values are case sensitive.

Basic Example

Let’s say you’d like the user to dynamically set a portion of an expression so they could highlight a certain land
cover class, and you have a form element (called ctype) that allows them to choose between: forest, water, wetland
and developed.

A request should look like (assuming “marsh” is a valid land cover class):

http://...mapserv?map=....&ctype=marsh

You could then set up a layer like so:

LAYER
NAME ’covertypes’
...
VALIDATION

"ctype" "[a-z]+"
END
CLASSITEM ’type’
CLASS # highlighted presentation

EXPRESSION ’%ctype%’
...

END
CLASS # default presentation

...
END

END

When a request is processed, the value for ctype is substituted for the string %ctype% and the mapfile is processed
as normal. If no ctype is passed in, the EXPRESSION will never be true so it doesn’t really hurt anything except
for a slight performance hit. Often you would set a default class to draw features that don’t match, but that is not
required.

656 Chapter 13. CGI

MapServer Documentation, Release 6.4.1

Parameters Supported

Not every mapfile parameter supports run-time substitution and care has been taken to try and support those that
make the most sense. All parameters must be validated. Remember, you also can do run-time configuration using
the map_object_property type syntax detailed in Changing map file parameters via a form or a URL. Below is a
list of properties that do allow run-time substitution:

• CLASS: EXPRESSION

• CLASS: TEXT

• LAYER: CONNECTION

• LAYER: DATA

• LAYER: FILTER

• LAYER: TILEINDEX

• OUTPUTFORMAT: FORMATOPTION: FILENAME

FILTERs

You can use runtime substitutions to change values within a FILTER as you go. For example your FILTER could
be written like so:

FILTER (multimedia=’%multimedia%’ and seats >= ’%nseats%’ and Sound= ’%sound%’)

Then (assuming you’re using the CGI interface) you could pass in variables named multimedia, nseats and sound
with values defined by the user in an HTML form.

You should also define validation expressions on these variables to guard against unintentional SQL being submit-
ted to postgis (since version 6.0, validation is mandatory). Within the layer you’d do the following:

VALIDATION
’multimedia’ ’^yes|no$’
’sound’ ’^yes|no$’
’nseats’ ’^[0-9]{1,2}$’

END

The validation strings are regular expressions that are applied against the appropriate variable value before being
added to the FILTER. The first two limit the value of multimedia and sound to yes or no. The third limits the value
for nseats to a 2 digit integer.

Default values if not provided in the URL

The runtime substitution mechanism will usually create syntactically incorrect, and almost always semantically
incorrect mapfiles if the substitution parameter was not provided in the calling URL.

Since version 5.6, you can provide a default value for any substitution parameter, that will be applied if the
parameter was not found in the url. You do this by providing special entries inside CLASS, LAYER or WEB
validation blocks:

VALIDATION
’default_sound’ ’yes’
’default_nseats’ ’5’
’default_multimedia’ ’yes’

END

In this example, the mapfile will be created as if the url contained “&sound=yes&nseats=5&multimedia=yes”.

If identical default keys appear in more than one validation block then keys in more specialised blocks override
those in more generalised blocks. i.e. CLASS overrides LAYER which overrides WEB. The same functionality is
available using METADATA blocks instead of VALIDATION but this is deprecated as of MapServer 5.4.0. This

13.1. CGI 657

MapServer Documentation, Release 6.4.1

behavior is also accessible in the shp2img utility, allowing you to test runtime substitution mapfiles without using
a webserver.

VALIDATION

Because runtime substitution affects potentially sensitive areas of your mapfile, such as database columns and
filenames, it is mandatory that you use pattern validation (since version 6.0)

Pattern validation uses regular expressions, which are strings that describe how to compare strings to patterns. The
exact functionality of your systems’ regular expressions may vary, but you can find a lot of general information
by a Google search for “regular expression tutorial”.

As of MapServer 5.4.0 the preferred mechanism is a VALIDATION block in the LAYER definition. This is only
slightly different from the older METADATA mechanism. VALIDATION blocks can be used with CLASS, LAYER
and WEB.

VALIDATION
%firstname% substitutions can only have letters and hyphens
’firstname’ ’^[a-zA-Z\-]+$’

%parcelid% must be numeric and between 5 and 8 characters
’parcelid’ ’^[0-9]{5,8)$’

%taxid% must be two capital letters and six digits
’taxid’ ’^[A-Z]{2}[0-9]{6}$’

END

If identical keys appear in more than one validation block then keys in more specialised blocks override those in
more generalised blocks. i.e. CLASS overrides LAYER which overrides WEB.

Magic values

Some runtime substitutions have special caveats.

ID In addition to any defined METADATA or VALIDATION, the ‘id’ parameter will be subjected to a special
check. It must be alphanumeric and cannot be longer than 63 characters.

13.1.6 A Simple CGI Wrapper Script

Author Steven Monai

Revision $Revision$

Date $Date$

Last Updated 2006/01/26

Table of Contents

• A Simple CGI Wrapper Script
– Introduction
– Script Information

Introduction

This document presents a simple shell script that can be used to “wrap” the MapServer CGI, in order to avoid
having to specify the ‘map’ parameter (or any other chosen parameters) in your MapServer URLs.

658 Chapter 13. CGI

MapServer Documentation, Release 6.4.1

Warning: Using a wrapper script is inefficient as it implies spawing two processes (shell+mapserv) instead
of only one (mapserv), and should not be used on production installations. Refer to Changing the Online
Resource URL for examples of how to setup similar functionality directly by using webserver configuration
options.

Script Information

If you want to avoid having to specify the ‘map’ parameter in your MapServer URLs, one solution is to use a
“wrapper”. Basically, a wrapper is a CGI program that receives an incoming CGI request, modifies the request
parameters in some way, and then hands off the actual processing to another CGI program (e.g. MapServer).

The following shell scripts are wrappers for CGI GET requests that should be generic enough to run on any OS
with /bin/sh.

Alternative 1

#!/bin/sh
MAPSERV="/path/to/my/mapserv"
MS_MAPFILE="/path/to/my/mapfile.map" exec ${MAPSERV}

You should set the MAPSERV and MS_MAPFILE variables as appropriate for your configuration. MAPSERV
points to your MapServer executable, and MS_MAPFILE points to the mapfile you want MapServer to use. Both
variables should be absolute file paths that your webserver has permission to access, although they need not (and
probably should not) be in web-accessible locations. Put the script in your web server’s cgi-bin directory, and
make it executable.

This solution should support both GET and POST requests.

Alternative 2

#!/bin/sh
MAPSERV="/path/to/my/mapserv"
MAPFILE="/path/to/my/mapfile.map"
if ["${REQUEST_METHOD}" = "GET"]; then

if [-z "${QUERY_STRING}"]; then
QUERY_STRING="map=${MAPFILE}"

else
QUERY_STRING="map=${MAPFILE}&${QUERY_STRING}"

fi
exec ${MAPSERV}

else
echo "Sorry, I only understand GET requests."

fi
exit 1
End of Script

You should set the MAPSERV and MAPFILE variables as appropriate for your configuration. MAPSERV points
to your MapServer executable, and MAPFILE points to the mapfile you want MapServer to use. Both variables
should be absolute file paths that your webserver has permission to access, although they need not (and probably
should not) be in web-accessible locations. Then put the script in your web server’s cgi-bin directory, and make it
executable.

Although this script only sets the ‘map’ parameter, it is easily modified to set any number of other MapServer
parameters as well. For example, if you want to force your MapServer to ‘map’ mode, you can simply add
‘mode=map’ to the front of the QUERY_STRING variable. Just remember to separate your parameters with
ampersands (‘&’).

Finally, note that the script only works for GET requests.

13.1. CGI 659

MapServer Documentation, Release 6.4.1

13.1.7 MapServer OpenLayers Viewer

MapServer provides a simple, built-in method for testing a mapfile using OpenLayers. This feature is for test-
ing/development purposes only, and not for production or deploying full-featured sites. You can preview, test, and
navigate a mapfile by accessing a special url which will return a built-in OpenLayers template.

Note: This feature was discussed in rfc 63 and in the ticket http://trac.osgeo.org/mapserver/ticket/3549

Using the OpenLayers viewer

Opening the OpenLayers viewer in your browser

Assuming you are running mapserver on your local machine, and you have the Itasca demo setup, a basic url
would be (split into two lines for readability):

http://localhost/cgi-bin/mapserv?mode=browse&template=openlayers
&layer=lakespy2&layer=dlgstln2&map=/var/www/workshop/itasca.map

Here is a quick breakdown of that url:

• Basic Parameters for activating the OpenLayers browser:

template=openlayers
mode=browse

• Basic Map / Layer Parameters:

map=/var/www/workshop/itasca.map
layer=lakespy2
layer=dlgstln2

That’s it!

Opening the OpenLayers viewer in the form of a WMS request

This feature is useful when debugging WMS requests. You can write one of these by hand, or copy the URL for
a WMS tile. Running the following should give you a simple OpenLayers demo around the BBOX (split into
several lines for readability):

http://localhost/cgi-bin/mapserv?map=/var/www/workshop/itasca.map
&LAYERS=lakespy2&VERSION=1.1.1&SERVICE=WMS&REQUEST=GetMap
&FORMAT=application/openlayers&WIDTH=512&HEIGHT=512&SRS=EPSG:26915
&BBOX=429956.19803725,5231780.0814818,444078.32296225,5245902.2064068

Here is a quick breakdown of the interesting parts of that URL:

• Special Parameter for activating the OpenLayers viewer:

FORMAT=application/openlayers

• Basic MapServer Parameters:

map=/var/www/workshop/itasca.map

• Basic WMS parameters:

#Layers, our bounding box and projection
LAYERS=lakespy2
BBOX=429956.19803725,5231780.0814818,444078.32296225,5245902.2064068
SRS=EPSG:26915

660 Chapter 13. CGI

http://mapserver.org/development/rfc/ms-rfc-63.html
http://trac.osgeo.org/mapserver/ticket/3549

MapServer Documentation, Release 6.4.1

#Version and other WMS request params
SERVICE=WMS
VERSION=1.1.1
REQUEST=GetMap
WIDTH=512
HEIGHT=512
TRANSPARENT=true

13.1. CGI 661

MapServer Documentation, Release 6.4.1

662 Chapter 13. CGI

CHAPTER

FOURTEEN

ENVIRONMENT VARIABLES

14.1 Environment Variables

A number of environment variables can be used to control MapServer’s behavior or specify the location of some
resources.

CURL_CA_BUNDLE

Used to specify the location of the Certificate Authority (CA) bundle file to be used by Curl when
using HTTPS connections in WMS/WFS client layers. Curl comes bundled with its own CA bundle
by default, so this variable is not required unless you have an unusual installation:

export CURL_CA_BUNDLE=/path/to/ca-bundle.crt

New in version 5.4.1.

MS_DEBUGLEVEL A default DEBUG level value can be set using the MS_DEBUGLEVEL environment vari-
able in combination with the MS_ERRORFILE variable.

When set, this value is used as the default debug level value for all map and layer objects as they are loaded
by the mapfile parser. This option also sets the debug level for any msDebug() call located outside of the
context of a map or layer object, for instance for debug statements relating to initialization before a map is
loaded. If a DEBUG value is also specified in the mapfile in some map or layer objects then the local value
(in the mapfile) takes precedence over the value of the environment variable.

This option is mostly useful when tuning applications by enabling timing/debug output before the map is
loaded, to capture the full process initialization and map loading time, for instance. New in version 5.0.

See Also:

rfc28

MS_ENCRYPTION_KEY

See Also:

msencrypt

New in version 4.10.

MS_ERRORFILE The MS_ERRORFILE environment variable specifies the location of the logging/debug out-
put, with possible values being either a file path on disk, or one of the following special values:

• “stderr” to send output to standard error. Under Apache stderr is the Apache error_log file. Under IIS
stderr goes to stdout so its use is discouraged. With IIS it is recommended to do direct output to a file
on disk instead.

• “stdout” to send output to standard output, combined with the rest of MapServer’s output.

• “windowsdebug” to send output to the Windows OutputDebugString API, allowing the use of external
programs like SysInternals debugview to display the debug output.

663

MapServer Documentation, Release 6.4.1

It is possible to specify MS_ERRORFILE either as an environment variable or via a CONFIG directive
inside a mapfile:

CONFIG "MS_ERRORFILE" "/tmp/mapserver.log"

or:

CONFIG "MS_ERRORFILE" "stderr"

If both the MS_ERRORFILE environment variable is set and a CONFIG MS_ERRORFILE is set, then the
CONFIG directive takes precedence.

If MS_ERRORFILE is not set, then error/debug logging is disabled. During parsing of a mapfile, error/debug
logging may become available only after the MS_ERRORFILE directive has been parsed.

See Also:

rfc28

MS_MAP_NO_PATH The MS_MAP_NO_PATH environment variable can be set to any value to forbid the use
of explicit paths in the map=... URL parameter. Setting MS_MAP_NO_PATH to any value forces the use
of the map=<env_variable_name> mechanism in mapserv CGI URLs.

If this variable is not set then nothing changes and the mapserv CGI still accepts explicit file paths via the
map=... URL parameter.

Example, set set MS_MAP_NOPATH and some mapfile paths in Apache’s httpd.conf:

SetEnv MS_MAP_NO_PATH "foo"
SetEnv MY_MAPFILE "/opt/mapserver/map1/mymapfile.map"

and then calls the mapserv CGI must use environment variables for the map=... parameter:

http://localhost/cgi-bin/mapserv?map=MY_MAPFILE&mode=...

New in version 5.4.

See Also:

rfc56

MS_MAPFILE The mapfile to use if the map=... URL parameter is not provided.

It is also possible to use an environment variable name as the value of the map=... URL parameter. The
value of this environment variable will be used as the mapfile path:

map=ENV_VAR

MS_MAPFILE_PATTERN MS_MAPFILE_PATTERN can be used to override the default regular expression
which is used to validate mapfile filename extensions.

The default value for this variable is:

MS_MAPFILE_PATTERN=’\.map$’

MS_MAP_PATTERN The MS_MAP_PATTERN environment variable can be used to specify a Regular Expres-
sion that must be matched by all mapfile paths passed to the mapserv CGI in the map=... URL parameter.

If MS_MAP_PATTERN is not set then any .map file can be loaded.

Example, use Apache’s SetEnv? directive to restrict mapfiles to the /opt/mapserver/ directory and subdirec-
tories:

SetEnv MS_MAP_PATTERN "^/opt/mapserver/"

New in version 5.4.

See Also:

rfc56

664 Chapter 14. Environment Variables

MapServer Documentation, Release 6.4.1

MS_MODE Default value for the mode=... URL parameter. Setting mode=... in the URL takes precedence over
the environment variable.

MS_OPENLAYERS_JS_URL The URL to the OpenLayers javascript library (can be used when testing WMS
services using imagetype application/openlayers), for instance:

http://openlayers.org/api/OpenLayers.js

MS_TEMPPATH Set the WEB TEMPPATH. New in version 6.0.

MS_XMLMAPFILE_XSLT Used to enable XML Mapfile support. Points to the location of the XSLT to use
for the XML->text mapfile conversion.

See Also:

XML Mapfile support

PROJ_LIB The PROJ_LIB environment variable or CONFIG directive can be used to specify the directory where
the PROJ.4 data files (including the “epsg” file) are located, if they are not in the default directory where
PROJ.4 expects them.

See Also:

Setting the location of the epsg file in Errors.

14.1. Environment Variables 665

MapServer Documentation, Release 6.4.1

666 Chapter 14. Environment Variables

CHAPTER

FIFTEEN

GLOSSARY

15.1 Glossary

AGG Anti-Grain Geometry A high quality graphics rendering engine that MapServer 5.0+ can use. It supports
sub-pixel anti-aliasing, as well as many more features.

CGI Wikipedia provides excellent coverage of CGI.

EPSG EPSG codes are numeric codes associated with coordinate system definitions. For instance, EPSG:4326
is geographic WGS84, and EPSG:32611 is “UTM zone 11 North, WGS84”. The WMS protocol uses
EPSG codes to describe coordinate systems. EPSG codes are published by the OGP Surveying and Posi-
tioning Committee. A list of PROJ.4 definitions corresponding to the EPSG codes can be found in the file
/usr/local/share/proj/epsg. PROJECTION describes how to use these in your Mapfile.

See Also:

http://spatialreference.org for a listing of spatial references and an interface to search for spatial references.

Filter Encoding Filter Encoding is an OGC standard which defines an XML encoding for filter expressions to
allow for spatial and attribute querying.

See Also:

WFS Filter Encoding

FreeType FreeType is a font engine that MapServer uses for accessing and rendering TrueType fonts.

GD GD is a graphics library for dynamic generation of images. It was the first graphics renderer that was
available for MapServer, and it is required by MapServer to operate.

GDAL GDAL (Geospatial Data Abstraction Library) is a multi-format raster reading and writing library. It is
used as the primary mechanism for reading raster data in MapServer. It is hosted at http://www.gdal.org/

GEOS Geometry Engine Open Source is a C/C++ port of the Java Topology Suite. It is used for geometric
algebra operations like determining if a polygon is contained in another polygon or determining the resultant
intersection of two or more polygons. MapServer optionally uses GEOS for geometric algebra operations.

GML Geography Markup Language is an OGC standard which defines an abstract model for geographic features

See Also:

WFS Server

GPX GPS eXchange Format is an XML Schema for describing GPS data. OGR can be used to transform and
render this data with MapServer.

Map Scale A treatise of mapping scale can be found on about.com.

Mapfile Mapfile is the declarative language that MapServer uses to define data connections, map styling, tem-
plating, and server directives. Its format is xml-like and hierarchical, with closing END tags, but the format
is not xml.

667

http://antigrain.com
http://en.wikipedia.org/wiki/Common_Gateway_Interface
http://www.epsg.org/
http://www.epsg.org/
http://spatialreference.org
http://www.opengeospatial.org/standards/filter
http://freetype.sourceforge.net/index2.html
http://en.wikipedia.org/wiki/True_Type_Font
http://www.libgd.org/Main_Page
http://www.gdal.org/
http://trac.osgeo.org/geos
http://www.vividsolutions.com/jts/jtshome.htm
http://www.opengeospatial.org/standards/gml
http://en.wikipedia.org/wiki/GPX_(data_transfer)
http://geography.about.com/cs/maps/a/mapscale.htm

MapServer Documentation, Release 6.4.1

MapScript MapScript is an alternative the the CGI application of mapserv that allows you to program the
MapServer object API in many languages.

Mercator Wikipedia provides excellent coverage of the Mercator projection.

OGC The Open Geospatial Consortium is a standards organization body in the GIS domain. MapServer supports
numerous OGC standards.

See Also:

WMS Server and WMS Time and WMS Client and WFS Server and WFS Client and WCS Server and Map
Context and SLD and WFS Filter Encoding and SOS Server

OGR OGR is the vector data access portion of the GDAL library. It provides access to a multitude of data
formats.

See Also:

OGR

OM Observations and Measurements is an OGC standard which defines an abstract model for sensor based data.

See Also:

SOS Server

OpenLayers OpenLayers is a JavaScript library for developing draggable, “slippy map” web applications.

Proj.4 Proj4 is a library for projecting map data. It is used by MapServer and GDAL and a multitude of other
Open Source GIS libraries.

Projection A map projection is a mathematical transformation of the surface of a sphere (3D) onto a 2D plane.
Due to the laws of the universe, each type of projection must make tradeoffs on how and what features it
distorts.

Raster A raster is a rectangular grid of pixels. Essentially an image. Rasters are supported in MapServer with a
layer type of RASTER, and a variety of formats are supported including GeoTIFF, JPEG, and PNG.

Shapefile Shapefiles are simple GIS vector files containing points, lines or areas. The format was designed
and published by ESRI and is widely supported in the GIS world. It is effectively the native and highest
performance format for MapServer.

See Also:

Wikipedia

SLD SLD is an OGC standard which allows for custom symbolization for portrayal of data.

See Also:

SLD

SOS SOS is an OGC standard which provides an API for managing deployed sensors and retrieving sensor and
observation data.

See Also:

SOS Server

Spherical Mercator Spherical Mercator is a term used to describe the PROJECTION used by many commercial
API providers.

SVG Scalable Vector Graphics is an XML format that MapServer can output. It is frequently used in browser
and mobile devices.

See Also:

SVG

SWF Shockwave Flash format that MapServer can generate for output.

See Also:

668 Chapter 15. Glossary

http://en.wikipedia.org/wiki/Mercator_projection
http://www.opengeospatial.org
http://www.gdal.org/ogr
http://www.opengeospatial.org/standards/om
http://openlayers.org
http://trac.osgeo.org/proj/
http://en.wikipedia.org/wiki/Shapefile
http://www.opengeospatial.org/standards/sld
http://www.opengeospatial.org/standards/sos
http://docs.openlayers.org/spherical_mercator/#what-is-spherical-mercator
http://en.wikipedia.org/wiki/SVG
http://en.wikipedia.org/wiki/SWF

MapServer Documentation, Release 6.4.1

Flash Output

SWIG Simplified Wrapper Interface Generator is the library that MapServer uses for generating the language
bindings for all languages other than C/C++ and PHP. MapScript describes these bindings.

Tileindex A tileindex is a Shapefile or other Vector data source that contains footprints of Raster data coverage.
MapServer can use a tileindex to render a directory of raster data. The tileindex allows MapServer to only
read the data that intersects the requested map extent, rather than reading all of the data.

See Also:

Tile Indexes

Vector Geographic features described by geometries (point, line, polygon) on a (typically) cartesian plane.

WCS WCS is an OGC standard that describes how to systematically produce structured Raster cartographic data
from a service and return them to a client

See Also:

WCS Server and WCS Use Cases

WFS WFS is an OGC standard that describes how to systematically produce structured Vector cartographic data
from a service and return them to a client.

See Also:

WFS Server and WFS Client

WMC Web Map Context is an OGC standard which allows for sharing of map views of WMS layers in multiple
applications.

See Also:

Map Context

WMS WMS is an OGC standard that describes how to systematically produce rendered map images from a
service and return them to a client.

See Also:

WMS Server and WMS Client

15.1. Glossary 669

http://www.swig.org
http://en.wikipedia.org/wiki/Web_Coverage_Service
http://en.wikipedia.org/wiki/Web_Feature_Service
http://www.opengeospatial.org/standards/wmc
http://en.wikipedia.org/wiki/Web_Map_Service

MapServer Documentation, Release 6.4.1

670 Chapter 15. Glossary

CHAPTER

SIXTEEN

ERRORS

16.1 Errors

16.1.1 drawEPP(): EPPL7 support is not available

Error displayed when not using EPPL7 data.

This is a confusing error for users who are not even trying to view EPPL7 layers (EPPL7 is a raster format). The
full error displayed may appear as follows:

msDrawRaster(): Unrecognized or unsupported image format ...

drawEPP(): EPPL7 support is not available.

Explanation

When MapServer tries to draw a layer, it will attempt to use all of the drivers it knows about, and the EPPL7 driver
is the very last driver it will try. This means that if a layer fails to draw for any reason, you will see this error
message.

There are other possible instances when this error can appear however, here are a few:

• the server is returning either a ServiceException (which MapServer does not yet detect and parse into a
reasonable error message) or it is returning an image in an unrecognized format ... for instance it is returning
a GIF image and MapServer is not built to support GIF images.

• WMS servers often advertise multiple image formats but don’t respect them in the getmap request.

16.1.2 loadLayer(): Unknown identifier. Maximum number of classes reached

Error displayed when attempting to draw a layer with a large number of classes.

This error states that MapServer has reached its limit for the maximum number of classes for the layer. This
maximum can be modified in the MapServer source, and can then be re-compiled. map.h contains the default
values, and below are the defaults for MapServer 4.10 and 4.8:

#define MS_MAXCLASSES 250
#define MS_MAXSTYLES 5
#define MS_MAXLAYERS 200

Note: This limitation was corrected in MapServer 5.0 and should no longer be a problem.

671

MapServer Documentation, Release 6.4.1

16.1.3 loadMapInternal(): Given map extent is invalid

When loading your mapfile or one of your layers, MapServer complains about an invalid extent.

Beginning in MapServer 4.6, MapServer got more strict about LAYER and MAP extents. If minx is greater
than maxx, or miny is greater than maxy, this error will be generated. Check your MAP’s EXTENT, LAYER’s
EXTENT, or wms_extent setting to make sure this is not the case. MapServer always takes in extents in the form
of:

EXTENT minx miny maxx maxy

How to get a file’s EXTENT values?

The easiest way to get a vector file’s EXTENT is to use the ogrinfo utility, that is part of the GDAL/OGR library
(for raster files you would use the gdalinfo utility). Windows users can download the FWTools package, which
includes all of the GDAL and OGR commandline utilities. MS4W also includes the utilities (in ms4w/tools/gdal-
ogr-utils/). Linux users will probably already have the GDAL libraries, if not you can also use the FWTools
package.

For example, here is the results of the ogrinfo command on a shapefile (notice the “Extent” line):

$ ogrinfo province.shp province -summary
INFO: Open of ‘province.shp’
using driver ‘ESRI Shapefile’ successful.

Layer name: province
Geometry: Polygon
Feature Count: 1071
Extent: (-2340603.750000, -719746.062500) - (3009430.500000, 3836605.250000)
Layer SRS WKT:
(unknown)
AREA: Real (16.0)
PERIMETER: Real (16.0)
PROVINCE_: Real (16.0)
PROVINCE_I: Real (16.0)
STATUS: String (64.0)
NAME: String (64.0)
NAME_E: String (64.0)
NAME_F: String (64.0)
REG_CODE: Real (16.0)
POLY_FEATU: Real (16.0)
ISLAND: String (64.0)
ISLAND_E: String (64.0)
ISLAND_F: String (64.0)
YYY: Real (16.0)
SIZE: Real (16.0)
ANGLE: Real (16.0)

Ogrinfo gives the file’s extent in the form of (minx, miny),(maxx, maxy), therefore the EXTENT in a mapfile
would be:

EXTENT -2340603.750000 -719746.062500 3009430.500000 3836605.250000

Note: The EXTENT in a mapfile must be in the same units as the MAP -level PROJECTION.

16.1.4 msGetLabelSize(): Requested font not found

Error displayed when attempting to display a specific font.

This message tells you that MapServer cannot find specified font.

672 Chapter 16. Errors

http://www.gdal.org/ogr/ogrinfo.html
http://www.gdal.org/gdalinfo.html
http://fwtools.maptools.org/
http://www.maptools.org/ms4w/

MapServer Documentation, Release 6.4.1

Make sure that the font is properly referenced in the FONTSET lookup file.

See Also:

FONTSET

16.1.5 msLoadFontset(): Error opening fontset

Error when attempting to display a label.

This message tells you that MapServer cannot find the FONTSET specified in the Mapfile.

The FONTSET path is relative to the mapfile location.

See Also:

FONTSET

16.1.6 msLoadMap(): Failed to open map file

Error displayed when trying to display map image.

The message tells you that MapServer cannot find map file or has problems with the map file. Verify that you
have specified the correct path to the mapfile. Linux/Unix users should make sure that the web user has access
permissions to the mapfile path as well. Verify that the map file using shp2img to make sure that the syntax is
correct.

The error message states where MapServer thinks the mapfile is:

[MapServer Error]: msLoadMap(): (D:/ms4w/apps/blah/blah.map)
Failed to open map file D:/ms4w/apps/blah/blah.map

16.1.7 msProcessProjection(): no options found in ‘init’ file

Error displayed when attempting to use a specific projection.

The message tells you that the projection you’re trying to use isn’t defined in the epsg file. Open your epsg file in
a text editor and search for your projection to make sure that it exists.

On Windows, the default location of the epsg file is c:\proj\nad. MS4W users will find the epsg file in
\ms4w\proj\nad.

See Also:

PROJECTION and http://spatialreference.org

16.1.8 msProcessProjection(): No such file or directory

Error displayed when trying to refer to an epsg file.

The message tells you that MapServer cannot find the epsg file.

On Windows, the default location of the epsg file is c:\proj\nad. MS4W users will find the epsg file in
\ms4w\proj\nad.

Linux/Unix users should be careful to specify the correct case when referring to the epsg file, since filenames are
case sensitive on Linux/Unix. “init=epsg:4326” refers to the epsg filename, and therefore “init=EPSG:4326” will
not work because it will be looking for an EPSG file in uppercase.

16.1. Errors 673

http://spatialreference.org

MapServer Documentation, Release 6.4.1

Setting the location of the epsg file

There are a few options available if you need to set the epsg location:

1. Use a system variable (“environment variable” on windows) called “PROJ_LIB” and point it to your epsg
directory.

2. Use the mapfile parameter CONFIG to force the location of the epsg file. This parameter is specified at the
MAP level

See Also:

Mapfile

MAP
...
CONFIG "PROJ_LIB" "C:/somedir/proj/nad/"
...

END

3. Set an environment variable through your web server. Apache has a SetEnv directive that can set environ-
ment variables. Add something like the following to your Apache httpd.conf file:

SetEnv PROJ_LIB C:/somedir/proj/nad/

16.1.9 msProcessProjection(): Projection library error.major axis or radius = 0
not given

Error displayed when attempting to specify projection parameters.

Since MapServer 4.0, you are required to specify the ellipsoid for the projection. Omitting this ellipsoid parameter
in later MapServer versions will cause this error.

Valid Examples

4.0 and newer:

PROJECTION
"proj=latlong"
"ellps=WGS84"

END

before MapServer 4.0:

PROJECTION
"proj=latlong"

END

See Also:

PROJECTION and http://spatialreference.org

16.1.10 msQueryByPoint: search returned no results

Why do I get the message “msQueryByPoint(): Search returned no results. No matching record(s) found” when I
query a feature known to exists?

The query feature requires a TEMPLATE object in the CLASS object of your LAYER definition. The value points
to a html fragment using MapServer template syntax.

Example MapFile fragment:

674 Chapter 16. Errors

http://spatialreference.org

MapServer Documentation, Release 6.4.1

LAYER
NAME "Parcel9"
TYPE POLYGON
STATUS OFF
DATA "Parcels/area09_parcels"
CLASS
STYLE

OUTLINECOLOR 128 128 128
COLOR 153 205 255

END
TEMPLATE "templates/Parcels/area09_parcels.html"

END

HEADER "templates/Parcels/area09_parcels_header.html"
FOOTER "templates/Parcels/area09_parcels_footer.html"

END

Example Template:

<tr>
<td>[lrn]</td>
<td>[PIN]</td>

</tr>

The [lrn] is a special keyword that indicates the resulting line number which starts at 1. [PIN] is the name of a
feature attribute.

16.1.11 msReturnPage(): Web application error. Malformed template name

This error may occur when you are attempting to use a URL template for a query. The issue is that URL templates
are only allowed for query modes that return only one result (e.g. query or itemquery)

You can only use a URL template for a query in mode=query or mode=itemquery. If you try it with mode=nquery
or mode=itemnquery, you will get the error:

Content-type: text/html msReturnPage(): Web application error. Malformed template name

See Also:

MapServer CGI Controls

16.1.12 msSaveImageGD(): Unable to access file

Error displayed when attempting to display map image.

This error is displayed if MapServer cannot display the map image. There are several things to check:

• IMAGEPATH and IMAGEURL parameters in mapfile are valid

• In CGI mode, any IMAGEPATH and IMAGEURL variables set in the init pages are valid

• Linux/Unix users should verify that the web user has permissions to write to the IMAGEPATH

16.1.13 msWMSLoadGetMapParams(): WMS server error. Image Size out of
range, WIDTH and HEIGHT must be between 1 and 2048 pixels

Error that is returned / displayed when a user has requested a map image (via WMS) that exceeds the maximum
width or height that the service allows.

To increase the maximum map width and height for the service, use the MAXSIZE parameter of the MAP object.
Producing larger map images requires more processing power and more memory, so take care.

16.1. Errors 675

MapServer Documentation, Release 6.4.1

16.1.14 Unable to load dll (MapScript)

One of the dll-s could not be loaded that mapscript.dll depends on.

You can get this problem on Windows and in most cases it can be dedicated to a missing or an unloadable shared
library. The error message talks about mapscript.dll but surely one or more of the dll-s are missing that libmap.dll
depends on. So firstly you might want to check for the dependencies of your libmap.dll in your application
directory. You can use the Visual Studio Dependency Walker to accomplish this task. You can also use a file
monitoring tool (like SysInternal’s filemon) to detect the dll-s that could not be loaded. I propose to store all of
the dll-s required by your application in the application folder. If you can run the mapscript sample applications
properly your compilation might be correct and all of the dlls are available.

C#-specific information

You may find that the mapscript C# interface behaves differently for the desktop and the ASP.NET applications.
Although you can run the drawmap sample correctly you may encounter the dll loading problem with the ASP.NET
applications. When creating an ASP.NET project your application folder will be ‘Inetpubwwwroot[YourApp]bin’
by default. The host process of the application will aspnet_wp.exe or w3wp.exe depending on your system. The
application will run under a different security context than the interactive user (under the context of the ASPNET
user by default). When placing the dll-s outside of your application directory you should consider that the PATH
environment variable may differ between the interactive and the ASPNET user and/or you may not have enough
permission to access a dll outside of your application folder.

676 Chapter 16. Errors

CHAPTER

SEVENTEEN

FAQ

17.1 FAQ

17.1.1 Where is the MapServer log file?

See rfc28

17.1.2 What books are available about MapServer?

“Mapping Hacks” by Schuyler Erle, Rich Gibson, and Jo Walsh is available from O’Reilly.

“Web Mapping Illustrated” by Tyler Mitchell is available from O’Reilly. Introduces MapServer and many other
related technologies including, GDAL/OGR, MapScript, PostGIS, map projections, etc.

“MapServer: Open Source GIS Development” by Bill Kropla.

17.1.3 How do I compile MapServer for Windows?

See Compiling on Win32. Also, you can use the development libraries in OSGeo4W as a starting point instead of
building all of the dependent libraries yourself.

17.1.4 What do MapServer version numbers mean?

MapServer’s version numbering scheme is very similar to Linux’s. For example, a MapServer version number of
4.2.5 can be decoded as such:

• 4: Major version number. MapServer releases a major version every two to three years.

• 2: Minor version number. Increments in minor version number almost always relate to additions in func-
tionality.

• 5: Revision number. Revisions are bug fixes only. No new functionality is provided in revisions.

From a developer’s standpoint, MapServer version numbering scheme is also like Linux. Even minor version
numbers (0..2..4..6) relate to release versions, and odd minor versions (1..3..5..7) correspond to developmental
versions.

17.1.5 Is MapServer Thread-safe?

Q: Is MapServer thread-safe?

A: Generally, no (but see the next question). Many components of MapServer use static or global data that could
potentially be modified by another thread. Under heavy load these unlikely events become inevitable, and could
result in sporadic errors.

677

http://www.oreilly.com/catalog/mappinghks/
http://oreilly.com/catalog/webmapping
http://www.apress.com/book/bookDisplay.html?bID=443

MapServer Documentation, Release 6.4.1

Q: Is it possible to safely use any of MapServer in a multi-threaded application?

A: Some of it, yes, with care. Or with Python :) Programmers must either avoid using the unsafe components of
MapServer or carefully place locks around them. Python’s global interpreter lock immunizes against MapServer
threading problems; since no mapscript code ever releases the GIL all mapscript functions or methods are effec-
tively atomic. Users of mapscript and Java, .NET, mod_perl, or mod_php do not have this extra layer of protection.

A: Which components are to be avoided?

Q: Below are lists of unsafe and unprotected components and unsafe but locked components.

Unsafe:

• OGR layers: use unsafe CPL services

• Cartoline rendering: static data

• Imagemap output: static data

• SWF output: static data and use of unsafe msGetBasename()

• SVG output: static data

• WMS/WFS server: static data used for state of dispatcher

• Forcing a temporary file base (an obscure feature): static data

• MyGIS: some static data

Unsafe, but locked:

• Map config file loading: global parser

• Setting class and and layer filter expressions (global parser)

• Class expression evaluation (global parser)

• Setting map and layer projections (PROJ)

• Raster layer rendering and querying (GDAL)

• Database Connections (mappool.c)

• PostGIS support

• Oracle Spatial (use a single environment handle for connection)

• SDE support (global layer cache)

• Error handling (static repository of the error objects)

• WMS/WFS client connections: potential race condition in Curl initialization

• Plugin layers (static repository of the loaded dll-s)

Rather coarse locks are in place for the above. Only a single thread can use the global parser at a time, and only
one thread can access GDAL raster data at a time. Performance is exchanged for safety.

17.1.6 What does STATUS mean in a LAYER?

STATUS ON and STATUS OFF set the default status of the layer. If a map is requested, those layers will be
ON/OFF unless otherwise specified via the layers parameter. This is particularly the case when using MapScript
and MapServer’s built-in template mechanism, but is also useful as a hint when writing your own apps and setting
up the initial map view.

STATUS DEFAULT means that the layer is always on, even if not specified in the layers parameter. A layer’s
status can be changed from DEFAULT to OFF in MapScript, but other than that, it’s always on.

CGI turns everything off that is not “STATUS DEFAULT” off so all layers start from the same state (e.g. off) and
must be explicitly requested to be drawn or query. That common state made (at least in my mind) implementations

678 Chapter 17. FAQ

MapServer Documentation, Release 6.4.1

easier. I mean, if a layer “lakes” started ON the doing layer=lakes would turn it OFF. So I wanted to remove the
ambiguity of a starting state.

17.1.7 How can I make my maps run faster?

There are a lot of different approaches to improving the performance of your maps, aside from the obvious and
expensive step of buying faster hardware. Here are links to some individual howtos for various optimizations.

• Tuning your mapfile for performance

• Optimizing the performance of vector data sources

• Optimizing the performance of raster data sources

• Tileindexes for mosaicing and performance

Some general tips for all cases:

• First and foremost is hardware. An extra GB of RAM will give your map performance increases beyond
anything you’re likely to achieve by tweaking your data. With the price of RAM these days, it’s cheap and
easy to speed up every map with one inexpensive upgrade.

• Use the scientific method. Change one thing at a time, and see what effect it had. Try disabling all layers
and enabling them one at a time until you discover which layer is being problematic.

• Use shp2img program to time your results. This runs from the command line and draws an image of your
entire map. Since it’s run from the command line, it is immune to net lag and will give more consistent
measurements that your web browser.

17.1.8 What does Polyline mean in MapServer?

There’s confusion over what POLYLINE means in MapServer and via ESRI. In MapServer POLYLINE simply
means a linear representation of POLYGON data. With ESRI polyline means multi-line. Old versions of the
Shapefile techical description don’t even refer to polyline shapefiles, just line. So, ESRI polyline shapefiles are
just linework and can only be drawn and labeled as LINE layers. Those shapefiles don’t have feature closure
enforced as polygon shapefiles do which is why the distinction is so important. I suppose there is a better choice
than POLYLINE but I don’t know what it would be.

Note: The only difference between POLYLINE and LINE layers is how they are labeled.

17.1.9 What is MapScript?

MapScript is the scripting interface to MapServer, usually generated by SWIG (except in the case of PHP Map-
Script API). MapScript allows you to program with MapServer’s objects directly instead of interacting with
MapServer through its CGI and Mapfile.

17.1.10 Does MapServer support reverse geocoding?

No.

Reverse geocoding is an activity where you take a list of street features that you already have and generate postal
addresses from them. This kind of spatial functionality is provided by proprietary packages such as the ESRI suite
of tools, as well as services such as those provided by GDT. MapServer is for map rendering, and it does not
provide for advanced spatial operations such as this.

17.1. FAQ 679

MapServer Documentation, Release 6.4.1

17.1.11 Does MapServer support geocoding?

No.

Geocoding is an activity where you take a list of addresses and generate lat/lon points for them. This kind of spatial
functionality is provided by proprietary packages such as the ESRI suite of tools, as well as services such as those
provided by GDT. MapServer is for map rendering, and it does not provide for advanced spatial operations such
as this.

If you are using MapScript, there is a free geocder available through XMLRPC and SOAP at http://geocoder.us
. You could hook you application up to use this service to provide lat/lon pairs for addresses, and then use
MapServer to display those points.

17.1.12 How do I set line width in my maps?

In the current MapServer version, line width is set using the STYLE parameter WIDTH. For a LINE layer, lines
can be made red and 3 pixels wide by using the following style in a CLASS.

STYLE
COLOR 255 0 0
WIDTH 3

END

In earlier versions of MapServer , you could set the symbol for the LAYER to ‘circle’ and then you can set the
symbol SIZE to be the width you want. A ‘circle’ symbol can be defined as

SYMBOL
NAME ’circle’
TYPE ELLIPSE
FILLED TRUE
POINTS 1 1 END

END

17.1.13 Why do my JPEG input images look crappy via MapServer?

You must be using an old version of MapServer (where GD was the default library for rendering).

Newer versions of MapServer use AGG for rendering, and the default output formats is 24 bit colour, so there
should not be a problem.

The default output format for MapServer with GD was 8bit pseudo-colored PNG or GIF. Inherently there will be
some color degradation in converting a 24bit image (16 million colors) image into 8bit (256 colors).

With GD output, MapServer used quite a simple method to do the transformation, converting pixels to the nearest
color in a 175 color colorcube. This would usually result in blotchy color in a fairly smoothly varying image.

For GD, solutions used to be:

• Select 24bit output. This might be as easy as “IMAGETYPE JPEG” in your MAP section.

• Enable dithering (PROCESSING “DITHER=YES”) to produce a better color appearance.

• Preprocess your image to 8bit before using it in MapServer with an external application like the GDAL
rgb2pct.py script.

For more information review the Raster Data.

17.1.14 Which image format should I use?

Although MapScript can generate the map in any desired image format it is sufficient to only consider the three
most prevalent ones: JPEG, PNG, and GIF.

680 Chapter 17. FAQ

http://geocoder.us

MapServer Documentation, Release 6.4.1

JPEG is an image format that uses a lossy compression algorithm to reduce an image’s file size and is mostly
used when loss of detail through compression is either not noticeable or negligible, as in most photos. Maps on
the other hand mainly consist of fine lines and areas solidly filled in one colour, which is something JPEG is not
known for displaying very well. In addition, maps, unless they include some aerial or satellite imagery, generally
only use very few different colours. JPEG with its 24bit colour depth capable of displaying around 16.7 million
colours is simple not suitable for this purpose. GIF and PNG however use an indexed colour palette which can be
optimized for any number (up to 256) of colours which makes them the perfect solution for icons, logos, charts
or maps. The following comparison (generated file sizes only; not file generation duration) will therefore only
include these two file formats:

Table 17.1: GIF vs. PNG vs. PNG24 Generated Map File Sizes

GIF PNG PNG24
Vector Data only 59kb 26kb 69kb
Vector Data & Satellite Image coloured 156kb 182kb 573kb
Vector Data & Satellite Image monochrome 142kb 134kb 492kb

(results based on an average 630x396 map with various colours, symbols, labels/annotations etc.)

Although GIF shows a quantitative as well as qualitative advantage over PNG when generating maps that contain
full coloured remote sensing imagery, PNG is the clear quantitative winner in terms of generated file sizes for
maps with or without additional monochrome imagery and should therefore be the preferred image format. If the
mapping application however can also display fullcolour aerial or satellite imagery, the output file format can be
changed dynamically to either GIF or even PNG24 to achieve the highest possible image quality.

17.1.15 Why doesn’t PIL (Python Imaging Library) open my PNGs?

PIL does not support interlaced PNGs at this time (no timetable on when it actually will either). To be able to read
PNGs in PIL, they must not be interlaced. Modify your OUTPUTFORMAT with a FORMATOPTION like so:

OUTPUTFORMAT
NAME png
DRIVER "GD/PNG"
MIMETYPE "image/png"
IMAGEMODE RGB
EXTENSION "png"
FORMATOPTION "INTERLACE=OFF"

END

17.1.16 Why do my symbols look poor in JPEG output?

When I render my symbols to an 8bit output (PNG, GIF) they look fine, but in 24bit jpeg output they look very
blocky and gross.

You must be using an old version of MapServer . This should not be problem with newer versions. The following
explains the old (GD) behaviour.

In order to render some classes of symbols properly in 24bit output, such as symbols from true type fonts, it is
necessary to force rendering to occur in RGBA. This can be accomplished by including the “TRANSPARENCY
ALPHA” line in the layer definition. Don’t use this unnecessarily as there is a performance penalty.

This problem also affects PNG24 output or any RGB output format. 8bit (PC256) or RGBA output types are
already ok.

17.1.17 How do I add a copyright notice on the corner of my map?

You can use an inline feature, with the FEATURE object, to make a point on your map. Use the TEXT parameter
of the FEATURE object for the actual text of the notice, and a LABEL object to style the notice.

17.1. FAQ 681

http://www.pythonware.com/products/pil/

MapServer Documentation, Release 6.4.1

Example Layer

LAYER
NAME "copyright"
STATUS on
TYPE point
TRANSFORM ll # set the image origin to be lower left
UNITS PIXELS # sets the units for the feature object
FEATURE
POINTS

60 -10 # the offset (from lower left) in pixels
END # Points
TEXT "© xyz company 2006" # this is your displaying text

END # Feature
CLASS
STYLE # has to have a style
END # style
LABEL # defines the font, colors etc. of the text
FONT "times"
TYPE truetype
SIZE 8
BUFFER 1
COLOR 0 0 0
FORCE true
STYLE

GEOMTRANSFORM ’labelpoly’
COLOR 255 255 255 # white

END # Style
END # Label

END # Class
END # Layer

682 Chapter 17. FAQ

MapServer Documentation, Release 6.4.1

Result

17.1.18 How do I have a polygon that has both a fill and an outline with a width?

How do I have a polygon that has both a fill and an outline with a width? Whenever I put both a color (fill) and an
outlinecolor with a width on a polygon within a single STYLE, the outline width isn’t respected.

For historical reasons, width has two meanings within the context of filling polygons and stroke widths for the
outline. If a polygon is filled, then the width defines the width of the symbol inside the filled polygon. In this
event, the outline width is disregarded, and it is always set to 1. To acheive the effect of both a fill and an outline
width, you need to use two styles in your class.

STYLE # solid fill
COLOR 255 0 0

END
STYLE # thick outline

OUTLINECOLOR 0 0 0
WIDTH 3

END

17.1.19 How can I create simple antialiased line features?

With AGG (used in recent MapServer version), antialiased lines is the default, and can’t be turned off.

With GD, the easiest way to produce antialiased lines is to:

• use a 24-bit output image type (IMAGEMODE RGB (or RGBA))

• set TRANSPARENCY ALPHA in the layer using antialiased lines

• set ANTIALIAS TRUE in the STYLE element of the CLASS with antialiased lines

The following mapfile snippets enable antialiased county borders for GD:

17.1. FAQ 683

MapServer Documentation, Release 6.4.1

...
IMAGETYPE "png24"
...
OUTPUTFORMAT

NAME "png24"
DRIVER "GD/PNG"
MIMETYPE "image/png"
IMAGEMODE RGB
EXTENSION "png"

END
...
LAYER

NAME "counties"
TYPE line
STATUS default
DATA "bdry_counln2"
TRANSPARENCY alpha
SYMBOLSCALE 5000000
CLASS
STYLE

WIDTH 3
COLOR 1 1 1
ANTIALIAS true

END
END

END
...

Note: The bdry_counln2 shapefile referenced in the counties layer is a line shapefile. A polygon shapefile
could be substituted with roughly the same results, though owing to the nature of shapefiles each border would be
rendered twice and the resulting output line would likely appear to be slightly thicker. Alternatively, one could
use a polygon shapefile, set TYPE to POLYGON, and use OUTLINECOLOR in place of COLOR in the STYLE
element.

Note: You can tweak the combination of STYLE->WIDTH and SYMBOLSCALE to modify line widths in your
output images.

See Also:

Cartoline symbols can be used to achieve fancier effects.

17.1.20 Which OGC Specifications does MapServer support?

See: MapServer OGC Specification support.

17.1.21 Why does my requested WMS layer not align correctly?

Requesting a layer from some ArcIMS WMS connectors results in a map with misalgned data (the aspect ratio of
the pixels looks wrong).

Some ArcIMS sites are not set up to stretch the returned image to fit the requested envelope by default. This
results in a map with data layers that overlay well in the center of the map, but not towards the edges. This can be
solved by adding “reaspect=false” to the request (by tacking it on to the connection string).

For example, if your mapfile is in a projection other than EPSG:4326, the following layer will not render correctly:

LAYER
NAME "hillshade"
TYPE RASTER

684 Chapter 17. FAQ

MapServer Documentation, Release 6.4.1

STATUS OFF
TRANSPARENCY 70
CONNECTIONTYPE WMS
CONNECTION "http://gisdata.usgs.net:80/servlet19/com.esri.wms.Esrimap/USGS_WMS_NED?"
PROJECTION

"init=epsg:4326"
END
METADATA

"wms_srs" "EPSG:4326"
"wms_title" "US_NED_Shaded_Relief"
"wms_name" "US_NED_Shaded_Relief"
"wms_server_version" "1.1.1"
"wms_format" "image/png"

END
END

Adding “reaspect=false” to the connection string solves the problem:

LAYER
NAME "hillshade"
TYPE RASTER
STATUS OFF
TRANSPARENCY 70
CONNECTIONTYPE WMS
CONNECTION "http://gisdata.usgs.net:80/servlet19/com.esri.wms.Esrimap/USGS_WMS_NED?reaspect=false"
PROJECTION

"init=epsg:4326"
END
METADATA

"wms_srs" "EPSG:4326"
"wms_title" "US_NED_Shaded_Relief"
"wms_name" "US_NED_Shaded_Relief"
"wms_server_version" "1.1.1"
"wms_format" "image/png"

END
END

17.1.22 When I do a GetCapabilities, why does my browser want to download
mapserv.exe/mapserv?

A beginner question here... I’m new to MS and to Apache. I’ve got MS4W up and running with the Itasca demo.
Now I want to enable it as a WMS server. mapserv -v at the command line tells me it supports WMS_SERVER.
When I point my browser to it, my browser just wants to download mapserv.exe!

What am I missing?

Here is the URL I’m using to issue a GetCapabilities WMS request: http://localhost/cgi-
bin/mapserv.exe?map=../htdocs/itasca/demo.map&SERVICE=WMS&VERSION=1.1.1&REQUEST=GetCapabilities

The OGC:WMS 1.1.0 and 1.1.1 specifications (which are both supported by MapServer) state that, for GetCapabil-
ities responses, the OGC:WMS server returns a specific MIME type (i.e. application/vnd.ogc.xml (see subclause
6.5.3 of OGC:WMS 1.1.1.

A MIME type is passed from the web server to the client (in your case, a web browser), from which a client can
decide how to process it.

Example 1: if using a web browser, if a web server returns an HTTP Header of “Content-type:image/png”, then
the web browser will know that this is a PNG image and display it accordingly.

Example 2: if using a web browser, if a web server returns an HTTP Header of “Content-type:text/html”, then the
web browser will know that this is an HTML page and display it accordingly (i.e. tables, divs, etc.)

17.1. FAQ 685

http://localhost/cgi-bin/mapserv.exe?map=../htdocs/itasca/demo.map&SERVICE=WMS&VERSION=1.1.1&REQUEST=GetCapabilities
http://localhost/cgi-bin/mapserv.exe?map=../htdocs/itasca/demo.map&SERVICE=WMS&VERSION=1.1.1&REQUEST=GetCapabilities
http://portal.opengeospatial.org/files/?artifact_id=1081&version=1&format=pdf

MapServer Documentation, Release 6.4.1

Basically, what is happening is that the OGC:WMS is returning, in the headers of the HTTP response, a MIME
type which your web browser does not understand, which usually prompts a dialog box on whether to open or
download the content (i.e. Content-type:application/vnd.ogc.wms_xml).

You could configure your web browser to handle the application/vnd.ogc.wms_xml MIME type a certain way (i.e.
open in Notepad, etc.).

17.1.23 Why do my WMS GetMap requests return exception using MapServer
5.0?

Before upgrading to MapServer 5.0, I was able to do quick GetMap tests in the form of:
http://wms.example.com/wms?service=WMS&version=1.1.1&request=GetMap&layers=foo

Now when I try the same test, MapServer WMS returns an XML document saying something about missing
required parameters. What’s going on here?

This was a major change for WMS Server support in MapServer 5.0. MapServer WMS Server GetMap requests
now require the following additional parameters:

• srs

• bbox

• width

• height

• format

• styles

Note: These parameters were always required in all versions of the WMS specification, but MapServer previously
had not required them in a client request (even though most OGC WMS clients would issue them anyway to be
consistent with the WMS spec).

The request below now constitutes a valid GetMap request:

http://wms.example.com/wms?service=WMS&version=1.1.1&request=GetMap&layers=foo&srs=EPSG:4326&bbox=-180,-90,180,90&format=image/png&width=400&height=300&styles=default

Which is consistent with the WMS specification.

More information on these parameters can be found in the WMS Server and the OGC WMS 1.1.1 specification

For more detailed information, see ticket 1088

Warning: STYLES, though a required WMS parameter, is now optional again in MapServer. For more
detailed information, see ticket 2427

17.1.24 Using MapServer 6.0, why don’t my layers show up in GetCapabilities
responses or are not found anymore?

MapServer 6.0 introduces the option of hiding layers against OGC Web Service requests. OGC Web Services can
provide powerful access to your geospatial data. It was decided to disable layer level request access as a default.
See rfc67 provides a full explanation of the changes and implications.

To enable pre-6.0 behaviour, you can add the following to the WEB object’s METADATA section in your mapfile:

"ows_enable_request" "*"

This will enable access of all layers to all OGC Web Service requests.

686 Chapter 17. FAQ

http://wms.example.com/wms?service=WMS&version=1.1.1&request=GetMap&layers=foo
http://portal.opengeospatial.org/files/?artifact_id=1081&version=1&format=pdf
http://trac.osgeo.org/mapserver/ticket/1088
http://trac.osgeo.org/mapserver/ticket/2427#comment:2

MapServer Documentation, Release 6.4.1

17.1.25 Where do I find my EPSG code?

There is a text file “epsg” in your PROJ4 installation (e.g. “/usr/local/share/proj/epsg”) which contain the EPSG
information used by PROJ4. In Windows, this is often located in C:\proj\nad or is found with an environment
variable called PROJ_LIB.

http://spatialreference.org allows you to search for EPSG codes.

You can also have a look at: http://ocean.csl.co.uk

More information to EPSG: http://www.epsg.org

More information to PROJ4: http://trac.osgeo.org/proj

17.1.26 How can I reproject my data using ogr2ogr?

With ogr2ogr of course! ogr2ogr is a powerful utility that will transform the projections of your shapefiles when
passed the appropriate parameters. In my case, I was using MapServer to serve data in RI State Plane Feet. In
order to do so, the data had to first be converted to meters. Here is the command I used:

ogr2ogr -t_srs EPSG:32130 output.shp input.shp

Since my data already had a projection defined, I did not need to explicitly state a source projection. This command
uses the EPSG definition for NAD83 Rhode Island (32130) and performs the feet to meters conversion.

Now say my data wasn’t already projected? Here’s how we deal with that:

ogr2ogr -s_srs "+proj=tmerc +lat_0=41.08333333333334 +lon_0=-71.5 +k=0.999994 +x_0=100000 +y_0=0 +ellps=GRS80 +datum=NAD83 +to_meter=0.3408 +no_defs" -t_srs EPSG:32130 output.shp input.shp

Let’s examine what is going on here:

The -s_srs parameter explicitly defines a projection for the data. The parameters used here were taken out of the
EPSG definition (in this case, 32130) in the epsg file(see the projection FAQ for more details on locating EPSG
definitions). The entry for RI in the epsg file is as follows:

NAD83 / Rhode Island
<32130> +proj=tmerc +lat_0=41.08333333333334 +lon_0=-71.5 +k=0.999994 +x_0=100000 +y_0=0 +ellps=GRS80 +datum=NAD83 +units=m +no_defs no_defs <>

You can see how the definition in the initial command is formulated. Notice that the “+units=m” parameter has
been changed to “+to_meter=0.3408”. This is important for the conversion. Where did the value of 0.3408 come
from you ask? From the EPSG file! It has many goodies buried in it so by simply running ‘grep “to_meter” epsg’
you can refresh your memory if you need to.

The next parameter in the command is “-t_srs EPSG:32130”. This command tells ogr2ogr to transform the data
to the EPSG code of 32130. After this is declared, all you need to do is declare a file name for your new shape file
and to set which file is being used as the input (note: make sure you don’t confuse the order of these two).

Hit enter, bombs away, and enjoy your new data in meters!

17.1.27 How can I help improve the documentation on this site?

New documentation material and corrections to existing documentation are definitely very welcome. These con-
tributions are handled through the same issue tracker used to track software bugs and enhancements.

Follow the directions for submitting bugs at: http://www.mapserver.org/development/bugs.html. When creating
a ticket, in the Component field, select MapServer Documentation. If our ticket pertains to a specific web page,
please include the URL to that page.

If you have tips or examples that don’t really fit the definition of documentation, a good place to put them is the
MapServer wiki at: https://github.com/mapserver/mapserver/wiki

17.1. FAQ 687

http://spatialreference.org
http://ocean.csl.co.uk
http://www.epsg.org
http://trac.osgeo.org/proj
http://www.mapserver.org/development/bugs.html
https://github.com/mapserver/mapserver/wiki

MapServer Documentation, Release 6.4.1

17.1.28 What’s with MapServer’s logo?

The MapServer logo illustrates the confluence of the Minnesota and Mississippi rivers, quite near to the home of
the St. Paul Campus of the University of Minnesota, which was the birthplace of MapServer.

688 Chapter 17. FAQ

http://en.wikipedia.org/wiki/Minnesota_River
http://en.wikipedia.org/wiki/Mississippi_River
http://en.wikipedia.org/wiki/University_of_Minnesota#St._Paul_campus
http://en.wikipedia.org/wiki/University_of_Minnesota
http://lists.osgeo.org/pipermail/mapserver-dev/2009-December/009435.html

CHAPTER

EIGHTEEN

COPYRIGHT

18.1 License

Copyright (c) 1996-2008 Regents of the University of Minnesota.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files (the “Software”), to deal in the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies of this Software or works
derived from this Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IM-
PLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

18.2 Credits

Major funding for the development of MapServer has been provided by NASA through cooperative agreements
with the University of Minnesota, Department of Forest Resources. Additional enhancements have been made
by the State of Minnesota, Department of Natural Resources and the Land Management Information Center. We
would like to acknowledge other major contributions as well:

• MapServer and MapScript have been developed by Stephen Lime.

• Raster access module developed by Pete Olson and Stephen Lime.

• PHP/MapScript module was developed by DM Solutions and is maintained by MapGears.

• Portions copyright (c) 1998 State of Minnesota, Land Management Information Center.

• Ongoing maintenance and support frequently provided by the US Army Corps of Engineers

• Several version 6.2 features funded through Météo-France

689

http://www.dmsolutions.ca
http://mapgears.com

MapServer Documentation, Release 6.4.1

690 Chapter 18. Copyright

INDEX

Symbols
.NET

Compilation, MapScript, 45
24bit

Raster, 413
8bit

Raster, 418

A
AGG, 667
Aggregate functions

Cluster, 121
ALIGN

LABEL, 148
SCALEBAR, 175

all
GEOMTRANSFORM smoothsia, 114

ANCHORPOINT
SYMBOL, 183

and
Expressions, 131

ANGLE
LABEL, 148
MAP, 166
STYLE, 176

angle
GEOMTRANSFORM smoothsia, 114
WMS Vendor specific parameters, 497

annotation
LAYER TYPE, 160

ANTIALIAS
LABEL, 149
STYLE, 176
SYMBOL, 183

Apache
MS_MAPFILE, 485
ReWriteRule, 484
SetEnvIf, 485

Apache variables, 655
API

MapScript, 208
area

Expressions, 135
Area symbols, 78
Arithmetic expressions

Expressions, 132

Arithmetic operations
Expressions, 134

ASP script
IIS, 485

Assymetrical line styling, 77
Attributes

Expressions, 128
AUTO

LAYER STYLEITEM, 159
Axis order

Map projections, 487

B
BACKGROUNDCOLOR

CLASS, 116
SCALEBAR, 175
STYLE, 176

BANDS
LAYER PROCESSING, 414

Batch scripting, 646
bbox

GEOMTRANSFORM, 103
STYLE GEOMTRANSFORM, 178

bevel
STYLE LINEJOIN, 179

beyond
Expressions, 133

bitmap
LABEL TYPE, 153

BLOCKXSIZE
OUTPUTFORMAT FORMATOPTION, 171

BLOCKYSIZE
OUTPUTFORMAT FORMATOPTION, 171

blue, 410
Raster query, 417

Boolean values
MapScript Constants, 211

browse
CGI mode, 652

BROWSEFORMAT
WEB, 202

BUFFER
CLUSTER, 120
LABEL, 149

buffer
CGI, 651

691

MapServer Documentation, Release 6.4.1

Expressions, 135
GEOMTRANSFORM, 110
LAYER GEOMTRANSFORM, 155
STYLE GEOMTRANSFORM, 178

Build
MapScript PHP, 41

butt
STYLE LINECAP, 179

BYTE
OUTPUTFORMAT IMAGEMODE, 172

C
Cartographical symbols, 61
cartoline

SYMBOL TYPE, 184
Cascading requests

WMS, 498
centroid

GEOMTRANSFORM, 104
STYLE GEOMTRANSFORM, 178

CGI, 51, 667
buffer, 651
classgroup, 651
context, 651
icon, 651
id, 651
img, 651
imgbox, 651
imgext, 651
imgshape, 651
imgsize, 652
imgxy, 652
layer, 652
layers, 652
map, 652
mapext, 652
mapshape, 652
mapsize, 652
mapxy, 652
maxx, 652
maxy, 652
minx, 652
miny, 652
mode, 652
mode browse, 652
mode coordinate, 653
mode featurenquery, 652
mode featurequery, 652
mode indexquery, 652
mode itemfeaturenquery, 652
mode itemfeaturequery, 652
mode itemnquery, 652
mode itemquery, 652
mode legend, 652
mode legendicon, 652
mode map, 653
mode nquery, 653
mode query, 653

mode reference, 653
mode scalebar, 653
mode zoomin, 653
mode zoomout, 653
qformat, 653
qitem, 653
qlayer, 653
qstring, 653
queryfile, 653
ref, 653
refxy, 653
savequery, 653
scaledenom, 653
searchmap, 653
shapeindex, 654
slayer, 654
tileindex, 654
zoom, 654
zoomdir, 654
zoomsize, 654

CGI_CONTEXT_URL
MAP CONFIG, 166

Change
URL, 484

Change map file parameters, 654
CHARACTER

SYMBOL, 183
Character encoding, 128
chart

LAYER TYPE, 160
circle

LAYER TYPE, 160
CLASS, 116

BACKGROUNDCOLOR, 116
COLOR, 116
DEBUG, 118
EXPRESSION, 118
GROUP, 118
KEYIMAGE, 118
LABEL, 119
LAYER, 153
MAXSCALEDENOM, 119
MAXSIZE, 119
MINSCALEDENOM, 119
MINSIZE, 119
NAME, 119
OUTLINECOLOR, 119
SIZE, 119
STATUS, 119
STYLE, 119
SYMBOL, 119
TEMPLATE, 119
TEXT, 119
VALIDATION, 119

class
Raster query, 416

Classes
MapScript, 216

692 Index

MapServer Documentation, Release 6.4.1

MapScript PHP, 252
MapScript Python, 292

CLASSGROUP
LAYER, 153

classgroup
CGI, 651

CLASSITEM
EXPRESSION, 129
LAYER, 153

classObj
MapScript, 216
MapScript PHP, 252

Cloning
MapScript Layer, 298
MapScript Mapfile, 297

CLOSE_CONNECTION
LAYER PROCESSING, 158, 365

CLUSTER, 119
BUFFER, 120
FILTER, 120
GROUP, 120
LAYER, 153
MAXDISTANCE, 120
REGION, 120

Cluster, 120
Aggregate functions, 121
Feature attributes, 121, 162
FeatureCount, 121
Group, 121

CLUSTER_GET_ALL_SHAPES
LAYER PROCESSING, 120

clusterObj
MapScript PHP, 254

Co
MapScript Constants, 213

COLOR
CLASS, 116
LABEL, 149
QUERYMAP, 174
REFERENCE, 175
SCALEBAR, 175
STYLE, 177

COLOR_MATCH_THRESHOLD
LAYER PROCESSING, 414

colorObj
MapScript, 218
MapScript PHP, 254

Combining symbols, 68
Comments, 205
commify

Expressions, 134
Compilation

MapScript .NET, 45
Win32, 33

COMPRESS
OUTPUTFORMAT FORMATOPTION, 171

COMPRESSION
OUTPUTFORMAT FORMATOPTION, 171

CONFIG
CGI_CONTEXT_URL, MAP, 166
MAP, 166
MS_ENCRYPTION_KEY, MAP, 166
MS_ERRORFILE, MAP, 166
MS_NONSQUARE, MAP, 166
ON_MISSING_DATA, MAP, 166
PROJ_LIB, MAP, 167

CONNECTION
JOIN, 143
LAYER, 153

Connection Pooling
OGR, 377

CONNECTIONTYPE
contour, 345
contour, LAYER, 153
csv, JOIN, 143
JOIN, 143
LAYER, 153
local, LAYER, 153
mysql, JOIN, 143
ogr, LAYER, 153
oraclespatial, LAYER, 153
plugin, LAYER, 153
postgis, LAYER, 153
postgresql, JOIN, 143
sde, LAYER, 153
union, LAYER, 153
uvraster, LAYER, 153
wfs, LAYER, 153
wms, LAYER, 153

Constants
Boolean values, MapScript, 211
Co, MapScript, 213
DB connection types, MapScript, 213
Error return codes, MapScript, 215
File types, MapScript, 213
Font types, MapScript, 211
Image modes, MapScript, 214
Image types, MapScript, 214
Join types, MapScript, 213
Label positions, MapScript, 211
Label size, MapScript, 212
Layer types, MapScript, 211
Limiters, MapScript, 214
Line join types, MapScript, 213
MapScript, 210
MapScript PHP, 251
Measured shape types, MapScript, 212
MS_VERSION, MapScript, 211
Query types, MapScript, 212
Querymap styles, MapScript, 213
Return codes, MapScript, 214
Shape types, MapScript, 212
Shapefile types, MapScript, 212
Status values, MapScript, 211
Symbol types, MapScript, 214
Units, MapScript, 211

Index 693

MapServer Documentation, Release 6.4.1

contains
Expressions, 133

context
CGI, 651

contour, 344
CONNECTIONTYPE, 345
LAYER CONNECTIONTYPE, 153

coordinate
CGI mode, 653

CP1252
ENCODING, 127

CPL_DEBUG
Debugging, 616

crosses
Expressions, 133

csv
JOIN CONNECTIONTYPE, 143

CURL_CA_BUNDLE
Environment variables, 663

D
DATA

LAYER, 154
Databases

Optimization, 632
DATAPATTERN

MAP, 167
DB connection types

MapScript Constants, 213
dd

LAYER UNITS, 161
MAP UNITS, 169

DEBUG
CLASS, 118
LAYER, 154
MAP, 167

Debug levels
Debugging, 614

Debugging, 613
CPL_DEBUG, 616
Debug levels, 614
GDB, 620
MS_DEBUGLEVEL, 615
MS_ERRORFILE, 614
ON_MISSING_DATA, 618
PHP Mapscript, 620
PROJ_DEBUG, 616
shp2img, 616

Default value
Run-time substitution, 657

DEFRESOLUTIONx
MAP, 168

difference
Expressions, 135

Dimension requests
WMS Server, 516

disjoint
Expressions, 133

DITHER
LAYER PROCESSING, 414

Download
MapScript PHP, 41

drawEPP(): EPPL7 support is not available
Error, 671

DRIVER
OUTPUTFORMAT, 170

DUMP
LAYER, 155

dwithin
Expressions, 133

E
Element support

SLD, 546
ellipse

SYMBOL TYPE, 184
Ellipse symbols, 62
EMPTY

WEB, 202
ENCODING

CP1252, 127
EUC-JP, 127
ISO-8859-1, 127
ISO-8859-2, 127
LABEL, 125, 150
Shift-JIS, 127
TIS-620, 127
UTF-8, 127

Encrypting, 635
Encryption key, 635
end

GEOMTRANSFORM, 105
STYLE GEOMTRANSFORM, 178

Environment variable
MS_TEMPPATH, 203

Environment variables, 663
CURL_CA_BUNDLE, 663
MS_DEBUGLEVEL, 663
MS_ENCRYPTION_KEY, 663
MS_ERRORFILE, 663
MS_MAP_NO_PATH, 664
MS_MAP_PATTERN, 664
MS_MAPFILE, 664
MS_MAPFILE_PATTERN, 664
MS_MODE, 664
MS_OPENLAYERS_JS_URL, 665
MS_TEMPPATH, 665
MS_XMLMAPFILE_XSLT, 665
PROJ_LIB, 665

EPSG, 667
eq

Expressions, 131–133, 135
ERROR

WEB, 202
Error

drawEPP(): EPPL7 support is not available, 671

694 Index

MapServer Documentation, Release 6.4.1

loadLayer(): Unknown identifier. Maximum num-
ber of classes reached, 671

loadMapInternal(): Given map extent is invalid,
671

msGetLabelSize(): Requested font not found, 672
msLoadFontset(): Error opening fontset, 673
msLoadMap(): Failed to open map file, 673
msProcessProjection(): no options found in ’init’

file, 673
msProcessProjection(): No such file or directory,

673
msProcessProjection(): Projection library er-

ror.major axis or radius = 0 not given, 674
msQueryByPoint: search returned no results, 674
msReturnPage(): Web application error. Mal-

formed template name, 675
msSaveImageGD(): Unable to access file, 675
msWMSLoadGetMapParams(): WMS server er-

ror, 675
Unable to load dll, 675

Error return codes
MapScript Constants, 215

errorObj
MapScript, 219
MapScript PHP, 254

Errors, 671
EUC-JP

ENCODING, 127
Exception handling

MapScript Python, 294
EXPRESSION

CLASS, 118
CLASSITEM, 129
LABEL, 150

expression
LAYER GEOMTRANSFORM, 155
STYLE GEOMTRANSFORM, 178

Expression types, 129
Expressions, 127

and, 131
area, 135
Arithmetic expressions, 132
Arithmetic operations, 134
Attributes, 128
beyond, 133
buffer, 135
commify, 134
contains, 133
crosses, 133
difference, 135
disjoint, 133
dwithin, 133
eq, 131–133, 135
fromtext, 135
ge, 132, 136
gt, 132, 136
in, 132
intersects, 133

le, 132, 136
length, 134
Logical expressions, 131
lt, 132, 136
MapServer expressions, 130
ne, 132, 135
not, 131
or, 131
overlaps, 133
Regular expression comparison, 129
round, 134
Spatial expressions, 133
Spatial functions, 134
String comparison, 129
String expressions, 131
String functions, 134
String operations, 133
Temporal expressions, 135
tostring, 134
touches, 133
within, 133

expressions
GEOMTRANSFORM, 109

EXTENSION
OUTPUTFORMAT, 170

EXTENT
LAYER, 155
MAP, 168
REFERENCE, 175

EXTENT_PRIORITY
LAYER PROCESSING, 414

External overviews
Raster, 419

F
FastCGI, 622
FEATURE, 136

ITEMS, 136
LAYER, 155
OUTPUTFORMAT IMAGEMODE, 172
POINTS, 136
TEXT, 136
WKT, 136

Feature attributes
Cluster, 121, 162

FeatureCount
Cluster, 121

featurenquery
CGI mode, 652

featurequery
CGI mode, 652

feet
LAYER SIZEUNITS, 159
LAYER UNITS, 161
MAP UNITS, 169
SCALEBAR UNITS, 176

File format
FONTSET, 137

Index 695

MapServer Documentation, Release 6.4.1

File management, 647
File paths, 205, 647
File placement, 647
File types

MapScript Constants, 213
FILLED

SYMBOL, 184
FILTER

CLUSTER, 120
LAYER, 155
Run-time substitution, 657

Filter Encoding, 667
Filter encoding

Limitations, WFS, 541
OGC conformance tests, WFS, 543
Supported features, WFS, 538
Units of measure, WFS, 538
WFS, 537

FILTERITEM
LAYER, 155

FLOAT32
OUTPUTFORMAT IMAGEMODE, 172

FONT
LABEL, 150
SYMBOL, 184

Font types
MapScript Constants, 211

Fonts
Optimization, 628

FONTSET, 136
File format, 137

fontsetObj
MapScript, 219

FOOTER
JOIN, 143
LAYER, 155
WEB, 202

FORCE
LABEL, 150

FORMATOPTION
BLOCKXSIZE, OUTPUTFORMAT, 171
BLOCKYSIZE, OUTPUTFORMAT, 171
COMPRESS, OUTPUTFORMAT, 171
COMPRESSION, OUTPUTFORMAT, 171
GAMMA, OUTPUTFORMAT, 170, 172
GEO_ENCODING, OUTPUTFORMAT, 171
INTERLACE, OUTPUTFORMAT, 171
INTERLEAVE, OUTPUTFORMAT, 171
METADATA_ITEM, OUTPUTFORMAT, 171
NULLVALUE, OUTPUTFORMAT, 172
OUTPUTFORMAT, 170
PALETTE, OUTPUTFORMAT, 171
PALETTE_FORCE, OUTPUTFORMAT, 171
QUALITY, OUTPUTFORMAT, 170
QUANTIZE_COLORS, OUTPUTFORMAT, 171
QUANTIZE_FORCE, OUTPUTFORMAT, 171
TILED, OUTPUTFORMAT, 171

Formats

OGR, 371
FreeType, 667
FROM

JOIN, 143
fromtext

Expressions, 135
Functions

MapScript, 215
MapScript PHP, 251

G
GAMMA

OUTPUTFORMAT FORMATOPTION, 170, 172
GAP, 69

STYLE, 177
GD, 667
GDAL, 667
gdaltindex, 630
GDB

Debugging, 620
ge

Expressions, 132, 136
generalize

GEOMTRANSFORM, 111
LAYER GEOMTRANSFORM, 155
STYLE GEOMTRANSFORM, 178

GEO_ENCODING
OUTPUTFORMAT FORMATOPTION, 171

Geographical reference systems, 172
Geometry transformations, 103
GEOMTRANSFORM, 103

bbox, 103
bbox, STYLE, 178
buffer, 110
buffer, LAYER, 155
buffer, STYLE, 178
centroid, 104
centroid, STYLE, 178
end, 105
end, STYLE, 178
expression, LAYER, 155
expression, STYLE, 178
expressions, 109
generalize, 111
generalize, LAYER, 155
generalize, STYLE, 178
labelpnt, 108
labelpnt, STYLE, 178
labelpoly, 108
labelpoly, STYLE, 178
LAYER, 155
simpifypt, STYLE, 178
simplify, 112
simplify, LAYER, 155
simplify, STYLE, 178
simplifypt, 112
simplifypt, LAYER, 155
smoothsia, 114

696 Index

MapServer Documentation, Release 6.4.1

smoothsia all, 114
smoothsia angle, 114
smoothsia, LAYER, 155
smoothsia, STYLE, 178
start, 105
start, STYLE, 178
STYLE, 178
vertices, 107
vertices, STYLE, 178

Georeferencing
Raster, 419

GEOS, 667
Geospatial

PDF, 171
GetLegendGraphic

WMS, 483
GetMap

WMS, 482
GETSHAPE_STYLE_ITEMS

LAYER PROCESSING, 159
GML, 667

WFS Server, 526
gml_constants

WFS METADATA, 531
gml_exclude_items

WFS METADATA, 531
WMS METADATA, 492

gml_featureid
WFS METADATA, 532

gml_geometries
WFS METADATA, 532
WMS METADATA, 492

gml_groups
WFS METADATA, 532
WMS METADATA, 492

gml_include_items
WFS METADATA, 532
WMS METADATA, 493

gml_types
WFS METADATA, 532

gml_xml_items
WFS METADATA, 533
WMS METADATA, 493

gml_[geometry name]_occurances
WFS METADATA, 532

gml_[geometry name]_type
WFS METADATA, 532
WMS METADATA, 493

gml_[group name]_group
WFS METADATA, 532
WMS METADATA, 492

gml_[item name]_alias
WFS METADATA, 532
WMS METADATA, 493

gml_[item name]_precision
WFS METADATA, 532

gml_[item name]_type
WFS METADATA, 532

WMS METADATA, 493
gml_[item name]_value

WFS METADATA, 532
gml_[item name]_width

WFS METADATA, 532
GPX, 667
green, 410

Raster query, 417
GRID, 137

LABELFORMAT, 138
LAYER, 156
MAXARCS, 138
MAXINTERVAL, 138
MAXSUBDIVIDE, 138
MINARCS, 138
MININTERVAL, 138
MINSUBDIVIDE, 138

gridObj
MapScript PHP, 255

GRIDSTEP
LEADER, 162

GROUP
CLASS, 118
CLUSTER, 120
LAYER, 156

Group
Cluster, 121

gt
Expressions, 132, 136

H
hashTableObj

MapScript, 219
MapScript PHP, 255

hatch
SYMBOL TYPE, 184

Hatch polygon fill, 78
HEADER

JOIN, 143
LAYER, 156
WEB, 202

https connections, 585

I
icon

CGI, 651
id

CGI, 651
IIS, 51

ASP script, 485
IMAGE

REFERENCE, 175
SYMBOL, 184

Image formats
Optimization, 629

Image modes
MapScript Constants, 214

Image types

Index 697

MapServer Documentation, Release 6.4.1

MapScript Constants, 214
IMAGECOLOR

LEGEND, 165
MAP, 168
SCALEBAR, 175

IMAGEMODE
BYTE, OUTPUTFORMAT, 172
FEATURE, OUTPUTFORMAT, 172
FLOAT32, OUTPUTFORMAT, 172
INT16, OUTPUTFORMAT, 172
OUTPUTFORMAT, 172
PC256, OUTPUTFORMAT, 172
RGB, OUTPUTFORMAT, 172
RGBA, OUTPUTFORMAT, 172

imageObj
MapScript, 219
MapScript PHP, 256
MapScript Python, 292

IMAGEPATH
WEB, 202

IMAGETYPE
jpeg, MAP, 168
MAP, 168
pdf, MAP, 168
png, MAP, 168
svg, MAP, 168

IMAGEURL
WEB, 202

img
CGI, 651

imgbox
CGI, 651

imgext
CGI, 651

imgshape
CGI, 651

imgsize
CGI, 652

imgxy
CGI, 652

in
Expressions, 132

inches
LAYER SIZEUNITS, 159
LAYER UNITS, 161
MAP UNITS, 169
SCALEBAR UNITS, 176

INCLUDE
MAP, 141

Include, 141
indexquery

CGI mode, 652
INITIALGAP

STYLE, 179
INSPIRE, 500
INSPIRE View Service, 500
Installation, 25

MapScript PHP, 42

OGR, 372
Oracle, 53
Unix, 25
Win32, 33

INT16
OUTPUTFORMAT IMAGEMODE, 172

intarray
MapScript, 220

INTERLACE
OUTPUTFORMAT FORMATOPTION, 171

INTERLEAVE
OUTPUTFORMAT FORMATOPTION, 171

Internal overviews
Raster, 418

International characters, 123
intersects

Expressions, 133
INTERVALS

SCALEBAR, 175
Introduction

MapScript, 207
ISO-8859-1

ENCODING, 127
ISO-8859-2

ENCODING, 127
itemfeaturenquery

CGI mode, 652
itemfeaturequery

CGI mode, 652
itemnquery

CGI mode, 652
itemquery

CGI mode, 652
ITEMS

FEATURE, 136
LAYER PROCESSING, 158

J
JOIN, 142

CONNECTION, 143
CONNECTIONTYPE, 143
CONNECTIONTYPE csv, 143
CONNECTIONTYPE mysql, 143
CONNECTIONTYPE postgresql, 143
FOOTER, 143
FROM, 143
HEADER, 143
LAYER, 142, 156
NAME, 143
Supported formats, 142
TABLE, 143
TEMPLATE, 143
TO, 143
TYPE, 143

Join types
MapScript Constants, 213

jpeg
MAP IMAGETYPE, 168

698 Index

MapServer Documentation, Release 6.4.1

K
KEYIMAGE

CLASS, 118
KEYSIZE

LEGEND, 165
KEYSPACING

LEGEND, 165
kilometers

LAYER SIZEUNITS, 159
LAYER UNITS, 161
MAP UNITS, 169
SCALEBAR UNITS, 176

L
LABEL, 148

ALIGN, 148
ANGLE, 148
ANTIALIAS, 149
BUFFER, 149
CLASS, 119
COLOR, 149
ENCODING, 125, 150
EXPRESSION, 150
FONT, 150
FORCE, 150
LEGEND, 165
MAXLENGTH, 150
MAXOVERLAPANGLE, 150
MAXSCALEDENOM, 150
MAXSIZE, 150
MINDISTANCE, 150
MINFEATURESIZE, 150
MINSCALEDENOM, 151
MINSIZE, 151
OFFSET, 151
OUTLINECOLOR, 151
OUTLINEWIDTH, 151
PARTIALS, 151
POSITION, 151
PRIORITY, 151
REPEATDISTANCE, 152
SCALEBAR, 175
SHADOWCOLOR, 152
SHADOWSIZE, 152
SIZE, 152
STYLE, 152
TEXT, 153
TYPE, 153
TYPE bitmap, 153
TYPE truetype, 153
WRAP, 153

Label positions
MapScript Constants, 211

Label size
MapScript Constants, 212

LABEL_NO_CLIP
LAYER PROCESSING, 158

LABELCACHE

LAYER, 156
labelcache_map_edge_buffer

WEB METADATA, 202
labelCacheMemberObj

MapScript, 221
labelcacheMemberObj

MapScript PHP, 256
labelCacheObj

MapScript, 221
labelcacheObj

MapScript PHP, 257
LABELFORMAT

GRID, 138
LABELITEM

LAYER, 156
LABELMAXSCALEDENOM

LAYER, 156
LABELMINSCALEDENOM

LAYER, 156
labelObj

MapScript, 222
MapScript PHP, 257

labelpnt
GEOMTRANSFORM, 108
STYLE GEOMTRANSFORM, 178

labelpoly
GEOMTRANSFORM, 108
STYLE GEOMTRANSFORM, 178

LABELREQUIRES
LAYER, 157

LAYER, 153
CLASS, 153
CLASSGROUP, 153
CLASSITEM, 153
CLUSTER, 153
CONNECTION, 153
CONNECTIONTYPE, 153
CONNECTIONTYPE contour, 153
CONNECTIONTYPE local, 153
CONNECTIONTYPE ogr, 153
CONNECTIONTYPE oraclespatial, 153
CONNECTIONTYPE plugin, 153
CONNECTIONTYPE postgis, 153
CONNECTIONTYPE sde, 153
CONNECTIONTYPE union, 153
CONNECTIONTYPE uvraster, 153
CONNECTIONTYPE wfs, 153
CONNECTIONTYPE wms, 153
DATA, 154
DEBUG, 154
DUMP, 155
EXTENT, 155
FEATURE, 155
FILTER, 155
FILTERITEM, 155
FOOTER, 155
GEOMTRANSFORM, 155
GEOMTRANSFORM buffer, 155

Index 699

MapServer Documentation, Release 6.4.1

GEOMTRANSFORM expression, 155
GEOMTRANSFORM generalize, 155
GEOMTRANSFORM simplify, 155
GEOMTRANSFORM simplifypt, 155
GEOMTRANSFORM smoothsia, 155
GRID, 156
GROUP, 156
HEADER, 156
JOIN, 142, 156
LABELCACHE, 156
LABELITEM, 156
LABELMAXSCALEDENOM, 156
LABELMINSCALEDENOM, 156
LABELREQUIRES, 157
MAP, 168
MASK, 157
MAXFEATURES, 157
MAXGEOWIDTH, 157
MAXSCALEDENOM, 157
METADATA, 157
METADATA, SOS, 582
METADATA, WCS, 567
METADATA, WFS, 531
METADATA, WFS Client, 535
METADATA, WMS, 492
METADATA, WMS Client, 508
MINGEOWIDTH, 157
MINSCALEDENOM, 158
NAME, 158
OFFSITE, 158
OPACITY, 158
PLUGIN, 158
POSTLABELCACHE, 158
PROCESSING, 158
PROCESSING BANDS, 414
PROCESSING CLOSE_CONNECTION, 158,

365
PROCESSING CLUSTER_GET_ALL_SHAPES,

120
PROCESSING COLOR_MATCH_THRESHOLD,

414
PROCESSING DITHER, 414
PROCESSING EXTENT_PRIORITY, 414
PROCESSING GETSHAPE_STYLE_ITEMS,

159
PROCESSING ITEMS, 158
PROCESSING LABEL_NO_CLIP, 158
PROCESSING LOAD_FULL_RES_IMAGE, 415
PROCESSING LOAD_WHOLE_IMAGE, 415
PROCESSING LUT[_n], 415
PROCESSING MSSQL_READ_WKB, 365
PROCESSING OVERSAMPLE_RATIO, 415
PROCESSING POLYLINE_NO_CLIP, 158
PROCESSING raster options, 159
PROCESSING RESAMPLE, 415
PROCESSING SCALE, 416
PROCESSING WORLDFILE, 416
PROJECTION, 159

REQUIRES, 159
SIZEUNITS, 159
SIZEUNITS feet, 159
SIZEUNITS inches, 159
SIZEUNITS kilometers, 159
SIZEUNITS meters, 159
SIZEUNITS miles, 159
SIZEUNITS nauticalmiles, 159
SIZEUNITS pixels, 159
STATUS, 159
STYLEITEM, 159
STYLEITEM AUTO, 159
SYMBOLSCALEDENOM, 159
TEMPLATE, 160
TILEINDEX, 160
TILEITEM, 160
TILESRS, 160
TOLERANCE, 160
TOLERANCEUNITS, 160
TRANSFORM, 160
TYPE, 160
TYPE annotation, 160
TYPE chart, 160
TYPE circle, 160
TYPE line, 160
TYPE point, 160
TYPE polygon, 160
TYPE query, 160
TYPE raster, 160
UNITS, 161
UNITS dd, 161
UNITS feet, 161
UNITS inches, 161
UNITS kilometers, 161
UNITS meters, 161
UNITS miles, 161
UNITS nauticalmiles, 161
UNITS percentages, 161
UNITS pixels, 161
VALIDATION, 161

Layer
Cloning, MapScript, 298

layer
CGI, 652

Layer types
MapScript Constants, 211

layerObj
MapScript, 224
MapScript PHP, 259

Layers
Optimization, 627

layers
CGI, 652

le
Expressions, 132, 136

LEADER, 161
GRIDSTEP, 162
MAXDISTANCE, 162

700 Index

MapServer Documentation, Release 6.4.1

Leader, 161
LEGEND, 165

IMAGECOLOR, 165
KEYSIZE, 165
KEYSPACING, 165
LABEL, 165
MAP, 168
OUTLINECOLOR, 165
POSITION, 165
POSTLABELCACHE, 165
STATUS, 165
TEMPLATE, 165
TRANSPARENT, 165

legend
CGI mode, 652
Utility, 635

LEGENDFORMAT
WEB, 202

legendicon
CGI mode, 652

legendObj
MapScript, 229
MapScript PHP, 263

length
Expressions, 134

libexslt, 204
libiconv, 124
libxslt, 204
Limitations

WFS Filter encoding, 541
Limiters

MapScript Constants, 214
line

LAYER TYPE, 160
Line join types

MapScript Constants, 213
Line symbol overlay, 69
Line symbols, 68
LINECAP

butt, STYLE, 179
round, STYLE, 179
square, STYLE, 179
STYLE, 75, 179

LINEJOIN
bevel, STYLE, 179
miter, STYLE, 179
round, STYLE, 179
STYLE, 75, 179

LINEJOINMAXSIZE
STYLE, 75, 179

lineObj
MapScript, 230
MapScript PHP, 263

LOAD_FULL_RES_IMAGE
LAYER PROCESSING, 415

LOAD_WHOLE_IMAGE
LAYER PROCESSING, 415

loadLayer(): Unknown identifier. Maximum number of
classes reached

Error, 671
loadMapInternal(): Given map extent is invalid

Error, 671
local

LAYER CONNECTIONTYPE, 153
Logical expressions

Expressions, 131
lt

Expressions, 132, 136
LUT[_n]

LAYER PROCESSING, 415

M
MAP, 166

ANGLE, 166
CONFIG, 166
CONFIG CGI_CONTEXT_URL, 166
CONFIG MS_ENCRYPTION_KEY, 166
CONFIG MS_ERRORFILE, 166
CONFIG MS_NONSQUARE, 166
CONFIG ON_MISSING_DATA, 166
CONFIG PROJ_LIB, 167
DATAPATTERN, 167
DEBUG, 167
DEFRESOLUTIONx, 168
EXTENT, 168
IMAGECOLOR, 168
IMAGETYPE, 168
IMAGETYPE jpeg, 168
IMAGETYPE pdf, 168
IMAGETYPE png, 168
IMAGETYPE svg, 168
INCLUDE, 141
LAYER, 168
LEGEND, 168
MAXSIZE, 168
NAME, 168
PROJECTION, 168
QUERYMAP, 168
REFERENCE, 168
RESOLUTION, 168
SCALEBAR, 168
SCALEDENOM, 168
SHAPEPATH, 168
SIZE, 168
STATUS, 168
SYMBOLSET, 168
TEMPLATEPATTERN, 169
UNITS, 169
UNITS dd, 169
UNITS feet, 169
UNITS inches, 169
UNITS kilometers, 169
UNITS meters, 169
UNITS miles, 169
UNITS nauticalmiles, 169

Index 701

MapServer Documentation, Release 6.4.1

WEB, 169
map

CGI, 652
CGI mode, 653

Map projections, 172
Axis order, 487

Map Scale, 667
mapext

CGI, 652
Mapfile, 57, 667

Cloning, MapScript, 297
MapScript, 296
Saving, MapScript, 297
SOS Server, 576
WCS Server, 554
WFS Client, 534
WFS Server, 526
WMS Client, 507
WMS Server, 479

Mapfile tuning, 626
mapObj

MapScript, 230, 297
MapScript PHP, 264

MapScript, 668
.NET Compilation, 45
API, 208
Classes, 216
classObj, 216
colorObj, 218
Constants, 210
Constants Boolean values, 211
Constants Co, 213
Constants DB connection types, 213
Constants Error return codes, 215
Constants File types, 213
Constants Font types, 211
Constants Image modes, 214
Constants Image types, 214
Constants Join types, 213
Constants Label positions, 211
Constants Label size, 212
Constants Layer types, 211
Constants Limiters, 214
Constants Line join types, 213
Constants Measured shape types, 212
Constants MS_VERSION, 211
Constants Query types, 212
Constants Querymap styles, 213
Constants Return codes, 214
Constants Shape types, 212
Constants Shapefile types, 212
Constants Status values, 211
Constants Symbol types, 214
Constants Units, 211
errorObj, 219
fontsetObj, 219
Functions, 215
hashTableObj, 219

imageObj, 219
intarray, 220
Introduction, 207
labelCacheMemberObj, 221
labelCacheObj, 221
labelObj, 222
Layer Cloning, 298
layerObj, 224
legendObj, 229
lineObj, 230
Mapfile, 296
Mapfile Cloning, 297
Mapfile Saving, 297
mapObj, 230, 297
markerCacheMemberObj, 236
outputFormatObj, 236
OWSRequest, 237
PHP, 40, 248
PHP Build, 41
PHP Classes, 252
PHP classObj, 252
PHP clusterObj, 254
PHP colorObj, 254
PHP Constants, 251
PHP Download, 41
PHP errorObj, 254
PHP Functions, 251
PHP gridObj, 255
PHP hashTableObj, 255
PHP imageObj, 256
PHP Installation, 42
PHP labelcacheMemberObj, 256
PHP labelcacheObj, 257
PHP labelObj, 257
PHP layerObj, 259
PHP legendObj, 263
PHP lineObj, 263
PHP mapObj, 264
PHP outputformatObj, 270
PHP OwsrequestObj, 270
PHP pointObj, 271
PHP projectionObj, 271
PHP querymapObj, 272
PHP rectObj, 272
PHP referenceMapObj, 273
PHP resultObj, 273
PHP scalebarObj, 274
PHP Setup, 41
PHP shapefileObj, 274
PHP shapeObj, 275
PHP styleObj, 277
PHP symbolObj, 278
PHP webObj, 280
pointObj, 238
projectionObj, 239
Python, 292
Python Classes, 292
Python Exception handling, 294

702 Index

MapServer Documentation, Release 6.4.1

Python imageObj, 292
Python pointObj, 293
Python rectObj, 293
Querying, 299
rectObj, 240
referenceMapObj, 240
resultCacheMemberObj, 241
resultCacheObj, 241
scalebarObj, 241
shapefileObj, 242
shapeObj, 243
styleObj, 244
symbolObj, 246
symbolSetObj, 247
webObj, 247

Mapscript
Wrapper, 486

Mapscript wrappers
WxS Services, 587

MapServer expressions
Expressions, 130

mapshape
CGI, 652

mapsize
CGI, 652

mapxy
CGI, 652

MARKER
REFERENCE, 175

markerCacheMemberObj
MapScript, 236

MARKERSIZE
REFERENCE, 175

MASK
LAYER, 157

MAXARCS
GRID, 138

MAXBOXSIZE
REFERENCE, 175

MAXCLASSES, 204
MAXDISTANCE

CLUSTER, 120
LEADER, 162

MAXFEATURES
LAYER, 157

MAXGEOWIDTH
LAYER, 157

MAXINTERVAL
GRID, 138

MAXLENGTH
LABEL, 150

MAXOVERLAPANGLE
LABEL, 150

MAXSCALEDENOM
CLASS, 119
LABEL, 150
LAYER, 157
STYLE, 179

WEB, 202
MAXSIZE

CLASS, 119
LABEL, 150
MAP, 168
STYLE, 180

MAXSTYLES, 205
MAXSUBDIVIDE

GRID, 138
MAXSYMBOLS, 205
MAXTEMPLATE

WEB, 202
MAXWIDTH

STYLE, 180
maxx

CGI, 652
maxy

CGI, 652
Measured shape types

MapScript Constants, 212
Mercator, 668
METADATA

gml_constants, WFS, 531
gml_exclude_items, WFS, 531
gml_exclude_items, WMS, 492
gml_featureid, WFS, 532
gml_geometries, WFS, 532
gml_geometries, WMS, 492
gml_groups, WFS, 532
gml_groups, WMS, 492
gml_include_items, WFS, 532
gml_include_items, WMS, 493
gml_types, WFS, 532
gml_xml_items, WFS, 533
gml_xml_items, WMS, 493
gml_[geometry name]_occurances, WFS, 532
gml_[geometry name]_type, WFS, 532
gml_[geometry name]_type, WMS, 493
gml_[group name]_group, WFS, 532
gml_[group name]_group, WMS, 492
gml_[item name]_alias, WFS, 532
gml_[item name]_alias, WMS, 493
gml_[item name]_precision, WFS, 532
gml_[item name]_type, WFS, 532
gml_[item name]_type, WMS, 493
gml_[item name]_value, WFS, 532
gml_[item name]_width, WFS, 532
labelcache_map_edge_buffer, WEB, 202
LAYER, 157
ms_enable_modes, WEB, 203
ows_allowed_ip_list, SOS, 580, 582
ows_allowed_ip_list, WCS, 565, 567
ows_allowed_ip_list, WFS, 530, 533
ows_allowed_ip_list, WMS, 488, 493
ows_denied_ip_list, SOS, 580, 582
ows_denied_ip_list, WCS, 565, 567
ows_denied_ip_list, WFS, 530, 533
ows_denied_ip_list, WMS, 488, 493

Index 703

MapServer Documentation, Release 6.4.1

ows_http_max_age, WMS, 488
ows_language, SOS, 580
ows_schemas_location, SOS, 581
ows_schemas_location, WFS, 530
ows_schemas_location, WMS, 488
ows_sld_enabled, WMS, 488
ows_updatesequence, SOS, 581
ows_updatesequence, WFS, 530
ows_updatesequence, WMS, 488
SOS LAYER, 582
SOS WEB, 580
sos_abstract, SOS, 581
sos_accessconstraints, SOS, 581
sos_address, SOS, 581
sos_addresstype, SOS, 581
sos_allowed_ip_list, SOS, 580
sos_city, SOS, 581
sos_contactelectronicmailaddress, SOS, 581
sos_contactfacsimiletelephone, SOS, 581
sos_contactinstructions, SOS, 581
sos_contactorganization, SOS, 581
sos_contactperson, SOS, 581
sos_contactposition, SOS, 581
sos_contactvoicetelephone, SOS, 581
sos_country, SOS, 581
sos_denied_ip_list, SOS, 580
sos_describesensor_url, SOS, 582
sos_enable_request, SOS, 581, 582
sos_encoding_blockSeparator, SOS, 581
sos_encoding_tokenSeparator, SOS, 582
sos_fees, SOS, 582
sos_hoursofservice, SOS, 582
sos_keywordlist, SOS, 582
sos_maxfeatures, SOS, 582
sos_observedproperty_authority, SOS, 583
sos_observedproperty_id, SOS, 583
sos_observedproperty_name, SOS, 583
sos_observedproperty_version, SOS, 583
sos_offering_description, SOS, 583
sos_offering_extent, SOS, 583
sos_offering_id, SOS, 584
sos_offering_intendedapplication, SOS, 584
sos_offering_name, SOS, 584
sos_offering_timeextent, SOS, 584
sos_onlineresource, SOS, 582
sos_postcode, SOS, 581
sos_procedure, SOS, 584
sos_procedure_item, SOS, 584
sos_role, SOS, 582
sos_service_onlineresource, SOS, 582
sos_srs, SOS, 582
sos_stateorprovince, SOS, 581
sos_timeitem, SOS, 584
sos_title, SOS, 582
sos_[item name]_alias, SOS, 583
sos_[item name]_definition, SOS, 583
sos_[item name]_uom, SOS, 583
WCS LAYER, 567

WCS WEB, 565
wcs_abstract, WCS, 565, 567
wcs_accessconstraints, WCS, 566
wcs_address, WCS, 566
wcs_allowed_ip_list, WCS, 565
wcs_city, WCS, 566
wcs_contactelectronicmailaddress, WCS, 566
wcs_contactfacimiletelephone, WCS, 566
wcs_contactorganization, WCS, 566
wcs_contactperson, WCS, 566
wcs_contactposition, WCS, 566
wcs_contactvoicetelephone, WCS, 566
wcs_country, WCS, 566
wcs_denied_ip_list, WCS, 565
wcs_description, WCS, 566, 567
wcs_enable_request, WCS, 566, 567
wcs_extent, WCS, 567
wcs_fees, WCS, 566
wcs_formats, WCS, 567
wcs_keywords, WCS, 566, 567
wcs_label, WCS, 566, 567
wcs_metadatalink_format, WCS, 566, 567
wcs_metadatalink_href, WCS, 566, 567
wcs_metadatalink_type, WCS, 566, 568
wcs_name, WCS, 566, 568
wcs_native_format, WCS, 568
wcs_nativeformat, WCS, 568
wcs_postcode, WCS, 566
wcs_rangeset_axes, WCS, 568
wcs_rangeset_label, WCS, 568
wcs_rangeset_name, WCS, 568
wcs_responsibleparty_address_administrativearea,

WCS, 566
wcs_responsibleparty_address_city, WCS, 566
wcs_responsibleparty_address_country, WCS,

566
wcs_responsibleparty_address_deliverypoint,

WCS, 566
wcs_responsibleparty_address_electronicmailaddress,

WCS, 566
wcs_responsibleparty_address_postalcode, WCS,

566
wcs_responsibleparty_individualname, WCS, 566
wcs_responsibleparty_onlineresource, WCS, 566
wcs_responsibleparty_organizationname, WCS,

566
wcs_responsibleparty_phone_facsimile, WCS,

566
wcs_responsibleparty_phone_voice, WCS, 566
wcs_responsibleparty_postionname, WCS, 566
wcs_service_onlineresource, WCS, 567
wcs_srs, WCS, 568
wcs_stateorprovince, WCS, 566
wcs_timeitem, WCS, 568
wcs_timeposition, WCS, 568
WEB, 202
WFS Client LAYER, 535
WFS LAYER, 531

704 Index

MapServer Documentation, Release 6.4.1

WFS WEB, 530
wfs_abstract, WFS, 530, 533
wfs_accessconstraints, WFS, 530
wfs_allowed_ip_list, WFS, 530
wfs_anable_request, WFS, 530, 533
wfs_denied_ip_list, WFS, 530
wfs_encoding, WFS, 530
wfs_extent, WFS, 533
wfs_feature_collection, WFS, 531
wfs_featureid, WFS, 533
wfs_fees, WFS, 531
wfs_getcapabilities_version, WFS, 531
wfs_getfeature_formatlist, WFS, 533
wfs_keywordlist, WFS, 531, 533
wfs_maxfeatures, WFS, 531
wfs_metadataurl_format, WFS, 533
wfs_metadataurl_href, WFS, 533
wfs_metadataurl_type, WFS, 533
wfs_namespace_prefix, WFS, 531
wfs_namespace_uri, WFS, 531
wfs_onlineresource, WFS, 531
wfs_service_onlineresource, WFS, 531
wfs_srs, WFS, 531, 533
wfs_title, WFS, 531, 533
WMS Client LAYER, 508
WMS LAYER, 492
WMS WEB, 488
wms_abstract, WMS, 489, 493
wms_accessconstraints, WMS, 489
wms_address, WMS, 489
wms_addresstype, WMS, 489
wms_allowed_ip_list, WMS, 488
wms_attribution_logourl_format, WMS, 489, 493
wms_attribution_logourl_height, WMS, 489, 493
wms_attribution_logourl_href, WMS, 489, 494
wms_attribution_logourl_width, WMS, 489, 494
wms_attribution_onlineresource, WMS, 489, 494
wms_attribution_title, WMS, 489, 494
wms_authorityurl_href, WMS, 494
wms_authorityurl_name, WMS, 494
wms_bbox_extended, WMS, 489, 494
wms_city, WMS, 489
wms_contactelectronicmailaddress, WMS, 489
wms_contactfacsimiletelephone, WMS, 490
wms_contactorganization, WMS, 490
wms_contactperson, WMS, 490
wms_contactposition, WMS, 490
wms_contactvoicetelephone, WMS, 490
wms_country, WMS, 489
wms_dataurl_format, WMS, 494
wms_dataurl_href, WMS, 494
wms_denied_ip_list, WMS, 488
wms_enable_request, WMS, 490, 494
wms_encoding, WMS, 490
wms_exclude_items, WMS, 495
wms_extent, WMS, 495
wms_feature_info_mime_type, WMS, 490
wms_fees, WMS, 490

wms_getcapabilities_version, WMS, 490
wms_getfeatureinfo_formatlist, WMS, 495
wms_getlegendgraphic_formatlist, WMS, 490,

495
wms_getmap_formatlist, WMS, 491, 495
wms_group_abstract, WMS, 495
wms_group_title, WMS, 495
wms_identifier_authority, WMS, 495
wms_identifier_value, WMS, 495
wms_include_items, WMS, 495
wms_keywordlist, WMS, 491, 495
wms_keywordlist_vocabulary, WMS, 491, 496
wms_keywordlist_[vocabulary’s name]_items,

WMS, 491, 496
wms_languages, WMS, 491
wms_layer_group, WMS, 496
wms_layerlimit, WMS, 491
wms_metadataurl_format, WMS, 496
wms_metadataurl_href, WMS, 496
wms_metadataurl_type, WMS, 496
wms_onlineresource, WMS, 491
wms_opaque, WMS, 496
wms_postcode, WMS, 489
wms_remote_sld_max_bytes, WMS, 491
wms_resx, WMS, 491
wms_resy, WMS, 491
wms_rootlayer_abstract, WMS, 491
wms_rootlayer_keywordlist, WMS, 491
wms_rootlayer_title, WMS, 492
wms_service_onlineresource, WMS, 492
wms_srs, WMS, 492, 496
wms_stateorprovince, WMS, 489
wms_style, WMS, 497
wms_style_[style’s_name]_legendurl_format,

WMS, 497
wms_style_[style’s_name]_legendurl_height,

WMS, 497
wms_style_[style’s_name]_legendurl_href, WMS,

497
wms_style_[style’s_name]_legendurl_width,

WMS, 497
wms_timeextent, WMS, 497
wms_timeformat, WMS, 492, 497
wms_timeitem, WMS, 497
wms_title, WMS, 492, 497

Metadata
SOS, 580
WCS, 565
WFS, 529
WMS, 488

METADATA_ITEM
OUTPUTFORMAT FORMATOPTION, 171

meters
LAYER SIZEUNITS, 159
LAYER UNITS, 161
MAP UNITS, 169
SCALEBAR UNITS, 176

Microsoft SQL Server 2008, 362

Index 705

MapServer Documentation, Release 6.4.1

miles
LAYER SIZEUNITS, 159
LAYER UNITS, 161
MAP UNITS, 169
SCALEBAR UNITS, 176

MIMETYPE
OUTPUTFORMAT, 172

MINARCS
GRID, 138

MINBOXSIZE
REFERENCE, 175

MINDISTANCE
LABEL, 150

MINFEATURESIZE
LABEL, 150

MINGEOWIDTH
LAYER, 157

MININTERVAL
GRID, 138

MINSCALEDENOM
CLASS, 119
LABEL, 151
LAYER, 158
STYLE, 180
WEB, 203

MINSIZE
CLASS, 119
LABEL, 151
STYLE, 180

MINSUBDIVIDE
GRID, 138

MINTEMPLATE
WEB, 203

MINWIDTH
STYLE, 180

minx
CGI, 652

miny
CGI, 652

miter
STYLE LINEJOIN, 179

mode
browse, CGI, 652
CGI, 652
coordinate, CGI, 653
featurenquery, CGI, 652
featurequery, CGI, 652
indexquery, CGI, 652
itemfeaturenquery, CGI, 652
itemfeaturequery, CGI, 652
itemnquery, CGI, 652
itemquery, CGI, 652
legend, CGI, 652
legendicon, CGI, 652
map, CGI, 653
nquery, CGI, 653
query, CGI, 653
reference, CGI, 653

scalebar, CGI, 653
zoomin, CGI, 653
zoomout, CGI, 653

MS_DEBUGLEVEL
Debugging, 615
Environment variables, 663

ms_enable_modes
WEB METADATA, 203

MS_ENCRYPTION_KEY
Environment variables, 663
MAP CONFIG, 166

MS_ERRORFILE
Debugging, 614
Environment variables, 663
MAP CONFIG, 166

MS_MAP_NO_PATH
Environment variables, 664

MS_MAP_PATTERN
Environment variables, 664

MS_MAPFILE
Apache, 485
Environment variables, 664

MS_MAPFILE_PATTERN
Environment variables, 664

MS_MODE
Environment variables, 664

MS_NONSQUARE
MAP CONFIG, 166

MS_OPENLAYERS_JS_URL
Environment variables, 665

MS_TEMPPATH
Environment variable, 203
Environment variables, 665

MS_VERSION
MapScript Constants, 211

MS_XMLMAPFILE_XSLT, 204
Environment variables, 665

msencrypt
Utility, 635

msGetLabelSize(): Requested font not found
Error, 672

msLoadFontset(): Error opening fontset
Error, 673

msLoadMap(): Failed to open map file
Error, 673

msProcessProjection(): no options found in ’init’ file
Error, 673

msProcessProjection(): No such file or directory
Error, 673

msProcessProjection(): Projection library error.major
axis or radius = 0 not given

Error, 674
msQueryByPoint: search returned no results

Error, 674
msReturnPage(): Web application error. Malformed

template name
Error, 675

msSaveImageGD(): Unable to access file

706 Index

MapServer Documentation, Release 6.4.1

Error, 675
MSSQL_READ_WKB

LAYER PROCESSING, 365
msWMSLoadGetMapParams(): WMS server error

Error, 675
mysql

JOIN CONNECTIONTYPE, 143

N
NAME

CLASS, 119
JOIN, 143
LAYER, 158
MAP, 168
OUTPUTFORMAT, 172
SYMBOL, 184

nauticalmiles
LAYER SIZEUNITS, 159
LAYER UNITS, 161
MAP UNITS, 169
SCALEBAR UNITS, 176

ne
Expressions, 132, 135

not
Expressions, 131

nquery
CGI mode, 653

NULLVALUE
OUTPUTFORMAT FORMATOPTION, 172

O
OFFSET

LABEL, 151
STYLE, 76, 180

OFFSITE
LAYER, 158

OGC, 668
OGC conformance tests

WFS Filter encoding, 543
OGC Support, 477
OGR, 370, 668

Connection Pooling, 377
Formats, 371
Installation, 372
Style parameters, 379
STYLEITEM AUTO|hyperpage, 377
TILEINDEX, 376

ogr
LAYER CONNECTIONTYPE, 153

OGRINFO, 374
ogrtindex, 630
OM, 668
ON_MISSING_DATA

Debugging, 618
MAP CONFIG, 166

OPACITY
LAYER, 158
STYLE, 180

OpenLayers, 668
Optimization, 613

Databases, 632
Fonts, 628
Image formats, 629
Layers, 627
PostGIS, 632
Projections, 626
Raster, 628
Raster Tiling, 629
Shape datasets, 632
Symbols, 628
Tile indexes, 629
TILEINDEX, 630
Vector, 631

or
Expressions, 131

Oracle, 382
Installation, 53

oraclespatial
LAYER CONNECTIONTYPE, 153

OUTLINECOLOR
CLASS, 119
LABEL, 151
LEGEND, 165
REFERENCE, 175
SCALEBAR, 175
STYLE, 180

OUTLINEWIDTH
LABEL, 151
STYLE, 180

Output formats
WCS Server, 556

OUTPUTFORMAT, 169
DRIVER, 170
EXTENSION, 170
FORMATOPTION, 170
FORMATOPTION BLOCKXSIZE, 171
FORMATOPTION BLOCKYSIZE, 171
FORMATOPTION COMPRESS, 171
FORMATOPTION COMPRESSION, 171
FORMATOPTION GAMMA, 170, 172
FORMATOPTION GEO_ENCODING, 171
FORMATOPTION INTERLACE, 171
FORMATOPTION INTERLEAVE, 171
FORMATOPTION METADATA_ITEM, 171
FORMATOPTION NULLVALUE, 172
FORMATOPTION PALETTE, 171
FORMATOPTION PALETTE_FORCE, 171
FORMATOPTION QUALITY, 170
FORMATOPTION QUANTIZE_COLORS, 171
FORMATOPTION QUANTIZE_FORCE, 171
FORMATOPTION TILED, 171
IMAGEMODE, 172
IMAGEMODE BYTE, 172
IMAGEMODE FEATURE, 172
IMAGEMODE FLOAT32, 172
IMAGEMODE INT16, 172

Index 707

MapServer Documentation, Release 6.4.1

IMAGEMODE PC256, 172
IMAGEMODE RGB, 172
IMAGEMODE RGBA, 172
MIMETYPE, 172
NAME, 172
Template-driven output, 465
TRANSPARENT, 172

outputFormatObj
MapScript, 236

outputformatObj
MapScript PHP, 270

overlaps
Expressions, 133

OVERSAMPLE_RATIO
LAYER PROCESSING, 415

ows_allowed_ip_list
SOS METADATA, 580, 582
WCS METADATA, 565, 567
WFS METADATA, 530, 533
WMS METADATA, 488, 493

ows_denied_ip_list
SOS METADATA, 580, 582
WCS METADATA, 565, 567
WFS METADATA, 530, 533
WMS METADATA, 488, 493

ows_http_max_age
WMS METADATA, 488

ows_language
SOS METADATA, 580

ows_schemas_location
SOS METADATA, 581
WFS METADATA, 530
WMS METADATA, 488

ows_sld_enabled
WMS METADATA, 488

ows_updatesequence
SOS METADATA, 581
WFS METADATA, 530
WMS METADATA, 488

OWSRequest
MapScript, 237

OwsrequestObj
MapScript PHP, 270

P
PALETTE

OUTPUTFORMAT FORMATOPTION, 171
PALETTE_FORCE

OUTPUTFORMAT FORMATOPTION, 171
PARTIALS

LABEL, 151
PATTERN, 69

STYLE, 181
PC256

OUTPUTFORMAT IMAGEMODE, 172
PDF

Geospatial, 171
pdf

MAP IMAGETYPE, 168
percentages

LAYER UNITS, 161
Performance tips

Raster, 417
PHP

Build, MapScript, 41
Classes, MapScript, 252
classObj, MapScript, 252
clusterObj, MapScript, 254
colorObj, MapScript, 254
Constants, MapScript, 251
Download, MapScript, 41
errorObj, MapScript, 254
Functions, MapScript, 251
gridObj, MapScript, 255
hashTableObj, MapScript, 255
imageObj, MapScript, 256
Installation, MapScript, 42
labelcacheMemberObj, MapScript, 256
labelcacheObj, MapScript, 257
labelObj, MapScript, 257
layerObj, MapScript, 259
legendObj, MapScript, 263
lineObj, MapScript, 263
mapObj, MapScript, 264
MapScript, 40, 248
outputformatObj, MapScript, 270
OwsrequestObj, MapScript, 270
pointObj, MapScript, 271
projectionObj, MapScript, 271
querymapObj, MapScript, 272
rectObj, MapScript, 272
referenceMapObj, MapScript, 273
resultObj, MapScript, 273
scalebarObj, MapScript, 274
Setup, MapScript, 41
shapefileObj, MapScript, 274
shapeObj, MapScript, 275
styleObj, MapScript, 277
Support, 40
symbolObj, MapScript, 278
webObj, MapScript, 280

php, 51
PHP Mapscript

Debugging, 620
pixel, 410
pixels

LAYER SIZEUNITS, 159
LAYER UNITS, 161

pixmap
SYMBOL TYPE, 184

Pixmap polygon fill, 80
Pixmap symbols, 64
PLUGIN

LAYER, 158
plugin

LAYER CONNECTIONTYPE, 153

708 Index

MapServer Documentation, Release 6.4.1

png
MAP IMAGETYPE, 168

point
LAYER TYPE, 160

Point symbols, 62
pointObj

MapScript, 238
MapScript PHP, 271
MapScript Python, 293

POINTS
FEATURE, 136
SYMBOL, 184

POLAROFFSET
STYLE, 181

polygon
LAYER TYPE, 160

Polygon outlines, 93
POLYLINE_NO_CLIP

LAYER PROCESSING, 158
POSITION

LABEL, 151
LEGEND, 165
SCALEBAR, 175

PostGIS
Optimization, 632

postgis
LAYER CONNECTIONTYPE, 153

postgresql
JOIN CONNECTIONTYPE, 143

POSTLABELCACHE
LAYER, 158
LEGEND, 165
SCALEBAR, 175

Preprocessing
Raster, 418

PRIORITY
LABEL, 151

PROCESSING, 158
BANDS, LAYER, 414
CLOSE_CONNECTION, LAYER, 158, 365
CLUSTER_GET_ALL_SHAPES, LAYER, 120
COLOR_MATCH_THRESHOLD, LAYER, 414
DITHER, LAYER, 414
EXTENT_PRIORITY, LAYER, 414
GETSHAPE_STYLE_ITEMS, LAYER, 159
ITEMS, LAYER, 158
LABEL_NO_CLIP, LAYER, 158
LAYER, 158
LOAD_FULL_RES_IMAGE, LAYER, 415
LOAD_WHOLE_IMAGE, LAYER, 415
LUT[_n], LAYER, 415
MSSQL_READ_WKB, LAYER, 365
OVERSAMPLE_RATIO, LAYER, 415
POLYLINE_NO_CLIP, LAYER, 158
raster options, LAYER, 159
RESAMPLE, LAYER, 415
SCALE, LAYER, 416
WORLDFILE, LAYER, 416

Processing directives
Raster, 414

Proj.4, 668
PROJ_DEBUG

Debugging, 616
PROJ_LIB

Environment variables, 665
MAP CONFIG, 167

PROJECTION, 172
LAYER, 159
MAP, 168

Projection, 668
projectionObj

MapScript, 239
MapScript PHP, 271

Projections
Optimization, 626

Python
Classes, MapScript, 292
Exception handling, MapScript, 294
imageObj, MapScript, 292
MapScript, 292
pointObj, MapScript, 293
rectObj, MapScript, 293

Q
qformat

CGI, 653
qitem

CGI, 653
qlayer

CGI, 653
qstring

CGI, 653
QUALITY

OUTPUTFORMAT FORMATOPTION, 170
QUANTIZE_COLORS

OUTPUTFORMAT FORMATOPTION, 171
QUANTIZE_FORCE

OUTPUTFORMAT FORMATOPTION, 171
Query

Raster, 416
query

CGI mode, 653
LAYER TYPE, 160

Query types
MapScript Constants, 212

queryfile
CGI, 653

QUERYFORMAT
WEB, 203

Querying
MapScript, 299

QUERYMAP, 174
COLOR, 174
MAP, 168
SIZE, 174
STATUS, 174

Index 709

MapServer Documentation, Release 6.4.1

STYLE, 174
Querymap styles

MapScript Constants, 213
querymapObj

MapScript PHP, 272
Quotes escaping, 128

R
radius

WMS Vendor specific parameters, 498
Raster, 668

24bit, 413
8bit, 418
External overviews, 419
Georeferencing, 419
Internal overviews, 418
Optimization, 628
Performance tips, 417
Preprocessing, 418
Processing directives, 414
Query, 416
Tile indexing, 412
Tiled datasets, 418
Tiling, Optimization, 629
Warping, 413
World files, 419

raster
LAYER TYPE, 160

Raster classification, 410
Raster data, 409
Raster formats, 412
Raster options, 158
raster options

LAYER PROCESSING, 159
Raster query

blue, 417
class, 416
green, 417
red, 416
value_list, 416
value_n, 416
x, 416
y, 416

rectObj
MapScript, 240
MapScript PHP, 272
MapScript Python, 293

red, 410
Raster query, 416

ref
CGI, 653

REFERENCE, 174
COLOR, 175
EXTENT, 175
IMAGE, 175
MAP, 168
MARKER, 175
MARKERSIZE, 175

MAXBOXSIZE, 175
MINBOXSIZE, 175
OUTLINECOLOR, 175
SIZE, 175
STATUS, 175

reference
CGI mode, 653

referenceMapObj
MapScript, 240
MapScript PHP, 273

refxy
CGI, 653

REGION
CLUSTER, 120

Regular expression comparison
Expressions, 129

Regular expressions, 129, 205
REPEATDISTANCE

LABEL, 152
REQUIRES

LAYER, 159
RESAMPLE

LAYER PROCESSING, 415
RESOLUTION

MAP, 168
resultCacheMemberObj

MapScript, 241
resultCacheObj

MapScript, 241
resultObj

MapScript PHP, 273
Return codes

MapScript Constants, 214
ReWriteRule

Apache, 484
RGB

OUTPUTFORMAT IMAGEMODE, 172
RGBA

OUTPUTFORMAT IMAGEMODE, 172
ROSA-Applet controls, 655
round

Expressions, 134
STYLE LINECAP, 179
STYLE LINEJOIN, 179

Run-time substitution, 655
Default value, 657
FILTER, 657
Supported parameters, 656
VALIDATION, 658

S
savequery

CGI, 653
Saving

MapScript Mapfile, 297
SCALE

LAYER PROCESSING, 416
SCALEBAR, 175

710 Index

MapServer Documentation, Release 6.4.1

ALIGN, 175
BACKGROUNDCOLOR, 175
COLOR, 175
IMAGECOLOR, 175
INTERVALS, 175
LABEL, 175
MAP, 168
OUTLINECOLOR, 175
POSITION, 175
POSTLABELCACHE, 175
SIZE, 175
STATUS, 175
STYLE, 175
UNITS, 176
UNITS feet, 176
UNITS inches, 176
UNITS kilometers, 176
UNITS meters, 176
UNITS miles, 176
UNITS nauticalmiles, 176

scalebar
CGI mode, 653
Utility, 636

scalebarObj
MapScript, 241
MapScript PHP, 274

SCALEDENOM
MAP, 168

scaledenom
CGI, 653

Scaling of symbols, 62
sde

LAYER CONNECTIONTYPE, 153
searchmap

CGI, 653
SetEnvIf

Apache, 485
Setup

MapScript PHP, 41
WMS Server, 479

SHADOWCOLOR
LABEL, 152

SHADOWSIZE
LABEL, 152

Shape datasets
Optimization, 632

Shape types
MapScript Constants, 212

Shapefile, 668
Shapefile types

MapScript Constants, 212
shapefileObj

MapScript, 242
MapScript PHP, 274

shapeindex
CGI, 654

shapeObj
MapScript, 243

MapScript PHP, 275
SHAPEPATH

MAP, 168
Shift-JIS

ENCODING, 127
shp2img

Debugging, 616
Utility, 637

shptree
Utility, 638

shptreetst
Utility, 639

simpifypt
STYLE GEOMTRANSFORM, 178

simple: CGI controls, 651
simple: OpenLayers viewer, 659
simplify

GEOMTRANSFORM, 112
LAYER GEOMTRANSFORM, 155
STYLE GEOMTRANSFORM, 178

simplifypt
GEOMTRANSFORM, 112
LAYER GEOMTRANSFORM, 155

SIZE
CLASS, 119
LABEL, 152
MAP, 168
QUERYMAP, 174
REFERENCE, 175
SCALEBAR, 175
STYLE, 182

SIZEUNITS
feet, LAYER, 159
inches, LAYER, 159
kilometers, LAYER, 159
LAYER, 159
meters, LAYER, 159
miles, LAYER, 159
nauticalmiles, LAYER, 159
pixels, LAYER, 159

slayer
CGI, 654

SLD, 544, 668
Element support, 546

smoothsia
all, GEOMTRANSFORM, 114
angle, GEOMTRANSFORM, 114
GEOMTRANSFORM, 114
LAYER GEOMTRANSFORM, 155
STYLE GEOMTRANSFORM, 178

sortshp
Utility, 641

SOS, 668
LAYER METADATA, 582
Metadata, 580
METADATA ows_allowed_ip_list, 580, 582
METADATA ows_denied_ip_list, 580, 582
METADATA ows_language, 580

Index 711

MapServer Documentation, Release 6.4.1

METADATA ows_schemas_location, 581
METADATA ows_updatesequence, 581
METADATA sos_abstract, 581
METADATA sos_accessconstraints, 581
METADATA sos_address, 581
METADATA sos_addresstype, 581
METADATA sos_allowed_ip_list, 580
METADATA sos_city, 581
METADATA sos_contactelectronicmailaddress,

581
METADATA sos_contactfacsimiletelephone, 581
METADATA sos_contactinstructions, 581
METADATA sos_contactorganization, 581
METADATA sos_contactperson, 581
METADATA sos_contactposition, 581
METADATA sos_contactvoicetelephone, 581
METADATA sos_country, 581
METADATA sos_denied_ip_list, 580
METADATA sos_describesensor_url, 582
METADATA sos_enable_request, 581, 582
METADATA sos_encoding_blockSeparator, 581
METADATA sos_encoding_tokenSeparator, 582
METADATA sos_fees, 582
METADATA sos_hoursofservice, 582
METADATA sos_keywordlist, 582
METADATA sos_maxfeatures, 582
METADATA sos_observedproperty_authority,

583
METADATA sos_observedproperty_id, 583
METADATA sos_observedproperty_name, 583
METADATA sos_observedproperty_version, 583
METADATA sos_offering_description, 583
METADATA sos_offering_extent, 583
METADATA sos_offering_id, 584
METADATA sos_offering_intendedapplication,

584
METADATA sos_offering_name, 584
METADATA sos_offering_timeextent, 584
METADATA sos_onlineresource, 582
METADATA sos_postcode, 581
METADATA sos_procedure, 584
METADATA sos_procedure_item, 584
METADATA sos_role, 582
METADATA sos_service_onlineresource, 582
METADATA sos_srs, 582
METADATA sos_stateorprovince, 581
METADATA sos_timeitem, 584
METADATA sos_title, 582
METADATA sos_[item name]_alias, 583
METADATA sos_[item name]_definition, 583
METADATA sos_[item name]_uom, 583
WEB METADATA, 580

SOS Server, 575
Mapfile, 576

sos_abstract
SOS METADATA, 581

sos_accessconstraints
SOS METADATA, 581

sos_address
SOS METADATA, 581

sos_addresstype
SOS METADATA, 581

sos_allowed_ip_list
SOS METADATA, 580

sos_city
SOS METADATA, 581

sos_contactelectronicmailaddress
SOS METADATA, 581

sos_contactfacsimiletelephone
SOS METADATA, 581

sos_contactinstructions
SOS METADATA, 581

sos_contactorganization
SOS METADATA, 581

sos_contactperson
SOS METADATA, 581

sos_contactposition
SOS METADATA, 581

sos_contactvoicetelephone
SOS METADATA, 581

sos_country
SOS METADATA, 581

sos_denied_ip_list
SOS METADATA, 580

sos_describesensor_url
SOS METADATA, 582

sos_enable_request
SOS METADATA, 581, 582

sos_encoding_blockSeparator
SOS METADATA, 581

sos_encoding_tokenSeparator
SOS METADATA, 582

sos_fees
SOS METADATA, 582

sos_hoursofservice
SOS METADATA, 582

sos_keywordlist
SOS METADATA, 582

sos_maxfeatures
SOS METADATA, 582

sos_observedproperty_authority
SOS METADATA, 583

sos_observedproperty_id
SOS METADATA, 583

sos_observedproperty_name
SOS METADATA, 583

sos_observedproperty_version
SOS METADATA, 583

sos_offering_description
SOS METADATA, 583

sos_offering_extent
SOS METADATA, 583

sos_offering_id
SOS METADATA, 584

sos_offering_intendedapplication
SOS METADATA, 584

712 Index

MapServer Documentation, Release 6.4.1

sos_offering_name
SOS METADATA, 584

sos_offering_timeextent
SOS METADATA, 584

sos_onlineresource
SOS METADATA, 582

sos_postcode
SOS METADATA, 581

sos_procedure
SOS METADATA, 584

sos_procedure_item
SOS METADATA, 584

sos_role
SOS METADATA, 582

sos_service_onlineresource
SOS METADATA, 582

sos_srs
SOS METADATA, 582

sos_stateorprovince
SOS METADATA, 581

sos_timeitem
SOS METADATA, 584

sos_title
SOS METADATA, 582

sos_[item name]_alias
SOS METADATA, 583

sos_[item name]_definition
SOS METADATA, 583

sos_[item name]_uom
SOS METADATA, 583

Spatial expressions
Expressions, 133

Spatial functions
Expressions, 134

SpatialLite, 397
Special options, 158
Spherical Mercator, 668
square

STYLE LINECAP, 179
SRS

WFS Server, 528
start

GEOMTRANSFORM, 105
STYLE GEOMTRANSFORM, 178

STATUS
CLASS, 119
LAYER, 159
LEGEND, 165
MAP, 168
QUERYMAP, 174
REFERENCE, 175
SCALEBAR, 175

Status values
MapScript Constants, 211

String comparison
Expressions, 129

String expressions
Expressions, 131

String functions
Expressions, 134

String operations
Expressions, 133

String quotation, 127
STYLE, 176

ANGLE, 176
ANTIALIAS, 176
BACKGROUNDCOLOR, 176
CLASS, 119
COLOR, 177
GAP, 177
GEOMTRANSFORM, 178
GEOMTRANSFORM bbox, 178
GEOMTRANSFORM buffer, 178
GEOMTRANSFORM centroid, 178
GEOMTRANSFORM end, 178
GEOMTRANSFORM expression, 178
GEOMTRANSFORM generalize, 178
GEOMTRANSFORM labelpnt, 178
GEOMTRANSFORM labelpoly, 178
GEOMTRANSFORM simpifypt, 178
GEOMTRANSFORM simplify, 178
GEOMTRANSFORM smoothsia, 178
GEOMTRANSFORM start, 178
GEOMTRANSFORM vertices, 178
INITIALGAP, 179
LABEL, 152
LINECAP, 75, 179
LINECAP butt, 179
LINECAP round, 179
LINECAP square, 179
LINEJOIN, 75, 179
LINEJOIN bevel, 179
LINEJOIN miter, 179
LINEJOIN round, 179
LINEJOINMAXSIZE, 75, 179
MAXSCALEDENOM, 179
MAXSIZE, 180
MAXWIDTH, 180
MINSCALEDENOM, 180
MINSIZE, 180
MINWIDTH, 180
OFFSET, 76, 180
OPACITY, 180
OUTLINECOLOR, 180
OUTLINEWIDTH, 180
PATTERN, 181
POLAROFFSET, 181
QUERYMAP, 174
SCALEBAR, 175
SIZE, 182
SYMBOL, 182
WIDTH, 183

Style parameters
OGR, 379

STYLEITEM
AUTO, LAYER, 159

Index 713

MapServer Documentation, Release 6.4.1

LAYER, 159
STYLEITEM AUTO!OGR, 377
styleObj

MapScript, 244
MapScript PHP, 277

Support
PHP, 40

Supported features
WFS Filter encoding, 538

Supported formats
JOIN, 142

Supported parameters
Run-time substitution, 656

SVG, 668
svg

MAP IMAGETYPE, 168
SYMBOL TYPE, 184

SWF, 668
SWIG, 669
sym2img

Utility, 643
SYMBOL, 183

ANCHORPOINT, 183
ANTIALIAS, 183
CHARACTER, 183
CLASS, 119
FILLED, 184
FONT, 184
IMAGE, 184
NAME, 184
POINTS, 184
STYLE, 182
TRANSPARENT, 184
TYPE, 184
TYPE cartoline, 184
TYPE ellipse, 184
TYPE hatch, 184
TYPE pixmap, 184
TYPE svg, 184
TYPE truetype, 184
TYPE vector, 184

Symbol center, 98
Symbol construction, 57
Symbol scaling, 60
Symbol specification, 60
Symbol types

MapScript Constants, 214
symbolObj

MapScript, 246
MapScript PHP, 278

Symbology examples, 184
Symbols

Optimization, 628
SYMBOLSCALEDENOM

LAYER, 159
SYMBOLSET

MAP, 168
symbolSetObj

MapScript, 247

T
TABLE

JOIN, 143
TEMPLATE

CLASS, 119
JOIN, 143
LAYER, 160
LEGEND, 165
WEB, 203

Template substitution tags
Template-driven output, 466

Template-driven output, 464
OUTPUTFORMAT, 465
Template substitution tags, 466

TEMPLATEPATTERN
MAP, 169

Templating, 187
Temporal expressions

Expressions, 135
Temporary directory, 203
Temporary files, 203, 647
TEMPPATH

WEB, 203
TEXT

CLASS, 119
FEATURE, 136
LABEL, 153

Tile indexes
Optimization, 629

Tile indexing
Raster, 412

tile4ms
Utility, 643

TILED
OUTPUTFORMAT FORMATOPTION, 171

Tiled datasets
Raster, 418

TILEINDEX
LAYER, 160
OGR, 376
Optimization, 630

Tileindex, 669
tileindex

CGI, 654
TILEITEM

LAYER, 160
TILESRS

LAYER, 160
Tiling

Optimization Raster, 629
Time requests

WMS Server, 512
TIS-620

ENCODING, 127
TO

JOIN, 143

714 Index

MapServer Documentation, Release 6.4.1

TOLERANCE
LAYER, 160

TOLERANCEUNITS
LAYER, 160

tostring
Expressions, 134

touches
Expressions, 133

TRANSFORM
LAYER, 160

TRANSPARENT
LEGEND, 165
OUTPUTFORMAT, 172
SYMBOL, 184

truetype
LABEL TYPE, 153
SYMBOL TYPE, 184

Truetype symbols, 63
Tutorial, 21
TYPE

annotation, LAYER, 160
bitmap, LABEL, 153
cartoline, SYMBOL, 184
chart, LAYER, 160
circle, LAYER, 160
ellipse, SYMBOL, 184
hatch, SYMBOL, 184
JOIN, 143
LABEL, 153
LAYER, 160
line, LAYER, 160
pixmap, SYMBOL, 184
point, LAYER, 160
polygon, LAYER, 160
query, LAYER, 160
raster, LAYER, 160
svg, SYMBOL, 184
SYMBOL, 184
truetype, LABEL, 153
truetype, SYMBOL, 184
vector, SYMBOL, 184

U
Unable to load dll

Error, 675
union

LAYER CONNECTIONTYPE, 153
Union layer, 197
UNITS

dd, LAYER, 161
dd, MAP, 169
feet, LAYER, 161
feet, MAP, 169
feet, SCALEBAR, 176
inches, LAYER, 161
inches, MAP, 169
inches, SCALEBAR, 176
kilometers, LAYER, 161

kilometers, MAP, 169
kilometers, SCALEBAR, 176
LAYER, 161
MAP, 169
meters, LAYER, 161
meters, MAP, 169
meters, SCALEBAR, 176
miles, LAYER, 161
miles, MAP, 169
miles, SCALEBAR, 176
nauticalmiles, LAYER, 161
nauticalmiles, MAP, 169
nauticalmiles, SCALEBAR, 176
percentages, LAYER, 161
pixels, LAYER, 161
SCALEBAR, 176

Units
MapScript Constants, 211

Units of measure
WFS Filter encoding, 538

Unix
Installation, 25
Wrapper script, 486

URL
Change, 484

Use cases
WCS, 570

UTF-8
ENCODING, 127

Utility
legend, 635
msencrypt, 635
scalebar, 636
shp2img, 637
shptree, 638
shptreetst, 639
sortshp, 641
sym2img, 643
tile4ms, 643

uvraster, 402
LAYER CONNECTIONTYPE, 153

V
VALIDATION, 658

CLASS, 119
LAYER, 161
Run-time substitution, 658
WEB, 204

value_list
Raster query, 416

value_n
Raster query, 416

Vector, 669
Optimization, 631

vector
SYMBOL TYPE, 184

Vector field, 402
Vector polygon fill, 83

Index 715

MapServer Documentation, Release 6.4.1

Vector symbols, 62
Vendor specific parameters

angle, WMS, 497
radius, WMS, 498
WMS, 497

vertices
GEOMTRANSFORM, 107
STYLE GEOMTRANSFORM, 178

W
Warping

Raster, 413
WCS, 669

LAYER METADATA, 567
Metadata, 565
METADATA ows_allowed_ip_list, 565, 567
METADATA ows_denied_ip_list, 565, 567
METADATA wcs_abstract, 565, 567
METADATA wcs_accessconstraints, 566
METADATA wcs_address, 566
METADATA wcs_allowed_ip_list, 565
METADATA wcs_city, 566
METADATA wcs_contactelectronicmailaddress,

566
METADATA wcs_contactfacimiletelephone, 566
METADATA wcs_contactorganization, 566
METADATA wcs_contactperson, 566
METADATA wcs_contactposition, 566
METADATA wcs_contactvoicetelephone, 566
METADATA wcs_country, 566
METADATA wcs_denied_ip_list, 565
METADATA wcs_description, 566, 567
METADATA wcs_enable_request, 566, 567
METADATA wcs_extent, 567
METADATA wcs_fees, 566
METADATA wcs_formats, 567
METADATA wcs_keywords, 566, 567
METADATA wcs_label, 566, 567
METADATA wcs_metadatalink_format, 566, 567
METADATA wcs_metadatalink_href, 566, 567
METADATA wcs_metadatalink_type, 566, 568
METADATA wcs_name, 566, 568
METADATA wcs_native_format, 568
METADATA wcs_nativeformat, 568
METADATA wcs_postcode, 566
METADATA wcs_rangeset_axes, 568
METADATA wcs_rangeset_label, 568
METADATA wcs_rangeset_name, 568
METADATA wcs_responsibleparty_address_administrativearea,

566
METADATA wcs_responsibleparty_address_city,

566
METADATA wcs_responsibleparty_address_country,

566
METADATA wcs_responsibleparty_address_deliverypoint,

566
METADATA wcs_responsibleparty_address_electronicmailaddress,

566

METADATA wcs_responsibleparty_address_postalcode,
566

METADATA wcs_responsibleparty_individualname,
566

METADATA wcs_responsibleparty_onlineresource,
566

METADATA wcs_responsibleparty_organizationname,
566

METADATA wcs_responsibleparty_phone_facsimile,
566

METADATA wcs_responsibleparty_phone_voice,
566

METADATA wcs_responsibleparty_postionname,
566

METADATA wcs_service_onlineresource, 567
METADATA wcs_srs, 568
METADATA wcs_stateorprovince, 566
METADATA wcs_timeitem, 568
METADATA wcs_timeposition, 568
Use cases, 570
WEB METADATA, 565

WCS 1.1.0, 558
WCS 2.0, 559
WCS Server, 553

Mapfile, 554
Output formats, 556

wcs_abstract
WCS METADATA, 565, 567

wcs_accessconstraints
WCS METADATA, 566

wcs_address
WCS METADATA, 566

wcs_allowed_ip_list
WCS METADATA, 565

wcs_city
WCS METADATA, 566

wcs_contactelectronicmailaddress
WCS METADATA, 566

wcs_contactfacimiletelephone
WCS METADATA, 566

wcs_contactorganization
WCS METADATA, 566

wcs_contactperson
WCS METADATA, 566

wcs_contactposition
WCS METADATA, 566

wcs_contactvoicetelephone
WCS METADATA, 566

wcs_country
WCS METADATA, 566

wcs_denied_ip_list
WCS METADATA, 565

wcs_description
WCS METADATA, 566, 567

wcs_enable_request
WCS METADATA, 566, 567

wcs_extent
WCS METADATA, 567

716 Index

MapServer Documentation, Release 6.4.1

wcs_fees
WCS METADATA, 566

wcs_formats
WCS METADATA, 567

wcs_keywords
WCS METADATA, 566, 567

wcs_label
WCS METADATA, 566, 567

wcs_metadatalink_format
WCS METADATA, 566, 567

wcs_metadatalink_href
WCS METADATA, 566, 567

wcs_metadatalink_type
WCS METADATA, 566, 568

wcs_name
WCS METADATA, 566, 568

wcs_native_format
WCS METADATA, 568

wcs_nativeformat
WCS METADATA, 568

wcs_postcode
WCS METADATA, 566

wcs_rangeset_axes
WCS METADATA, 568

wcs_rangeset_label
WCS METADATA, 568

wcs_rangeset_name
WCS METADATA, 568

wcs_responsibleparty_address_administrativearea
WCS METADATA, 566

wcs_responsibleparty_address_city
WCS METADATA, 566

wcs_responsibleparty_address_country
WCS METADATA, 566

wcs_responsibleparty_address_deliverypoint
WCS METADATA, 566

wcs_responsibleparty_address_electronicmailaddress
WCS METADATA, 566

wcs_responsibleparty_address_postalcode
WCS METADATA, 566

wcs_responsibleparty_individualname
WCS METADATA, 566

wcs_responsibleparty_onlineresource
WCS METADATA, 566

wcs_responsibleparty_organizationname
WCS METADATA, 566

wcs_responsibleparty_phone_facsimile
WCS METADATA, 566

wcs_responsibleparty_phone_voice
WCS METADATA, 566

wcs_responsibleparty_postionname
WCS METADATA, 566

wcs_service_onlineresource
WCS METADATA, 567

wcs_srs
WCS METADATA, 568

wcs_stateorprovince
WCS METADATA, 566

wcs_timeitem
WCS METADATA, 568

wcs_timeposition
WCS METADATA, 568

WEB, 201
BROWSEFORMAT, 202
EMPTY, 202
ERROR, 202
FOOTER, 202
HEADER, 202
IMAGEPATH, 202
IMAGEURL, 202
LEGENDFORMAT, 202
MAP, 169
MAXSCALEDENOM, 202
MAXTEMPLATE, 202
METADATA, 202
METADATA labelcache_map_edge_buffer, 202
METADATA ms_enable_modes, 203
METADATA, SOS, 580
METADATA, WCS, 565
METADATA, WFS, 530
METADATA, WMS, 488
MINSCALEDENOM, 203
MINTEMPLATE, 203
QUERYFORMAT, 203
TEMPLATE, 203
TEMPPATH, 203
VALIDATION, 204

Web map context
WMS, 519

webObj
MapScript, 247
MapScript PHP, 280

WFS, 669
Filter encoding, 537
Filter encoding Limitations, 541
Filter encoding OGC conformance tests, 543
Filter encoding Supported features, 538
Filter encoding Units of measure, 538
LAYER METADATA, 531
Metadata, 529
METADATA gml_constants, 531
METADATA gml_exclude_items, 531
METADATA gml_featureid, 532
METADATA gml_geometries, 532
METADATA gml_groups, 532
METADATA gml_include_items, 532
METADATA gml_types, 532
METADATA gml_xml_items, 533
METADATA gml_[geometry name]_occurances,

532
METADATA gml_[geometry name]_type, 532
METADATA gml_[group name]_group, 532
METADATA gml_[item name]_alias, 532
METADATA gml_[item name]_precision, 532
METADATA gml_[item name]_type, 532
METADATA gml_[item name]_value, 532

Index 717

MapServer Documentation, Release 6.4.1

METADATA gml_[item name]_width, 532
METADATA ows_allowed_ip_list, 530, 533
METADATA ows_denied_ip_list, 530, 533
METADATA ows_schemas_location, 530
METADATA ows_updatesequence, 530
METADATA wfs_abstract, 530, 533
METADATA wfs_accessconstraints, 530
METADATA wfs_allowed_ip_list, 530
METADATA wfs_anable_request, 530, 533
METADATA wfs_denied_ip_list, 530
METADATA wfs_encoding, 530
METADATA wfs_extent, 533
METADATA wfs_feature_collection, 531
METADATA wfs_featureid, 533
METADATA wfs_fees, 531
METADATA wfs_getcapabilities_version, 531
METADATA wfs_getfeature_formatlist, 533
METADATA wfs_keywordlist, 531, 533
METADATA wfs_maxfeatures, 531
METADATA wfs_metadataurl_format, 533
METADATA wfs_metadataurl_href, 533
METADATA wfs_metadataurl_type, 533
METADATA wfs_namespace_prefix, 531
METADATA wfs_namespace_uri, 531
METADATA wfs_onlineresource, 531
METADATA wfs_service_onlineresource, 531
METADATA wfs_srs, 531, 533
METADATA wfs_title, 531, 533
WEB METADATA, 530

wfs
LAYER CONNECTIONTYPE, 153

WFS Client, 534
LAYER METADATA, 535
Mapfile, 534

WFS Server, 525
GML, 526
Mapfile, 526
SRS, 528

wfs_abstract
WFS METADATA, 530, 533

wfs_accessconstraints
WFS METADATA, 530

wfs_allowed_ip_list
WFS METADATA, 530

wfs_anable_request
WFS METADATA, 530, 533

wfs_denied_ip_list
WFS METADATA, 530

wfs_encoding
WFS METADATA, 530

wfs_extent
WFS METADATA, 533

wfs_feature_collection
WFS METADATA, 531

wfs_featureid
WFS METADATA, 533

wfs_fees
WFS METADATA, 531

wfs_getcapabilities_version
WFS METADATA, 531

wfs_getfeature_formatlist
WFS METADATA, 533

wfs_keywordlist
WFS METADATA, 531, 533

wfs_maxfeatures
WFS METADATA, 531

wfs_metadataurl_format
WFS METADATA, 533

wfs_metadataurl_href
WFS METADATA, 533

wfs_metadataurl_type
WFS METADATA, 533

wfs_namespace_prefix
WFS METADATA, 531

wfs_namespace_uri
WFS METADATA, 531

wfs_onlineresource
WFS METADATA, 531

wfs_service_onlineresource
WFS METADATA, 531

wfs_srs
WFS METADATA, 531, 533

wfs_title
WFS METADATA, 531, 533

WIDTH
STYLE, 183

Win32
Compilation, 33
Installation, 33

within
Expressions, 133

WKT
FEATURE, 136

WMC, 669
WMS, 669

Cascading requests, 498
GetLegendGraphic, 483
GetMap, 482
LAYER METADATA, 492
Metadata, 488
METADATA gml_exclude_items, 492
METADATA gml_geometries, 492
METADATA gml_groups, 492
METADATA gml_include_items, 493
METADATA gml_xml_items, 493
METADATA gml_[geometry name]_type, 493
METADATA gml_[group name]_group, 492
METADATA gml_[item name]_alias, 493
METADATA gml_[item name]_type, 493
METADATA ows_allowed_ip_list, 488, 493
METADATA ows_denied_ip_list, 488, 493
METADATA ows_http_max_age, 488
METADATA ows_schemas_location, 488
METADATA ows_sld_enabled, 488
METADATA ows_updatesequence, 488
METADATA wms_abstract, 489, 493

718 Index

MapServer Documentation, Release 6.4.1

METADATA wms_accessconstraints, 489
METADATA wms_address, 489
METADATA wms_addresstype, 489
METADATA wms_allowed_ip_list, 488
METADATA wms_attribution_logourl_format,

489, 493
METADATA wms_attribution_logourl_height,

489, 493
METADATA wms_attribution_logourl_href, 489,

494
METADATA wms_attribution_logourl_width,

489, 494
METADATA wms_attribution_onlineresource,

489, 494
METADATA wms_attribution_title, 489, 494
METADATA wms_authorityurl_href, 494
METADATA wms_authorityurl_name, 494
METADATA wms_bbox_extended, 489, 494
METADATA wms_city, 489
METADATA wms_contactelectronicmailaddress,

489
METADATA wms_contactfacsimiletelephone,

490
METADATA wms_contactorganization, 490
METADATA wms_contactperson, 490
METADATA wms_contactposition, 490
METADATA wms_contactvoicetelephone, 490
METADATA wms_country, 489
METADATA wms_dataurl_format, 494
METADATA wms_dataurl_href, 494
METADATA wms_denied_ip_list, 488
METADATA wms_enable_request, 490, 494
METADATA wms_encoding, 490
METADATA wms_exclude_items, 495
METADATA wms_extent, 495
METADATA wms_feature_info_mime_type, 490
METADATA wms_fees, 490
METADATA wms_getcapabilities_version, 490
METADATA wms_getfeatureinfo_formatlist, 495
METADATA wms_getlegendgraphic_formatlist,

490, 495
METADATA wms_getmap_formatlist, 491, 495
METADATA wms_group_abstract, 495
METADATA wms_group_title, 495
METADATA wms_identifier_authority, 495
METADATA wms_identifier_value, 495
METADATA wms_include_items, 495
METADATA wms_keywordlist, 491, 495
METADATA wms_keywordlist_vocabulary, 491,

496
METADATA wms_keywordlist_[vocabulary’s

name]_items, 491, 496
METADATA wms_languages, 491
METADATA wms_layer_group, 496
METADATA wms_layerlimit, 491
METADATA wms_metadataurl_format, 496
METADATA wms_metadataurl_href, 496
METADATA wms_metadataurl_type, 496

METADATA wms_onlineresource, 491
METADATA wms_opaque, 496
METADATA wms_postcode, 489
METADATA wms_remote_sld_max_bytes, 491
METADATA wms_resx, 491
METADATA wms_resy, 491
METADATA wms_rootlayer_abstract, 491
METADATA wms_rootlayer_keywordlist, 491
METADATA wms_rootlayer_title, 492
METADATA wms_service_onlineresource, 492
METADATA wms_srs, 492, 496
METADATA wms_stateorprovince, 489
METADATA wms_style, 497
METADATA wms_style_[style’s_name]_legendurl_format,

497
METADATA wms_style_[style’s_name]_legendurl_height,

497
METADATA wms_style_[style’s_name]_legendurl_href,

497
METADATA wms_style_[style’s_name]_legendurl_width,

497
METADATA wms_timeextent, 497
METADATA wms_timeformat, 492, 497
METADATA wms_timeitem, 497
METADATA wms_title, 492, 497
Vendor specific parameters, 497
Vendor specific parameters angle, 497
Vendor specific parameters radius, 498
Web map context, 519
WEB METADATA, 488

wms
LAYER CONNECTIONTYPE, 153

WMS 1.3.0, 486
WMS Client, 506

LAYER METADATA, 508
Mapfile, 507

WMS Server, 477
Dimension requests, 516
Mapfile, 479
Setup, 479
Time requests, 512

wms_abstract
WMS METADATA, 489, 493

wms_accessconstraints
WMS METADATA, 489

wms_address
WMS METADATA, 489

wms_addresstype
WMS METADATA, 489

wms_allowed_ip_list
WMS METADATA, 488

wms_attribution_logourl_format
WMS METADATA, 489, 493

wms_attribution_logourl_height
WMS METADATA, 489, 493

wms_attribution_logourl_href
WMS METADATA, 489, 494

wms_attribution_logourl_width

Index 719

MapServer Documentation, Release 6.4.1

WMS METADATA, 489, 494
wms_attribution_onlineresource

WMS METADATA, 489, 494
wms_attribution_title

WMS METADATA, 489, 494
wms_authorityurl_href

WMS METADATA, 494
wms_authorityurl_name

WMS METADATA, 494
wms_bbox_extended

WMS METADATA, 489, 494
wms_city

WMS METADATA, 489
wms_contactelectronicmailaddress

WMS METADATA, 489
wms_contactfacsimiletelephone

WMS METADATA, 490
wms_contactorganization

WMS METADATA, 490
wms_contactperson

WMS METADATA, 490
wms_contactposition

WMS METADATA, 490
wms_contactvoicetelephone

WMS METADATA, 490
wms_country

WMS METADATA, 489
wms_dataurl_format

WMS METADATA, 494
wms_dataurl_href

WMS METADATA, 494
wms_denied_ip_list

WMS METADATA, 488
wms_enable_request

WMS METADATA, 490, 494
wms_encoding

WMS METADATA, 490
wms_exclude_items

WMS METADATA, 495
wms_extent

WMS METADATA, 495
wms_feature_info_mime_type

WMS METADATA, 490
wms_fees

WMS METADATA, 490
wms_getcapabilities_version

WMS METADATA, 490
wms_getfeatureinfo_formatlist

WMS METADATA, 495
wms_getlegendgraphic_formatlist

WMS METADATA, 490, 495
wms_getmap_formatlist

WMS METADATA, 491, 495
wms_group_abstract

WMS METADATA, 495
wms_group_title

WMS METADATA, 495
wms_identifier_authority

WMS METADATA, 495
wms_identifier_value

WMS METADATA, 495
wms_include_items

WMS METADATA, 495
wms_keywordlist

WMS METADATA, 491, 495
wms_keywordlist_vocabulary

WMS METADATA, 491, 496
wms_keywordlist_[vocabulary’s name]_items

WMS METADATA, 491, 496
wms_languages

WMS METADATA, 491
wms_layer_group

WMS METADATA, 496
wms_layerlimit

WMS METADATA, 491
wms_metadataurl_format

WMS METADATA, 496
wms_metadataurl_href

WMS METADATA, 496
wms_metadataurl_type

WMS METADATA, 496
wms_onlineresource

WMS METADATA, 491
wms_opaque

WMS METADATA, 496
wms_postcode

WMS METADATA, 489
wms_remote_sld_max_bytes

WMS METADATA, 491
wms_resx

WMS METADATA, 491
wms_resy

WMS METADATA, 491
wms_rootlayer_abstract

WMS METADATA, 491
wms_rootlayer_keywordlist

WMS METADATA, 491
wms_rootlayer_title

WMS METADATA, 492
wms_service_onlineresource

WMS METADATA, 492
wms_srs

WMS METADATA, 492, 496
wms_stateorprovince

WMS METADATA, 489
wms_style

WMS METADATA, 497
wms_style_[style’s_name]_legendurl_format

WMS METADATA, 497
wms_style_[style’s_name]_legendurl_height

WMS METADATA, 497
wms_style_[style’s_name]_legendurl_href

WMS METADATA, 497
wms_style_[style’s_name]_legendurl_width

WMS METADATA, 497
wms_timeextent

720 Index

MapServer Documentation, Release 6.4.1

WMS METADATA, 497
wms_timeformat

WMS METADATA, 492, 497
wms_timeitem

WMS METADATA, 497
wms_title

WMS METADATA, 492, 497
World files

Raster, 419
WORLDFILE

LAYER PROCESSING, 416
WRAP

LABEL, 153
Wrapper

Mapscript, 486
Wrapper script

Unix, 486
WxS Services

Mapscript wrappers, 587

X
x

Raster query, 416
XML Mapfile support, 204

Y
y

Raster query, 416

Z
zoom

CGI, 654
zoomdir

CGI, 654
zoomin

CGI mode, 653
zoomout

CGI mode, 653
zoomsize

CGI, 654

Index 721

	Introduction
	An Introduction to MapServer
	MapServer Overview
	Anatomy of a MapServer Application
	Installation and Requirements
	Windows Installation
	Hardware Requirements
	Software Requirements
	Skills

	Introduction to the Mapfile
	MAP Object
	LAYER Object
	CLASS and STYLE Objects
	SYMBOLs
	LABEL
	CLASS Expressions
	INCLUDE
	Get MapServer Running
	Get Demo Running

	Making the Site Your Own
	Adding Data to Your Site
	Vector Data
	Raster Data
	Projections

	Enhancing your site
	Adding Query Capability
	Attribute queries
	Spatial queries
	Interfaces
	Data Optimization

	How do I get Help?
	Documentation
	Users Mailing List
	IRC
	Reporting bugs
	Tutorial
	Test Suite
	Books

	Tutorial
	MapServer Tutorial
	Tutorial background
	Tutorial Timeframe
	Tutorial Data
	Before Using the Tutorial
	Windows, UNIX/Linux Issues
	Other Resources

	Section 1: Static Maps and the MapFile
	Section 2: CGI variables and the User Interface
	HTML Templates
	Examples

	Section 3: Query and more about HTML Templates
	Section 4: Advanced User Interfaces

	Installation
	Installation
	Compiling on Unix
	Introduction
	Obtaining the necessary software
	libgd
	Anti-Grain Geometry Support
	OGC Support
	Spatial Warehousing
	Compiling
	Installation

	Compiling on Win32
	Introduction
	Compiling
	Set up a Project Directory
	Download MapServer Source Code and Supporting Libraries
	The MapServer source code
	Set Compilation Options
	Compile the Libraries
	Compile MapServer
	Compiling MapServer with PostGIS support
	Common Compiling Errors
	Installation
	Other Helpful Information
	Acknowledgements

	PHP MapScript Installation
	Introduction
	Obtaining, Compiling, and Installing PHP and the PHP/MapScript Module
	FAQ / Common Problems

	.NET MapScript Compilation
	Compilation
	Installation
	Known issues
	Most frequent errors
	Bug reports

	IIS Setup for MapServer
	Base configuration
	Php.ini file
	Internet Services Manager
	Under the tree for your new website - add virtual directories for
	Test PHP
	Mapfiles for IIS
	Configuration files:

	Oracle Installation
	Preface
	System Assumptions
	Compile MapServer
	Set Environment Variables

	Mapfile
	Mapfile
	Cartographical Symbol Construction with MapServer
	Abstract
	Introduction
	Using Cartographical Symbols in MapServer
	Construction of Point Symbols
	Construction of Line Symbols
	Area Symbols
	Examples (MapServer 4)
	Tricks
	Mapfile changes related to symbols
	Current Problems / Open Issues
	The End

	Geometry Transformations
	Transformations for simple styling (CLASS STYLE only)
	Labels (LABEL STYLE only)
	Expressions and advanced transformations (LAYER and CLASS STYLE)

	CLASS
	CLUSTER
	Description
	Supported Layer Types
	Mapfile Parameters
	Supported Processing Options
	Mapfile Snippet
	Feature attributes
	PHP MapScript Usage
	Example: Clustering Railway Stations

	Display of International Characters in MapServer
	Credit
	Related Links
	Requirements
	How to Enable in Your Mapfile
	Example Using PHP MapScript
	Notes

	Expressions
	Introduction
	Expression Types
	``MapServer expressions''

	FEATURE
	FONTSET
	Format of the fontset file

	GRID
	Description
	Mapfile Parameters:
	Example1: Grid Displaying Degrees
	Example2: Grid Displaying Degrees with Symbol
	Example2: Grid Displayed in Other Projection (Google Mercator)

	INCLUDE
	Notes
	Example

	JOIN
	Description
	Supported Formats
	Mapfile Parameters:
	Example 1: Join from Shape dataset to DBF file
	Example 2: Join from Shape dataset to PostgreSQL table
	Example 3: Join from Shape dataset to CSV file
	Example 4: Join from Shape dataset to MySQL
	Example 5: One-to-many join

	LABEL
	LAYER
	LEADER
	Description
	Supported Layer Types
	Mapfile Parameters
	Mapfile Snippet
	Example: World Countries Labels

	LEGEND
	MAP
	OUTPUTFORMAT
	PROJECTION
	Background
	Projections with MapServer
	``Web Mercator'' or ``Google Mercator''
	PROJECTION AUTO
	Important Notes
	For More Information

	QUERYMAP
	REFERENCE
	SCALEBAR
	STYLE
	SYMBOL
	Symbology Examples
	Example 1. Dashed Line
	Example 2. TrueType font marker symbol
	Example 3. Vector triangle marker symbol
	Example 4. Non-contiguous vector marker symbol (Cross)
	Example 5. Circle vector symbol
	Example 6. Downward diagonal fill
	Example 7. Using the Symbol Type HATCH (new in 4.6)
	Example 8. Styled lines using GAP

	Templating
	Introduction
	Format
	Example Template

	Union Layer
	Description
	Requirements
	Mapfile Configuration
	Feature attributes
	Classes and Styles
	Projections
	Supported Processing Options
	Examples

	WEB
	XML Mapfile support
	Enabling the support
	Usage:

	Notes

	MapScript
	MapScript
	Introduction
	Appendices
	Documentation Elements
	fooObj
	Additional Documentation

	SWIG MapScript API Reference
	Introduction
	MapScript Constants
	MapScript Functions
	MapScript Classes

	PHP MapScript
	Introduction
	PHP MapScript API
	PHP MapScript Migration Guide
	By Example

	Python MapScript Appendix
	Introduction
	Classes
	Exception Handling

	Python MapScript Image Generation
	Introduction
	Imagery Overview
	The imageObj Class
	Image Output
	Images and Symbols

	Mapfile Manipulation
	Introduction
	Mapfile Overview
	The mapObj Class
	Children of mapObj
	Metadata

	Querying
	Introduction
	Querying Overview
	Attribute Queries
	Spatial Queries

	MapCache
	MapCache
	Compilation & Installation
	Getting the Source
	Linux Instructions
	Windows Instructions

	Configuration File
	Source
	Cache
	Format
	Grid
	Tileset
	Services
	Miscellaneous

	Supported Tile Services
	TMS service
	KML Service
	OGC WMTS Service
	OGC WMS Service
	GoogleMaps XYZ Service
	Virtual Earth Tile service

	Seeder
	Usage

	Cache Types
	Disk Caches
	BerkeleyDB Caches
	Sqlite Caches
	Memcache Caches
	(Geo)TIFF Caches

	Image Formats
	JPEG Format
	PNG Format
	Mixed Format

	Tileset Dimensions
	FeatureInfo Requests
	Proxying Unsupported Requests
	Parameter Filtering
	Proxy Destination

	Data Sources
	HTTP Service Definition
	WMS Sources
	MapFile Sources

	Tile Assembling
	Features

	Input
	Data Input
	Vector Data
	Data Format Types
	ArcInfo
	ArcSDE
	Contour
	DGN
	ESRI File Geodatabase
	ESRI Personal Geodatabase (MDB)
	ESRI Shapefiles (SHP)
	GML
	GPS Exchange Format (GPX)
	Inline
	KML - Keyhole Markup Language
	MapInfo
	MSSQL
	MySQL
	NTF
	OGR
	Oracle Spatial
	PostGIS/PostgreSQL
	SDTS
	S57
	SpatiaLite
	USGS TIGER
	Vector field rendering - UVraster
	Virtual Spatial Data
	WFS

	Raster Data
	Introduction
	How are rasters added to a Map file?
	Supported Formats
	Rasters and Tile Indexing
	Raster Warping
	24bit RGB Rendering
	Special Processing Directives
	Raster Query
	Raster Display Performance Tips
	Preprocessing Rasters
	Georeference with World Files

	Output
	Output Generation
	AGG Rendering Specifics
	Introduction
	Setting the OutputFormat
	New Features
	Modified Behavior

	AntiAliasing with MapServer
	What needs to be done

	Dynamic Charting
	Setup
	Adding a Chart Layer to a Mapfile
	Pie Charts
	Bar Graphs

	Flash Output
	Introduction
	Installing MapServer with Flash Support
	How to Output SWF Files from MapServer
	What is Currently Supported and Not Supported

	HTML Legends with MapServer
	Introduction
	Sample Site Using the HTML Legend

	HTML Imagemaps
	Introduction
	Mapfile Layer Definition
	Templates
	Request URL
	Additional Notes
	More Information

	OGR Output
	Introduction
	OUTPUTFORMAT Declarations
	LAYER Metadata
	MAP / WEB Metadata
	Geometry Types Supported
	Attribute Field Definitions
	Return Packaging
	Test Suite Example

	PDF Output
	Introduction
	What is currently supported and not supported
	Implementing PDF Output
	PHP/MapScript and PDF Output

	SVG
	Introduction
	Feature Types and SVG Support Status
	Testing your SVG Output
	goSVG

	Tile Mode
	Introduction
	Configuration
	Utilization

	Template-Driven Output
	Introduction
	OUTPUTFORMAT Declarations
	Template Substitution Tags
	Examples

	Kml Output
	Introduction
	General Functionnality
	Output format
	Build
	Limiting the number of features
	Map
	Layers
	Styling
	Attributes
	Coordinate system
	Warning and Error Messages

	OGC
	OGC Support and Configuration
	MapServer OGC Specification support
	WMS Server
	Introduction
	Setting Up a WMS Server Using MapServer
	Changing the Online Resource URL
	WMS 1.3.0 Support
	Reference Section
	FAQ / Common Problems

	INSPIRE View Service
	Introduction
	Activation of INSPIRE support
	Multi-language support for certain capabilities fields
	Provision of INSPIRE specific metadata
	Named group layers
	Style section for root layer and possibly existing group layers

	WMS Client
	Introduction
	Compilation / Installation
	MapFile Configuration
	Limitations/TODO

	WMS Time
	Introduction
	Enabling Time Support in MapServer
	Future Additions
	Limitations and Known Bugs

	WMS Dimension
	Introduction
	Enabling Dimension Support in MapServer
	GetCapabilities Output
	Supported Dimension Requests
	Processing Dimension Requests

	Map Context
	Introduction
	Implementing a Web Map Context

	WFS Server
	Introduction
	Configuring your MapFile to Serve WFS layers
	Reference Section
	To-do Items and Known Limitations

	WFS Client
	Introduction
	Setting up a WFS-client Mapfile
	TODO / Known Limitations

	WFS-T Server
	WFS-T

	WFS Filter Encoding
	Introduction
	Currently Supported Features
	Get and Post Requests
	Use of Filter Encoding in MapServer
	Limitations
	Tests

	SLD
	Introduction
	Server Side Support
	Client Side Support
	Named Styles support
	Other Items Implemented
	Issues Found During Implementation

	WCS Server
	Introduction
	Configuring Your Mapfile to Serve WCS Layers
	Test Your WCS 1.0 Server
	WCS 1.1.0+ Issues
	WCS 2.0
	HTTP-POST support
	Reference Section
	Rules for handling SRS in a MapServer WCS
	Spatio/Temporal Indexes
	WCS 2.0 Application Profile - Earth Observation (EO-WCS)
	To-do Items and Known Limitations

	WCS Use Cases
	Landsat
	SPOT
	DEM
	NetCDF

	SOS Server
	Introduction
	Setting Up an SOS Server Using MapServer
	Limitations / TODO
	Reference Section
	Use of sos_procedure and sos_procedure_item

	How to set up MapServer as a client to access a service over https
	Introduction
	Requirements
	Default Installation (with apt-get install, rpm, manual, etc)
	Non-Standard Installation (common with ms4w and fgs)
	Remote Server with a Self-Signed SSL Certificate

	MapScript Wrappers for WxS Services
	Introduction
	Python Examples
	Perl Example
	Java Example
	PHP Example
	Use in Non-CGI Environments (mod_php, etc)
	Post Processing Capabilities

	TinyOWS
	TinyOWS
	TinyOWS Installation
	Requires

	Configuring TinyOWS with an XML File
	Configuration file simple Example
	Testing your config.xml file
	Structure of the config.xml file

	Configuring TinyOWS with a standard Mapfile
	Mapfile Config File support for TinyOWS
	Mapfile path of each TinyOWS config element

	Sample: WFS-T with TinyOWS and OpenLayers
	Server Tuning: How to speed up your TinyOWS server
	Tips and Tricks for PostgreSQL / PostGIS databases
	Tips and Tricks for Apache
	Using Fast-CGI
	HTTP GZip compression

	Working Around the LibXML2 XSD Schema GML Bug
	Issue
	Workaround and options

	Optimization
	Optimization
	Debugging MapServer
	Introduction
	Steps to Enable MapServer Debugging
	Debugging MapServer using Compiler Debugging Tools
	Debugging Older Versions of MapServer (before 5.0)

	FastCGI
	Introduction
	Obtaining the necessary software
	mod_fcgid Configuration
	Deprecated mod_fcgi Configuration
	Common mod_fcgid/mod_fcgi Configuration
	Common Problems
	FastCGI on Win32

	Mapfile
	Introduction

	Raster
	Overviews
	Tileindexes and Internal Tiling
	Image formats
	Remote WMS

	Tile Indexes
	Introduction
	What is a tileindex and how do I make one?
	Using the tileindex in your mapfile
	Tileindexes may make your map faster
	Tileindexes with tiles in different projections

	Vector
	Splitting your data
	Shapefiles
	PostGIS
	Databases in General (PostGIS, Oracle, MySQL)

	Utilities
	Utilities
	legend
	Purpose
	Syntax

	msencrypt
	Purpose
	Syntax
	Use in Mapfile

	scalebar
	Purpose
	Syntax

	shp2img
	Purpose
	Syntax

	shptree
	Purpose
	Description
	Syntax
	Mapfile Notes

	shptreetst
	Purpose
	Syntax

	shptreevis
	Purpose
	Syntax

	sortshp
	sym2img
	Purpose
	Syntax

	tile4ms
	Purpose
	Description
	Syntax
	Short Example
	Long Example

	Batch Scripting
	Windows
	Linux

	File Management
	File Placement
	Temporary Files

	CGI
	CGI
	MapServer CGI Introduction
	Notes
	Changes

	mapserv
	Map Context Files
	Support for Local Map Context Files
	Support for Context Files Accessed Through a URL
	Default Map File

	MapServer CGI Controls
	Variables
	Changing map file parameters via a form or a URL
	Specifying the location of mapfiles using an Apache variable
	ROSA-Applet Controls

	Run-time Substitution
	Introduction
	Basic Example
	Parameters Supported
	Default values if not provided in the URL
	VALIDATION
	Magic values

	A Simple CGI Wrapper Script
	Introduction
	Script Information

	MapServer OpenLayers Viewer
	Using the OpenLayers viewer

	Environment Variables
	Environment Variables

	Glossary
	Glossary

	Errors
	Errors
	drawEPP(): EPPL7 support is not available
	Explanation

	loadLayer(): Unknown identifier. Maximum number of classes reached
	loadMapInternal(): Given map extent is invalid
	How to get a file's EXTENT values?

	msGetLabelSize(): Requested font not found
	msLoadFontset(): Error opening fontset
	msLoadMap(): Failed to open map file
	msProcessProjection(): no options found in `init' file
	msProcessProjection(): No such file or directory
	Setting the location of the epsg file

	msProcessProjection(): Projection library error.major axis or radius = 0 not given
	Valid Examples

	msQueryByPoint: search returned no results
	msReturnPage(): Web application error. Malformed template name
	msSaveImageGD(): Unable to access file
	msWMSLoadGetMapParams(): WMS server error. Image Size out of range, WIDTH and HEIGHT must be between 1 and 2048 pixels
	Unable to load dll (MapScript)
	C#-specific information

	FAQ
	FAQ
	Where is the MapServer log file?
	What books are available about MapServer?
	How do I compile MapServer for Windows?
	What do MapServer version numbers mean?
	Is MapServer Thread-safe?
	What does STATUS mean in a LAYER?
	How can I make my maps run faster?
	What does Polyline mean in MapServer?
	What is MapScript?
	Does MapServer support reverse geocoding?
	Does MapServer support geocoding?
	How do I set line width in my maps?
	Why do my JPEG input images look crappy via MapServer?
	Which image format should I use?
	Why doesn't PIL (Python Imaging Library) open my PNGs?
	Why do my symbols look poor in JPEG output?
	How do I add a copyright notice on the corner of my map?
	Example Layer
	Result

	How do I have a polygon that has both a fill and an outline with a width?
	How can I create simple antialiased line features?
	Which OGC Specifications does MapServer support?
	Why does my requested WMS layer not align correctly?
	When I do a GetCapabilities, why does my browser want to download mapserv.exe/mapserv?
	Why do my WMS GetMap requests return exception using MapServer 5.0?
	Using MapServer 6.0, why don't my layers show up in GetCapabilities responses or are not found anymore?
	Where do I find my EPSG code?
	How can I reproject my data using ogr2ogr?
	How can I help improve the documentation on this site?
	What's with MapServer's logo?

	Copyright
	License
	Credits

	Index

