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1.引言

1.1.目标

 关于计算机科学、程序设计和问题求解的基本概念；

 什么是“抽象”，及抽象在问题求解过程中的作用；

 什么是“抽象数据类型”，及其实现；

 Python程序设计语言入门

1.2.引子

The way we think about programming has undergone many changes in the years since the first
electronic computers required patch cables and switches to convey instructions from human to
machine. As is the case with many aspects of society, changes in computing technology provide
computer scientists with a growing number of tools and platforms on which to practice their craft.
Advances such as faster processors, high-speed networks, and large memory capacities have
created a spiral of complexity through which computer scientists must navigate. Throughout all of



this rapid evolution, a number of basic principles have remained constant. The science of
computing is concerned with using computers to solve problems.

You have no doubt spent considerable time learning the basics of problem-solving and hopefully
feel confident in your ability to take a problem statement and develop a solution. You have also
learned that writing computer programs is often hard. The complexity of large problems and the
corresponding complexity of the solutions can tend to overshadow the fundamental ideas related
to the problem-solving process.

This chapter emphasizes two important areas for the rest of the text. First, it reviews the
framework within which computer science and the study of algorithms and data structures must fit,
in particular, the reasons why we need to study these topics and how understanding these topics
helps us to become better problem solvers. Second, we review the Python programming language.
Although we cannot provide a detailed, exhaustive reference, we will give examples and
explanations for the basic constructs and ideas that will occur throughout the remaining chapters.

1.3.计算机科学是什么

Computer science is often difficult to define. This is probably due to the unfortunate use of the
word “computer” in the name. As you are perhaps aware, computer science is not simply the
study of computers. Although computers play an important supporting role as a tool in the
discipline, they are just that–tools.

Computer science is the study of problems, problem-solving, and the solutions that come out of
the problem-solving process. Given a problem, a computer scientist’ s goal is to develop an
algorithm, a step-by-step list of instructions for solving any instance of the problem that might
arise. Algorithms are finite processes that if followed will solve the problem. Algorithms are
solutions.

Computer science can be thought of as the study of algorithms. However, we must be careful to
include the fact that some problems may not have a solution. Although proving this statement is
beyond the scope of this text, the fact that some problems cannot be solved is important for those
who study computer science. We can fully define computer science, then, by including both types
of problems and stating that computer science is the study of solutions to problems as well as the
study of problems with no solutions.

It is also very common to include the word computable when describing problems and solutions.
We say that a problem is computable if an algorithm exists for solving it. An alternative definition
for computer science, then, is to say that computer science is the study of problems that are and
that are not computable, the study of the existence and the nonexistence of algorithms. In any case,
you will note that the word “ computer” did not come up at all. Solutions are considered
independent from the machine.

Computer science, as it pertains to the problem-solving process itself, is also the study of



abstraction. Abstraction allows us to view the problem and solution in such a way as to separate
the so-called logical and physical perspectives. The basic idea is familiar to us in a common
example.

Consider the automobile that you may have driven to school or work today. As a driver, a user of
the car, you have certain interactions that take place in order to utilize the car for its intended
purpose. You get in, insert the key, start the car, shift, brake, accelerate, and steer in order to drive.
From an abstraction point of view, we can say that you are seeing the logical perspective of the
automobile. You are using the functions provided by the car designers for the purpose of
transporting you from one location to another. These functions are sometimes also referred to as
the interface.

On the other hand, the mechanic who must repair your automobile takes a very different point of
view. She not only knows how to drive but must know all of the details necessary to carry out all
the functions that we take for granted. She needs to understand how the engine works, how the
transmission shifts gears, how temperature is controlled, and so on. This is known as the physical
perspective, the details that take place “under the hood.”

The same thing happens when we use computers. Most people use computers to write documents,
send and receive email, surf the web, play music, store images, and play games without any
knowledge of the details that take place to allow those types of applications to work. They view
computers from a logical or user perspective. Computer scientists, programmers, technology
support staff, and system administrators take a very different view of the computer. They must
know the details of how operating systems work, how network protocols are configured, and how
to code various scripts that control function. They must be able to control the low-level details that
a user simply assumes.

The common point for both of these examples is that the user of the abstraction, sometimes also
called the client, does not need to know the details as long as the user is aware of the way the
interface works. This interface is the way we as users communicate with the underlying
complexities of the implementation. As another example of abstraction, consider the Python math
module. Once we import the module, we can perform computations such as

>>> import math
>>> math.sqrt(16)
4.0
>>>

This is an example of procedural abstraction. We do not necessarily know how the square root is
being calculated, but we know what the function is called and how to use it. If we perform the
import correctly, we can assume that the function will provide us with the correct results. We
know that someone implemented a solution to the square root problem but we only need to know
how to use it. This is sometimes referred to as a “black box” view of a process. We simply
describe the interface: the name of the function, what is needed (the parameters), and what will be



returned. The details are hidden inside (see Figure 1).

图 1 Procedural Abstraction

1.4.什么是程序设计

Programming is the process of taking an algorithm and encoding it into a notation, a programming
language, so that it can be executed by a computer. Although many programming languages and
many different types of computers exist, the important first step is the need to have the solution.
Without an algorithm there can be no program.

Computer science is not the study of programming. Programming, however, is an important part
of what a computer scientist does. Programming is often the way that we create a representation
for our solutions. Therefore, this language representation and the process of creating it becomes a
fundamental part of the discipline.

Algorithms describe the solution to a problem in terms of the data needed to represent the problem
instance and the set of steps necessary to produce the intended result. Programming languages
must provide a notational way to represent both the process and the data. To this end, languages
provide control constructs and data types.

Control constructs allow algorithmic steps to be represented in a convenient yet unambiguous way.
At a minimum, algorithms require constructs that perform sequential processing, selection for
decision-making, and iteration for repetitive control. As long as the language provides these basic
statements, it can be used for algorithm representation.

All data items in the computer are represented as strings of binary digits. In order to give these
strings meaning, we need to have data types. Data types provide an interpretation for this binary
data so that we can think about the data in terms that make sense with respect to the problem being
solved. These low-level, built-in data types (sometimes called the primitive data types) provide the
building blocks for algorithm development.

For example, most programming languages provide a data type for integers. Strings of binary
digits in the computer’s memory can be interpreted as integers and given the typical meanings
that we commonly associate with integers (e.g. 23, 654, and -19). In addition, a data type also
provides a description of the operations that the data items can participate in. With integers,
operations such as addition, subtraction, and multiplication are common. We have come to expect
that numeric types of data can participate in these arithmetic operations.



The difficulty that often arises for us is the fact that problems and their solutions are very complex.
These simple, language-provided constructs and data types, although certainly sufficient to
represent complex solutions, are typically at a disadvantage as we work through the
problem-solving process. We need ways to control this complexity and assist with the creation of
solutions.

1.5.为何要学习数据结构和抽象数据类型

To manage the complexity of problems and the problem-solving process, computer scientists use
abstractions to allow them to focus on the “big picture” without getting lost in the details. By
creating models of the problem domain, we are able to utilize a better and more efficient
problem-solving process. These models allow us to describe the data that our algorithms will
manipulate in a much more consistent way with respect to the problem itself.

Earlier, we referred to procedural abstraction as a process that hides the details of a particular
function to allow the user or client to view it at a very high level. We now turn our attention to a
similar idea, that of data abstraction. An abstract data type, sometimes abbreviated ADT, is a
logical description of how we view the data and the operations that are allowed without regard to
how they will be implemented. This means that we are concerned only with what the data is
representing and not with how it will eventually be constructed. By providing this level of
abstraction, we are creating an encapsulation around the data. The idea is that by encapsulating the
details of the implementation, we are hiding them from the user’ s view. This is called
information hiding.

Figure 2 shows a picture of what an abstract data type is and how it operates. The user interacts
with the interface, using the operations that have been specified by the abstract data type. The
abstract data type is the shell that the user interacts with. The implementation is hidden one level
deeper. The user is not concerned with the details of the implementation.

图 2 Abstract Data Type



The implementation of an abstract data type, often referred to as a data structure, will require that
we provide a physical view of the data using some collection of programming constructs and
primitive data types. As we discussed earlier, the separation of these two perspectives will allow
us to define the complex data models for our problems without giving any indication as to the
details of how the model will actually be built. This provides an implementation-independent view
of the data. Since there will usually be many different ways to implement an abstract data type,
this implementation independence allows the programmer to switch the details of the
implementation without changing the way the user of the data interacts with it. The user can
remain focused on the problem-solving process.

1.6.为何要学习算法

Computer scientists learn by experience. We learn by seeing others solve problems and by solving
problems by ourselves. Being exposed to different problem-solving techniques and seeing how
different algorithms are designed helps us to take on the next challenging problem that we are
given. By considering a number of different algorithms, we can begin to develop pattern
recognition so that the next time a similar problem arises, we are better able to solve it.

Algorithms are often quite different from one another. Consider the example of sqrt seen earlier. It
is entirely possible that there are many different ways to implement the details to compute the
square root function. One algorithm may use many fewer resources than another. One algorithm
might take 10 times as long to return the result as the other. We would like to have some way to
compare these two solutions. Even though they both work, one is perhaps“better”than the other.
We might suggest that one is more efficient or that one simply works faster or uses less memory.
As we study algorithms, we can learn analysis techniques that allow us to compare and contrast
solutions based solely on their own characteristics, not the characteristics of the program or
computer used to implement them.

In the worst case scenario, we may have a problem that is intractable, meaning that there is no
algorithm that can solve the problem in a realistic amount of time. It is important to be able to
distinguish between those problems that have solutions, those that do not, and those where
solutions exist but require too much time or other resources to work reasonably.

There will often be trade-offs that we will need to identify and decide upon. As computer
scientists, in addition to our ability to solve problems, we will also need to know and understand
solution evaluation techniques. In the end, there are often many ways to solve a problem. Finding
a solution and then deciding whether it is a good one are tasks that we will do over and over again.

1.7.Python入门

In this section, we will review the programming language Python and also provide some more
detailed examples of the ideas from the previous section. If you are new to Python or find that you



need more information about any of the topics presented, we recommend that you consult a
resource such as the Python Language Reference or a Python Tutorial. Our goal here is to
reacquaint you with the language and also reinforce some of the concepts that will be central to
later chapters.

Python is a modern, easy-to-learn, object-oriented programming language. It has a powerful set of
built-in data types and easy-to-use control constructs. Since Python is an interpreted language, it is
most easily reviewed by simply looking at and describing interactive sessions. You should recall
that the interpreter displays the familiar >>> prompt and then evaluates the Python construct that
you provide. For example,

>>> print("Algorithms and Data Structures")
Algorithms and Data Structures
>>>

shows the prompt, the print function, the result, and the next prompt.

1.7.1. 从数据开始

We stated above that Python supports the object-oriented programming paradigm. This means that
Python considers data to be the focal point of the problem-solving process. In Python, as well as in
any other object-oriented programming language, we define a class to be a description of what the
data look like (the state) and what the data can do (the behavior). Classes are analogous to abstract
data types because a user of a class only sees the state and behavior of a data item. Data items are
called objects in the object-oriented paradigm. An object is an instance of a class.

1.7.1.1. 内建原子数据类型

We will begin our review by considering the atomic data types. Python has two main built-in
numeric classes that implement the integer and floating point data types. These Python classes are
called int and float. The standard arithmetic operations, +, -, *, /, and ** (exponentiation), can
be used with parentheses forcing the order of operations away from normal operator precedence.
Other very useful operations are the remainder (modulo) operator, %, and integer division, //. Note
that when two integers are divided, the result is a floating point. The integer division operator
returns the integer portion of the quotient by truncating any fractional part.

print 2+3*4
print (2+3)*4
print 2**10
print 6/3
print 7/3
print 7//3



print 7%3
print 3/6
print 3//6
print 3%6
print 2**100

The boolean data type, implemented as the Python bool class, will be quite useful for
representing truth values. The possible state values for a boolean object are True and False with
the standard boolean operators, and, or, and not.

>>> True
True
>>> False
False
>>> False or True
True
>>> not (False or True)
False
>>> True and True
True

代码 1 Basic Arithmetic Operators (intro_1)

Boolean data objects are also used as results for comparison operators such as equality (==) and
greater than (>). In addition, relational operators and logical operators can be combined together to
form complex logical questions. Table 1 shows the relational and logical operators with examples
shown in the session that follows.

Operation Name Operator Explanation
less than < Less than operator
greater than > Greater than operator
less than or equal <= Less than or equal to operator
greater than or equal >= Greater than or equal to operator
equal == Equality operator
not equal != Not equal operator
logical and and Both operands True for result to be True
logical or or One or the other operand is True for the result to be True
logical not not Negates the truth value, False becomes True, True

becomes False
表格 1 Relational and Logical Operators

print(5==10)



print(10 > 5)
print((5 >= 1) and (5 <= 10))

代码 2 Basic Relational and Logical Operators (intro_2)

Identifiers are used in programming languages as names. In Python, identifiers start with a letter
or an underscore (_), are case sensitive, and can be of any length. Remember that it is always a
good idea to use names that convey meaning so that your program code is easier to read and
understand.

A Python variable is created when a name is used for the first time on the left-hand side of an
assignment statement. Assignment statements provide a way to associate a name with a value. The
variable will hold a reference to a piece of data and not the data itself. Consider the following
session:

>>> theSum = 0
>>> theSum
0
>>> theSum = theSum + 1
>>> theSum
1
>>> theSum = True
>>> theSum
True

The assignment statement theSum = 0 creates a variable called theSum and lets it hold the
reference to the data object 0 (see Figure 3). In general, the right-hand side of the assignment
statement is evaluated and a reference to the resulting data object is “assigned” to the name on
the left-hand side. At this point in our example, the type of the variable is integer as that is the type
of the data currently being referred to by thesum. If the type of the data changes (see Figure 4), as
shown above with the boolean value True, so does the type of the variable (thesum is now of the
type boolean). The assignment statement changes the reference being held by the variable. This is
a dynamic characteristic of Python. The same variable can refer to many different types of data.

图 3 Variables Hold References to Data Objects



图 4 Assignment Changes the Reference

1.7.1.2. 内建集合数据类型

In addition to the numeric and boolean classes, Python has a number of very powerful built-in
collection classes. Lists, strings, and tuples are ordered collections that are very similar in general
structure but have specific differences that must be understood for them to be used properly. Sets
and dictionaries are unordered collections.

A list is an ordered collection of zero or more references to Python data objects. Lists are written
as comma-delimited values enclosed in square brackets. The empty list is simply [ ]. Lists are
heterogeneous, meaning that the data objects need not all be from the same class and the
collection can be assigned to a variable as below. The following fragment shows a variety of
Python data objects in a list.

>>> [1,3,True,6.5]
[1, 3, True, 6.5]
>>> myList = [1,3,True,6.5]
>>> myList
[1, 3, True, 6.5]

Note that when Python evaluates a list, the list itself is returned. However, in order to remember
the list for later processing, its reference needs to be assigned to a variable.

Since lists are considered to be sequentially ordered, they support a number of operations that can
be applied to any Python sequence. Table 2 reviews these operations and the following session
gives examples of their use.

Operation Name Operator Explanation



indexing [ ] Access an element of a sequence
concatenation + Combine sequences together
repetition * Concatenate a repeated number of times
membership in Ask whether an item is in a sequence
length len Ask the number of items in the sequence
slicing [ : ] Extract a part of a sequence

表格 2 Operations on Any Sequence in Python

Note that the indices for lists (sequences) start counting with 0. The slice operation, myList[1:3],
returns a list of items starting with the item indexed by 1 up to but not including the item indexed
by 3.

Sometimes, you will want to initialize a list. This can quickly be accomplished by using repetition.
For example,

>>> myList = [0] * 6
>>> myList
[0, 0, 0, 0, 0, 0]

One very important aside relating to the repetition operator is that the result is a repetition of
references to the data objects in the sequence. This can best be seen by considering the following
session:

myList = [1,2,3,4]
A = [myList]*3
print(A)
myList[2]=45
print(A)

代码 3 Repetition of References (intro_3)

The variable A holds a collection of three references to the original list called myList. Note that a
change to one element of myList shows up in all three occurrences in A.

Lists support a number of methods that will be used to build data structures. Table 3 provides a
summary. Examples of their use follow.

Method Name Use Explanation
append alist.append(item) Adds a new item to the end of a list
insert alist.insert(i,item) Inserts an item at the ith position in a list
pop alist.pop() Removes and returns the last item in a list
pop alist.pop(i) Removes and returns the ith item in a list
sort alist.sort() Modifies a list to be sorted



reverse alist.reverse() Modifies a list to be in reverse order
del del alist[i] Deletes the item in the ith position
index alist.index(item) Returns the index of the first occurrence of item
count alist.count(item) Returns the number of occurrences of item
remove alist.remove(item) Removes the first occurrence of item

表格 3 Methods Provided by Lists in Python

myList = [1024, 3, True, 6.5]
myList.append(False)
print(myList)
myList.insert(2,4.5)
print(myList)
print(myList.pop())
print(myList)
print(myList.pop(1))
print(myList)
myList.pop(2)
print(myList)
myList.sort()
print(myList)
myList.reverse()
print(myList)
print(myList.count(6.5))
print(myList.index(4.5))
myList.remove(6.5)
print(myList)
del myList[0]
print(myList)

代码 4 Examples of List Methods (intro_5)

You can see that some of the methods, such as pop, return a value and also modify the list. Others,
such as reverse, simply modify the list with no return value. pop will default to the end of the
list but can also remove and return a specific item. The index range starting from 0 is again used
for these methods. You should also notice the familiar “dot” notation for asking an object to
invoke a method. myList.append(False) can be read as “ask the object myList to perform
its append method and send it the value False.” Even simple data objects such as integers can
invoke methods in this way.

>>> (54).__add__(21)
75
>>>

In this fragment we are asking the integer object 54 to execute its add method (called __add__ in



Python) and passing it 21 as the value to add. The result is the sum, 75. Of course, we usually
write this as 54+21. We will say much more about these methods later in this section.

One common Python function that is often discussed in conjunction with lists is the range
function. range produces a range object that represents a sequence of values. By using the list
function, it is possible to see the value of the range object as a list. This is illustrated below.

>>> range(10)
range(0, 10)
>>> list(range(10))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> range(5,10)
range(5, 10)
>>> list(range(5,10))
[5, 6, 7, 8, 9]
>>> list(range(5,10,2))
[5, 7, 9]
>>> list(range(10,1,-1))
[10, 9, 8, 7, 6, 5, 4, 3, 2]
>>>

The range object represents a sequence of integers. By default, it will start with 0. If you provide
more parameters, it will start and end at particular points and can even skip items. In our first
example, range(10), the sequence starts with 0 and goes up to but does not include 10. In our
second example, range(5,10) starts at 5 and goes up to but not including 10. range(5,10,2)
performs similarly but skips by twos (again, 10 is not included).

Strings are sequential collections of zero or more letters, numbers and other symbols. We call
these letters, numbers and other symbols characters. Literal string values are differentiated from
identifiers by using quotation marks (either single or double).

>>> "David"
'David'
>>> myName = "David"
>>> myName[3]
'i'
>>> myName*2
'DavidDavid'
>>> len(myName)
5
>>>

Since strings are sequences, all of the sequence operations described above work as you would



expect. In addition, strings have a number of methods, some of which are shown in Table 4. For
example,

>>> myName
'David'
>>> myName.upper()
'DAVID'
>>> myName.center(10)
' David '
>>> myName.find('v')
2
>>> myName.split('v')
['Da', 'id']

Of these, split will be very useful for processing data. split will take a string and return a list of
strings using the split character as a division point. In the example, v is the division point. If no
division is specified, the split method looks for whitespace characters such as tab, newline and
space.

Method Name Use Explanation
center astring.center(w) Returns a string centered in a field of size w
count astring.count(item) Returns the number of occurrences of item in the

string
ljust astring.ljust(w) Returns a string left-justified in a field of size w
lower astring.lower() Returns a string in all lowercase
rjust astring.rjust(w) Returns a string right-justified in a field of size

w
find astring.find(item) Returns the index of the first occurrence of item
split astring.split(schar) Splits a string into substrings at schar

表格 4 Methods Provided by Strings in Python

Amajor difference between lists and strings is that lists can be modified while strings cannot. This
is referred to as mutability. Lists are mutable; strings are immutable. For example, you can
change an item in a list by using indexing and assignment. With a string that change is not
allowed.

>>> myList
[1, 3, True, 6.5]
>>> myList[0]=2**10
>>> myList
[1024, 3, True, 6.5]
>>>
>>> myName



'David'
>>> myName[0]='X'

Traceback (most recent call last):
File "<pyshell#84>", line 1, in -toplevel-
myName[0]='X'

TypeError: object doesn't support item assignment
>>>

Tuples are very similar to lists in that they are heterogeneous sequences of data. The difference is
that a tuple is immutable, like a string. A tuple cannot be changed. Tuples are written as
comma-delimited values enclosed in parentheses. As sequences, they can use any operation
described above. For example,

>>> myTuple = (2,True,4.96)
>>> myTuple
(2, True, 4.96)
>>> len(myTuple)
3
>>> myTuple[0]
2
>>> myTuple * 3
(2, True, 4.96, 2, True, 4.96, 2, True, 4.96)
>>> myTuple[0:2]
(2, True)
>>>

However, if you try to change an item in a tuple, you will get an error. Note that the error message
provides location and reason for the problem.

>>> myTuple[1]=False

Traceback (most recent call last):
File "<pyshell#137>", line 1, in -toplevel-
myTuple[1]=False

TypeError: object doesn't support item assignment
>>>

A set is an unordered collection of zero or more immutable Python data objects. Sets do not allow
duplicates and are written as comma-delimited values enclosed in curly braces. The empty set is
represented by set(). Sets are heterogeneous, and the collection can be assigned to a variable as
below.



>>> {3,6,"cat",4.5,False}
{False, 4.5, 3, 6, 'cat'}
>>> mySet = {3,6,"cat",4.5,False}
>>> mySet
{False, 4.5, 3, 6, 'cat'}
>>>

Even though sets are not considered to be sequential, they do support a few of the familiar
operations presented earlier. Table 5 reviews these operations and the following session gives
examples of their use.

Operation Name Operator Explanation
membership in Set membership
length len Returns the cardinality of the set
| aset | otherset Returns a new set with all elements from both sets
& aset & otherset Returns a new set with only those elements common

to both sets
- aset - otherset Returns a new set with all items from the first set not

in second
<= aset <= otherset Asks whether all elements of the first set are in the

second
表格 5 Operations on a Set in Python

>>> mySet
{False, 4.5, 3, 6, 'cat'}
>>> len(mySet)
5
>>> False in mySet
True
>>> "dog" in mySet
False
>>>

Sets support a number of methods that should be familiar to those who have worked with them in
a mathematics setting. Table 6 provides a summary. Examples of their use follow. Note that
union, intersection, issubset, and difference all have operators that can be used as
well.

Method Name Use Explanation
union aset.union(otherset) Returns a new set with all elements from



both sets
intersection aset.intersection(otherse

t)
Returns a new set with only those
elements common to both sets

difference aset.difference(otherset) Returns a new set with all items from
first set not in second

issubset aset.issubset(otherset) Asks whether all elements of one set are
in the other

add aset.add(item) Adds item to the set
remove aset.remove(item) Removes item from the set
pop aset.pop() Removes an arbitrary element from the

set
clear aset.clear() Removes all elements from the set

表格 6 Methods Provided by Sets in Python

>>> mySet
{False, 4.5, 3, 6, 'cat'}
>>> yourSet = {99,3,100}
>>> mySet.union(yourSet)
{False, 4.5, 3, 100, 6, 'cat', 99}
>>> mySet | yourSet
{False, 4.5, 3, 100, 6, 'cat', 99}
>>> mySet.intersection(yourSet)
{3}
>>> mySet & yourSet
{3}
>>> mySet.difference(yourSet)
{False, 4.5, 6, 'cat'}
>>> mySet - yourSet
{False, 4.5, 6, 'cat'}
>>> {3,100}.issubset(yourSet)
True
>>> {3,100}<=yourSet
True
>>> mySet.add("house")
>>> mySet
{False, 4.5, 3, 6, 'house', 'cat'}
>>> mySet.remove(4.5)
>>> mySet
{False, 3, 6, 'house', 'cat'}
>>> mySet.pop()
False
>>> mySet
{3, 6, 'house', 'cat'}
>>> mySet.clear()



>>> mySet
set()
>>>

Our final Python collection is an unordered structure called a dictionary. Dictionaries are
collections of associated pairs of items where each pair consists of a key and a value. This
key-value pair is typically written as key:value. Dictionaries are written as comma-delimited
key:value pairs enclosed in curly braces. For example,

>>> capitals = {'Iowa':'DesMoines','Wisconsin':'Madison'}
>>> capitals
{'Wisconsin': 'Madison', 'Iowa': 'DesMoines'}
>>>

We can manipulate a dictionary by accessing a value via its key or by adding another key-value
pair. The syntax for access looks much like a sequence access except that instead of using the
index of the item we use the key value. To add a new value is similar.

capitals = {'Iowa':'DesMoines','Wisconsin':'Madison'}
print(capitals['Iowa'])
capitals['Utah']='SaltLakeCity'
print(capitals)
capitals['California']='Sacramento'
print(len(capitals))
for k in capitals:

print(capitals[k]," is the capital of ", k)

代码 5 Using a Dictionary (intro_7)

It is important to note that the dictionary is maintained in no particular order with respect to the
keys. The first pair added ('Utah': 'SaltLakeCity') was placed first in the dictionary and the
second pair added ('California': 'Sacramento') was placed last. The placement of a key is
dependent on the idea of“hashing,”which will be explained in more detail in Chapter 4. We also
show the length function performing the same role as with previous collections.

Dictionaries have both methods and operators. Table 7 and Table 8 describe them, and the session
shows them in action. The keys, values, and items methods all return objects that contain the
values of interest. You can use the list function to convert them to lists. You will also see that
there are two variations on the get method. If the key is not present in the dictionary, get will
return None. However, a second, optional parameter can specify a return value instead.

Operator Use Explanation
[] myDict[k] Returns the value associated with k, otherwise its an error



in key in adict Returns True if key is in the dictionary, False otherwise
del del adict[key] Removes the entry from the dictionary

表格 7 Operators Provided by Dictionaries in Python

>>> phoneext={'david':1410,'brad':1137}
>>> phoneext
{'brad': 1137, 'david': 1410}
>>> phoneext.keys()
dict_keys(['brad', 'david'])
>>> list(phoneext.keys())
['brad', 'david']
>>> phoneext.values()
dict_values([1137, 1410])
>>> list(phoneext.values())
[1137, 1410]
>>> phoneext.items()
dict_items([('brad', 1137), ('david', 1410)])
>>> list(phoneext.items())
[('brad', 1137), ('david', 1410)]
>>> phoneext.get("kent")
>>> phoneext.get("kent","NO ENTRY")
'NO ENTRY'
>>>

Method Name Use Explanation
keys adict.keys() Returns the keys of the dictionary in a dict_keys object
values adict.values() Returns the values of the dictionary in a dict_values

object
items adict.items() Returns the key-value pairs in a dict_items object
get adict.get(k) Returns the value associated with k, None otherwise
get adict.get(k,alt) Returns the value associated with k, alt otherwise

表格 8 Methods Provided by Dictionaries in Python

代码 6 (scratch_01_01)

1.7.2. 输入与输出

We often have a need to interact with users, either to get data or to provide some sort of result.



Most programs today use a dialog box as a way of asking the user to provide some type of input.
While Python does have a way to create dialog boxes, there is a much simpler function that we
can use. Python provides us with a function that allows us to ask a user to enter some data and
returns a reference to the data in the form of a string. The function is called input.

Python’s input function takes a single parameter that is a string. This string is often called the
prompt because it contains some helpful text prompting the user to enter something. For example,
you might call input as follows:

aName = input('Please enter your name: ')

Now whatever the user types after the prompt will be stored in the aName variable. Using the
input function, we can easily write instructions that will prompt the user to enter data and then
incorporate that data into further processing. For example, in the following two statements, the
first asks the user for their name and the second prints the result of some simple processing based
on the string that is provided.

aName = input("Please enter your name ")
print("Your name in all capitals is",aName.upper(),

"and has length", len(aName))

代码 7 The input Function Returns a String (strstuff)

It is important to note that the value returned from the input function will be a string representing
the exact characters that were entered after the prompt. If you want this string interpreted as
another type, you must provide the type conversion explicitly. In the statements below, the string
that is entered by the user is converted to a float so that it can be used in further arithmetic
processing.

sradius = input("Please enter the radius of the circle ")
radius = float(sradius)
diameter = 2 * radius

1.7.2.1. 字符串格式化输出

We have already seen that the print function provides a very simple way to output values from a
Python program. print takes zero or more parameters and displays them using a single blank as
the default separator. It is possible to change the separator character by setting the sep argument.
In addition, each print ends with a newline character by default. This behavior can be changed by
setting the end argument. These variations are shown in the following session:



>>> print("Hello")
Hello
>>> print("Hello","World")
Hello World
>>> print("Hello","World", sep="***")
Hello***World
>>> print("Hello","World", end="***")
Hello World***>>>

It is often useful to have more control over the look of your output. Fortunately, Python provides
us with an alternative called formatted strings. A formatted string is a template in which words or
spaces that will remain constant are combined with placeholders for variables that will be inserted
into the string. For example, the statement

print(aName, "is", age, "years old.")

contains the words is and years old, but the name and the age will change depending on the
variable values at the time of execution. Using a formatted string, we write the previous statement
as

print("%s is %d years old." % (aName, age))

This simple example illustrates a new string expression. The % operator is a string operator called
the format operator. The left side of the expression holds the template or format string, and the
right side holds a collection of values that will be substituted into the format string. Note that the
number of values in the collection on the right side corresponds with the number of % characters in
the format string. Values are taken—in order, left to right—from the collection and inserted into
the format string.

Let’s look at both sides of this formatting expression in more detail. The format string may contain
one or more conversion specifications. A conversion character tells the format operator what type
of value is going to be inserted into that position in the string. In the example above, the %s
specifies a string, while the %d specifies an integer. Other possible type specifications include i, u,
f, e, g, c, or %. Table 9 summarizes all of the various type specifications.

Character Output Format
d, i Integer
u Unsigned integer
f Floating point as m.ddddd
e Floating point as m.ddddde+/-xx
E Floating point as m.dddddE+/-xx
g Use %e for exponents less than −4 or greater than +5, otherwise use %f



c Single character
s String, or any Python data object that can be converted to a string by using the str

function.
% Insert a literal % character

表格 9 String Formatting Conversion Characters

In addition to the format character, you can also include a format modifier between the % and the
format character. Format modifiers may be used to left-justify or right-justifiy the value with a
specified field width. Modifiers can also be used to specify the field width along with a number of
digits after the decimal point. Table 10 explains these format modifiers

Modifier Example Description
number %20d Put the value in a field width of 20
- %-20d Put the value in a field 20 characters wide, left-justified
+ %+20d Put the value in a field 20 characters wide, right-justified
0 %020d Put the value in a field 20 characters wide, fill in with leading zeros.
. %20.2f Put the value in a field 20 characters wide with 2 characters to the

right of the decimal point.
(name) %(name)d Get the value from the supplied dictionary using name as the key.

表格 10 Additional formatting options

The right side of the format operator is a collection of values that will be inserted into the format
string. The collection will be either a tuple or a dictionary. If the collection is a tuple, the values
are inserted in order of position. That is, the first element in the tuple corresponds to the first
format character in the format string. If the collection is a dictionary, the values are inserted
according to their keys. In this case all format characters must use the (name) modifier to specify
the name of the key.

>>> price = 24
>>> item = "banana"
>>> print("The %s costs %d cents"%(item,price))
The banana costs 24 cents
>>> print("The %+10s costs %5.2f cents"%(item,price))
The banana costs 24.00 cents
>>> print("The %+10s costs %10.2f cents"%(item,price))
The banana costs 24.00 cents
>>> itemdict = {"item":"banana","cost":24}
>>> print("The %(item)s costs %(cost)7.1f cents"%itemdict)
The banana costs 24.0 cents
>>>

In addition to format strings that use format characters and format modifiers, Python strings also
include a format method that can be used in conjunction with a new Formatter class to



implement complex string formatting. More about these features can be found in the Python
library reference manual.

1.7.3. 控制结构

As we noted earlier, algorithms require two important control structures: iteration and selection.
Both of these are supported by Python in various forms. The programmer can choose the
statement that is most useful for the given circumstance.

For iteration, Python provides a standard while statement and a very powerful for statement.
The while statement repeats a body of code as long as a condition is true. For example,

>>> counter = 1
>>> while counter <= 5:
... print("Hello, world")
... counter = counter + 1

Hello, world
Hello, world
Hello, world
Hello, world
Hello, world

prints out the phrase “Hello, world” five times. The condition on the while statement is
evaluated at the start of each repetition. If the condition is True, the body of the statement will
execute. It is easy to see the structure of a Python while statement due to the mandatory
indentation pattern that the language enforces.

The while statement is a very general purpose iterative structure that we will use in a number of
different algorithms. In many cases, a compound condition will control the iteration. A fragment
such as

while counter <= 10 and not done:
...

would cause the body of the statement to be executed only in the case where both parts of the
condition are satisfied. The value of the variable counter would need to be less than or equal to
10 and the value of the variable done would need to be False (not False is True) so that True
and True results in True.



Even though this type of construct is very useful in a wide variety of situations, another iterative
structure, the for statement, can be used in conjunction with many of the Python collections. The
for statement can be used to iterate over the members of a collection, so long as the collection is
a sequence. So, for example,

>>> for item in [1,3,6,2,5]:
... print(item)
...
1
3
6
2
5

assigns the variable item to be each successive value in the list [1,3,6,2,5]. The body of the
iteration is then executed. This works for any collection that is a sequence (lists, tuples, and
strings).

A common use of the for statement is to implement definite iteration over a range of values. The
statement

>>> for item in range(5):
... print(item**2)
...
0
1
4
9
16
>>>

will perform the print function five times. The range function will return a range object
representing the sequence 0,1,2,3,4 and each value will be assigned to the variable item. This
value is then squared and printed.

The other very useful version of this iteration structure is used to process each character of a string.
The following code fragment iterates over a list of strings and for each string processes each
character by appending it to a list. The result is a list of all the letters in all of the words.

wordlist = ['cat','dog','rabbit']
letterlist = [ ]
for aword in wordlist:

for aletter in aword:



letterlist.append(aletter)
print(letterlist)

代码 8 Processing Each Character in a List of Strings (intro_8)

Selection statements allow programmers to ask questions and then, based on the result, perform
different actions. Most programming languages provide two versions of this useful construct: the
ifelse and the if. A simple example of a binary selection uses the ifelse statement.

if n<0:
print("Sorry, value is negative")

else:
print(math.sqrt(n))

In this example, the object referred to by n is checked to see if it is less than zero. If it is, a
message is printed stating that it is negative. If it is not, the statement performs the else clause
and computes the square root.

Selection constructs, as with any control construct, can be nested so that the result of one question
helps decide whether to ask the next. For example, assume that score is a variable holding a
reference to a score for a computer science test.

if score >= 90:
print('A')

else:
if score >=80:

print('B')
else:

if score >= 70:
print('C')

else:
if score >= 60:

print('D')
else:

print('F')

This fragment will classify a value called score by printing the letter grade earned. If the score is
greater than or equal to 90, the statement will print A. If it is not (else), the next question is asked.
If the score is greater than or equal to 80 then it must be between 80 and 89 since the answer to the
first question was false. In this case print B is printed. You can see that the Python indentation
pattern helps to make sense of the association between if and else without requiring any
additional syntactic elements.



An alternative syntax for this type of nested selection uses the elif keyword. The else and the next
if are combined so as to eliminate the need for additional nesting levels. Note that the final else is
still necessary to provide the default case if all other conditions fail.

if score >= 90:
print('A')

elif score >=80:
print('B')

elif score >= 70:
print('C')

elif score >= 60:
print('D')

else:
print('F')

Python also has a single way selection construct, the if statement. With this statement, if the
condition is true, an action is performed. In the case where the condition is false, processing
simply continues on to the next statement after the if. For example, the following fragment will
first check to see if the value of a variable n is negative. If it is, then it is modified by the absolute
value function. Regardless, the next action is to compute the square root.

if n<0:
n = abs(n)

print(math.sqrt(n))

Self Check
Test your understanding of what we have covered so far by trying the following exercise. Modify
the code from Activecode 8 so that the final list only contains a single copy of each letter.

# the answer is: ['c', 'a', 't', 'd', 'o', 'g', 'r', 'b', 'i']

代码 9 (self_check_1)

Returning to lists, there is an alternative method for creating a list that uses iteration and selection
constructs. The is known as a list comprehension. A list comprehension allows you to easily create
a list based on some processing or selection criteria. For example, if we would like to create a list
of the first 10 perfect squares, we could use a for statement:

>>> sqlist=[]
>>> for x in range(1,11):

sqlist.append(x*x)



>>> sqlist
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
>>>

Using a list comprehension, we can do this in one step as

>>> sqlist=[x*x for x in range(1,11)]
>>> sqlist
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
>>>

The variable x takes on the values 1 through 10 as specified by the for construct. The value of
x*x is then computed and added to the list that is being constructed. The general syntax for a list
comprehension also allows a selection criteria to be added so that only certain items get added.
For example,

>>> sqlist=[x*x for x in range(1,11) if x%2 != 0]
>>> sqlist
[1, 9, 25, 49, 81]
>>>

This list comprehension constructed a list that only contained the squares of the odd numbers in
the range from 1 to 10. Any sequence that supports iteration can be used within a list
comprehension to construct a new list.

>>>[ch.upper() for ch in 'comprehension' if ch not in 'aeiou']
['C', 'M', 'P', 'R', 'H', 'N', 'S', 'N']
>>>

Self Check
Test your understanding of list comprehensions by redoing Activecode 8 using list
comprehensions. For an extra challence, see if you can figure out how to remove the duplicates.

# the answer is: ['c', 'a', 't', 'd', 'o', 'g', 'r', 'a', 'b', 'b', 'i',
't']

代码 10 (self_check_2)



1.7.4. 异常处理

There are two types of errors that typically occur when writing programs. The first, known as a
syntax error, simply means that the programmer has made a mistake in the structure of a statement
or expression. For example, it is incorrect to write a for statement and forget the colon.

>>> for i in range(10)
SyntaxError: invalid syntax (<pyshell#61>, line 1)

In this case, the Python interpreter has found that it cannot complete the processing of this
instruction since it does not conform to the rules of the language. Syntax errors are usually more
frequent when you are first learning a language.

The other type of error, known as a logic error, denotes a situation where the program executes but
gives the wrong result. This can be due to an error in the underlying algorithm or an error in your
translation of that algorithm. In some cases, logic errors lead to very bad situations such as trying
to divide by zero or trying to access an item in a list where the index of the item is outside the
bounds of the list. In this case, the logic error leads to a runtime error that causes the program to
terminate. These types of runtime errors are typically called exceptions.

Most of the time, beginning programmers simply think of exceptions as fatal runtime errors that
cause the end of execution. However, most programming languages provide a way to deal with
these errors that will allow the programmer to have some type of intervention if they so choose. In
addition, programmers can create their own exceptions if they detect a situation in the program
execution that warrants it.

When an exception occurs, we say that it has been “raised.” You can “handle” the exception
that has been raised by using a try statement. For example, consider the following session that
asks the user for an integer and then calls the square root function from the math library. If the
user enters a value that is greater than or equal to 0, the print will show the square root. However,
if the user enters a negative value, the square root function will report a ValueError exception.

>>> anumber = int(input("Please enter an integer "))
Please enter an integer -23
>>> print(math.sqrt(anumber))
Traceback (most recent call last):
File "<pyshell#102>", line 1, in <module>
print(math.sqrt(anumber))

ValueError: math domain error
>>>

We can handle this exception by calling the print function from within a try block. A



corresponding except block “catches” the exception and prints a message back to the user in
the event that an exception occurs. For example:

>>> try:
print(math.sqrt(anumber))

except:
print("Bad Value for square root")
print("Using absolute value instead")
print(math.sqrt(abs(anumber)))

Bad Value for square root
Using absolute value instead
4.79583152331
>>>

will catch the fact that an exception is raised by sqrt and will instead print the messages back to
the user and use the absolute value to be sure that we are taking the square root of a non-negative
number. This means that the program will not terminate but instead will continue on to the next
statements.

It is also possible for a programmer to cause a runtime exception by using the raise statement.
For example, instead of calling the square root function with a negative number, we could have
checked the value first and then raised our own exception. The code fragment below shows the
result of creating a new RuntimeError exception. Note that the program would still terminate
but now the exception that caused the termination is something explicitly created by the
programmer.

>>> if anumber < 0:
... raise RuntimeError("You can't use a negative number")
... else:
... print(math.sqrt(anumber))
...
Traceback (most recent call last):
File "<stdin>", line 2, in <module>

RuntimeError: You can't use a negative number
>>>

There are many kinds of exceptions that can be raised in addition to the RuntimeError shown
above. See the Python reference manual for a list of all the available exception types and for how
to create your own.



1.7.5. 定义函数

The earlier example of procedural abstraction called upon a Python function called sqrt from the
math module to compute the square root. In general, we can hide the details of any computation
by defining a function. A function definition requires a name, a group of parameters, and a body. It
may also explicitly return a value. For example, the simple function defined below returns the
square of the value you pass into it.

>>> def square(n):
... return n**2
...
>>> square(3)
9
>>> square(square(3))
81
>>>

The syntax for this function definition includes the name, square, and a parenthesized list of
formal parameters. For this function, n is the only formal parameter, which suggests that square
needs only one piece of data to do its work. The details, hidden“inside the box,”simply compute
the result of n**2 and return it. We can invoke or call the square function by asking the Python
environment to evaluate it, passing an actual parameter value, in this case, 3. Note that the call to
square returns an integer that can in turn be passed to another invocation.

We could implement our own square root function by using a well-known technique called
“Newton’s Method.” Newton’s Method for approximating square roots performs an iterative
computation that converges on the correct value. The equation newguess=1/2 ∗
(oldguess+n/oldguess) takes a value n and repeatedly guesses the square root by making each
newguess the oldguess in the subsequent iteration. The initial guess used here is n2. Listing 1
shows a function definition that accepts a value n and returns the square root of n after making 20
guesses. Again, the details of Newton’s Method are hidden inside the function definition and the
user does not have to know anything about the implementation to use the function for its intended
purpose. Listing 1 also shows the use of the # character as a comment marker. Any characters that
follow the # on a line are ignored.

Listing 1

def squareroot(n):
root = n/2 #initial guess will be 1/2 of n
for k in range(20):

root = (1/2)*(root + (n / root))



return root

>>>squareroot(9)
3.0
>>>squareroot(4563)
67.549981495186216
>>>

Self Check
Here’ s a self check that really covers everything so far. You may have heard of the infinite
monkey theorem? The theorem states that a monkey hitting keys at random on a typewriter
keyboard for an infinite amount of time will almost surely type a given text, such as the complete
works of William Shakespeare. Well, suppose we replace a monkey with a Python function. How
long do you think it would take for a Python function to generate just one sentence of Shakespeare?
The sentence we’ll shoot for is: “methinks it is like a weasel”

You’re not going to want to run this one in the browser, so fire up your favorite Python IDE. The
way we’ll simulate this is to write a function that generates a string that is 27 characters long by
choosing random letters from the 26 letters in the alphabet plus the space. We’ ll write another
function that will score each generated string by comparing the randomly generated string to the
goal.

A third function will repeatedly call generate and score, then if 100% of the letters are correct we
are done. If the letters are not correct then we will generate a whole new string.To make it easier to
follow your program’s progress this third function should print out the best string generated so far
and its score every 1000 tries.

Self Check Challenge
See if you can improve upon the program in the self check by keeping letters that are correct and
only modifying one character in the best string so far. This is a type of algorithm in the class of
‘hill climbing’ algorithms, that is we only keep the result if it is better than the previous one.

1.7.6. Python面向对象编程：定义类

We stated earlier that Python is an object-oriented programming language. So far, we have used a
number of built-in classes to show examples of data and control structures. One of the most
powerful features in an object-oriented programming language is the ability to allow a
programmer (problem solver) to create new classes that model data that is needed to solve the
problem.

Remember that we use abstract data types to provide the logical description of what a data object
looks like (its state) and what it can do (its methods). By building a class that implements an



abstract data type, a programmer can take advantage of the abstraction process and at the same
time provide the details necessary to actually use the abstraction in a program. Whenever we want
to implement an abstract data type, we will do so with a new class.

1.7.6.1. 示例：Fraction类

A very common example to show the details of implementing a user-defined class is to construct a
class to implement the abstract data type Fraction. We have already seen that Python provides a
number of numeric classes for our use. There are times, however, that it would be most
appropriate to be able to create data objects that “look like” fractions.

A fraction such as 3/5 consists of two parts. The top value, known as the numerator, can be any
integer. The bottom value, called the denominator, can be any integer greater than 0 (negative
fractions have a negative numerator). Although it is possible to create a floating point
approximation for any fraction, in this case we would like to represent the fraction as an exact
value.

The operations for the Fraction type will allow a Fraction data object to behave like any
other numeric value. We need to be able to add, subtract, multiply, and divide fractions. We also
want to be able to show fractions using the standard “slash” form, for example 3/5. In addition,
all fraction methods should return results in their lowest terms so that no matter what computation
is performed, we always end up with the most common form.

In Python, we define a new class by providing a name and a set of method definitions that are
syntactically similar to function definitions. For this example,

class Fraction:

#the methods go here

provides the framework for us to define the methods. The first method that all classes should
provide is the constructor. The constructor defines the way in which data objects are created. To
create a Fraction object, we will need to provide two pieces of data, the numerator and the
denominator. In Python, the constructor method is always called __init__ (two underscores
before and after init) and is shown in Listing 2.

Listing 2

class Fraction:

def __init__(self,top,bottom):



self.num = top
self.den = bottom

Notice that the formal parameter list contains three items (self, top, bottom). self is a special
parameter that will always be used as a reference back to the object itself. It must always be the
first formal parameter; however, it will never be given an actual parameter value upon invocation.
As described earlier, fractions require two pieces of state data, the numerator and the denominator.
The notation self.num in the constructor defines the fraction object to have an internal data
object called num as part of its state. Likewise, self.den creates the denominator. The values of
the two formal parameters are initially assigned to the state, allowing the new fraction object to
know its starting value.

To create an instance of the Fraction class, we must invoke the constructor. This happens by
using the name of the class and passing actual values for the necessary state (note that we never
directly invoke __init__). For example,

myfraction = Fraction(3,5)

creates an object called myfraction representing the fraction 3/5 (three-fifths). Figure 5 shows
this object as it is now implemented.

图 5 An Instance of the Fraction Class
The next thing we need to do is implement the behavior that the abstract data type requires. To
begin, consider what happens when we try to print a Fraction object.

>>> myf = Fraction(3,5)
>>> print(myf)
<__main__.Fraction instance at 0x409b1acc>

The fraction object, myf, does not know how to respond to this request to print. The print function



requires that the object convert itself into a string so that the string can be written to the output.
The only choice myf has is to show the actual reference that is stored in the variable (the address
itself). This is not what we want.

There are two ways we can solve this problem. One is to define a method called show that will
allow the Fraction object to print itself as a string. We can implement this method as shown in
Listing 3. If we create a Fraction object as before, we can ask it to show itself, in other words,
print itself in the proper format. Unfortunately, this does not work in general. In order to make
printing work properly, we need to tell the Fraction class how to convert itself into a string. This is
what the print function needs in order to do its job.

Listing 3

def show(self):
print(self.num,"/",self.den)

>>> myf = Fraction(3,5)
>>> myf.show()
3 / 5
>>> print(myf)
<__main__.Fraction instance at 0x40bce9ac>
>>>

In Python, all classes have a set of standard methods that are provided but may not work properly.
One of these, __str__, is the method to convert an object into a string. The default implementation
for this method is to return the instance address string as we have already seen. What we need to
do is provide a “better” implementation for this method. We will say that this implementation
overrides the previous one, or that it redefines the method’s behavior.

To do this, we simply define a method with the name __str__ and give it a new implementation as
shown in Listing 4. This definition does not need any other information except the special
parameter self. In turn, the method will build a string representation by converting each piece of
internal state data to a string and then placing a / character in between the strings using string
concatenation. The resulting string will be returned any time a Fraction object is asked to convert
itself to a string. Notice the various ways that this function is used.

Listing 4

def __str__(self):
return str(self.num)+"/"+str(self.den)

>>> myf = Fraction(3,5)
>>> print(myf)
3/5
>>> print("I ate", myf, "of the pizza")



I ate 3/5 of the pizza
>>> myf.__str__()
'3/5'
>>> str(myf)
'3/5'
>>>

We can override many other methods for our new Fraction class. Some of the most important of
these are the basic arithmetic operations. We would like to be able to create two Fraction objects
and then add them together using the standard “+” notation. At this point, if we try to add two
fractions, we get the following:

>>> f1 = Fraction(1,4)
>>> f2 = Fraction(1,2)
>>> f1+f2

Traceback (most recent call last):
File "<pyshell#173>", line 1, in -toplevel-
f1+f2

TypeError: unsupported operand type(s) for +:
'instance' and 'instance'

>>>

If you look closely at the error, you see that the problem is that the “+” operator does not
understand the Fraction operands.

We can fix this by providing the Fraction class with a method that overrides the addition method.
In Python, this method is called __add__ and it requires two parameters. The first, self, is always
needed, and the second represents the other operand in the expression. For example,

f1.__add__(f2)

would ask the Fraction object f1 to add the Fraction object f2 to itself. This can be written in the
standard notation, f1+f2.

Two fractions must have the same denominator to be added. The easiest way to make sure they
have the same denominator is to simply use the product of the two denominators as a common
denominator so that a/b+c/d=ad/bd+cb/bd=(ad+cb)/bd The implementation is shown in Listing 5.
The addition function returns a new Fraction object with the numerator and denominator of the
sum. We can use this method by writing a standard arithmetic expression involving fractions,
assigning the result of the addition, and then printing our result.



Listing 5

def __add__(self,otherfraction):

newnum = self.num*otherfraction.den + self.den*otherfraction.num
newden = self.den * otherfraction.den

return Fraction(newnum,newden)

>>> f1=Fraction(1,4)
>>> f2=Fraction(1,2)
>>> f3=f1+f2
>>> print(f3)
6/8
>>>

The addition method works as we desire, but one thing could be better. Note that 6/8 is the correct
result (1/4+1/2) but that it is not in the “lowest terms” representation. The best representation
would be 3/4. In order to be sure that our results are always in the lowest terms, we need a helper
function that knows how to reduce fractions. This function will need to look for the greatest
common divisor, or GCD. We can then divide the numerator and the denominator by the GCD and
the result will be reduced to lowest terms.

The best-known algorithm for finding a greatest common divisor is Euclid’s Algorithm, which
will be discussed in detail in Chapter 8. Euclid’ s Algorithm states that the greatest common
divisor of two integers m and n is n if n divides m evenly. However, if n does not divide m evenly,
then the answer is the greatest common divisor of n and the remainder of m divided by n. We will
simply provide an iterative implementation here (see ActiveCode 1). Note that this
implementation of the GCD algorithm only works when the denominator is positive. This is
acceptable for our fraction class because we have said that a negative fraction will be represented
by a negative numerator.

def gcd(m,n):
while m%n != 0:

oldm = m
oldn = n

m = oldn
n = oldm%oldn

return n

print gcd(20,10)



代码 11 The Greatest Common Divisor Function (gcd_cl)

Now we can use this function to help reduce any fraction. To put a fraction in lowest terms, we
will divide the numerator and the denominator by their greatest common divisor. So, for the
fraction 6/8, the greatest common divisor is 2. Dividing the top and the bottom by 2 creates a new
fraction, 3/4 (see Listing 6).

Listing 6

def __add__(self,otherfraction):
newnum = self.num*otherfraction.den + self.den*otherfraction.num
newden = self.den * otherfraction.den
common = gcd(newnum,newden)

return Fraction(newnum//common,newden//common)

>>> f1=Fraction(1,4)
>>> f2=Fraction(1,2)
>>> f3=f1+f2
>>> print(f3)
3/4
>>>

图 6 An Instance of the Fraction Class with Two Methods

Our Fraction object now has two very useful methods and looks like Figure 6. An additional group
of methods that we need to include in our example Fraction class will allow two fractions to
compare themselves to one another. Assume we have two Fraction objects, f1 and f2. f1==f2 will
only be True if they are references to the same object. Two different objects with the same
numerators and denominators would not be equal under this implementation. This is called
shallow equality (see Figure 7).



图 7 Shallow Equality Versus Deep Equality

We can create deep equality (see Figure 7)–equality by the same value, not the same reference–
by overriding the __eq__ method. The __eq__ method is another standard method available in any
class. The __eq__ method compares two objects and returns True if their values are the same,
False otherwise.

In the Fraction class, we can implement the __eq__ method by again putting the two fractions in
common terms and then comparing the numerators (see Listing 7). It is important to note that
there are other relational operators that can be overridden. For example, the __le__ method
provides the less than or equal functionality.



Listing 7

def __eq__(self, other):
firstnum = self.num * other.den
secondnum = other.num * self.den

return firstnum == secondnum

The complete Fraction class, up to this point, is shown in ActiveCode 2. We leave the remaining
arithmetic and relational methods as exercises.

Self Check
To make sure you understand how operators are implemented in Python classes, and how to
properly write methods, write some methods to implement *, /, and - . Also implement comparison
operators > and <

代码 12 (self_check_4)

1.7.6.2. 继承：逻辑门与门电路

Our final section will introduce another important aspect of object-oriented programming.
Inheritance is the ability for one class to be related to another class in much the same way that
people can be related to one another. Children inherit characteristics from their parents. Similarly,
Python child classes can inherit characteristic data and behavior from a parent class. These classes
are often referred to as subclasses and superclasses.

Figure 8 shows the built-in Python collections and their relationships to one another. We call a
relationship structure such as this an inheritance hierarchy. For example, the list is a child of the
sequential collection. In this case, we call the list the child and the sequence the parent (or
subclass list and superclass sequence). This is often referred to as an IS-A Relationship (the list
IS-A sequential collection). This implies that lists inherit important characteristics from sequences,
namely the ordering of the underlying data and operations such as concatenation, repetition, and
indexing.



图 8 An Inheritance Hierarchy for Python Collections

Lists, tuples, and strings are all types of sequential collections. They all inherit common data
organization and operations. However, each of them is distinct based on whether the data is
homogeneous and whether the collection is immutable. The children all gain from their parents
but distinguish themselves by adding additional characteristics.

By organizing classes in this hierarchical fashion, object-oriented programming languages allow
previously written code to be extended to meet the needs of a new situation. In addition, by
organizing data in this hierarchical manner, we can better understand the relationships that exist.
We can be more efficient in building our abstract representations.

To explore this idea further, we will construct a simulation, an application to simulate digital
circuits. The basic building block for this simulation will be the logic gate. These electronic
switches represent boolean algebra relationships between their input and their output. In general,
gates have a single output line. The value of the output is dependent on the values given on the
input lines.

AND gates have two input lines, each of which can be either 0 or 1 (representing False or True,
repectively). If both of the input lines have the value 1, the resulting output is 1. However, if either
or both of the input lines is 0, the result is 0. OR gates also have two input lines and produce a 1 if
one or both of the input values is a 1. In the case where both input lines are 0, the result is 0.

NOT gates differ from the other two gates in that they only have a single input line. The output
value is simply the opposite of the input value. If 0 appears on the input, 1 is produced on the
output. Similarly, 1 produces 0. Figure 9 shows how each of these gates is typically represented.
Each gate also has a truth table of values showing the input-to-output mapping that is performed
by the gate.
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图 9 Three Types of Logic Gates

By combining these gates in various patterns and then applying a set of input values, we can build
circuits that have logical functions. Figure 10 shows a circuit consisting of two AND gates, one
OR gate, and a single NOT gate. The output lines from the two AND gates feed directly into the
OR gate, and the resulting output from the OR gate is given to the NOT gate. If we apply a set of
input values to the four input lines (two for each AND gate), the values are processed and a result
appears at the output of the NOT gate. Figure 10 also shows an example with values.
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图 10 Circuit

In order to implement a circuit, we will first build a representation for logic gates. Logic gates are
easily organized into a class inheritance hierarchy as shown in Figure 11. At the top of the
hierarchy, the LogicGate class represents the most general characteristics of logic gates: namely, a
label for the gate and an output line. The next level of subclasses breaks the logic gates into two
families, those that have one input line and those that have two. Below that, the specific logic
functions of each appear.
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图 11 An Inheritance Hierarchy for Logic Gates

We can now start to implement the classes by starting with the most general, LogicGate. As noted
earlier, each gate has a label for identification and a single output line. In addition, we need
methods to allow a user of a gate to ask the gate for its label.

The other behavior that every logic gate needs is the ability to know its output value. This will
require that the gate perform the appropriate logic based on the current input. In order to produce
output, the gate needs to know specifically what that logic is. This means calling a method to
perform the logic computation. The complete class is shown in Listing 8.

Listing 8

class LogicGate:

def __init__(self,n):
self.label = n
self.output = None

def getLabel(self):
return self.label

def getOutput(self):
self.output = self.performGateLogic()
return self.output

At this point, we will not implement the performGateLogic function. The reason for this is that we
do not know how each gate will perform its own logic operation. Those details will be included by
each individual gate that is added to the hierarchy. This is a very powerful idea in object-oriented
programming. We are writing a method that will use code that does not exist yet. The parameter
self is a reference to the actual gate object invoking the method. Any new logic gate that gets
added to the hierarchy will simply need to implement the performGateLogic function and it will



be used at the appropriate time. Once done, the gate can provide its output value. This ability to
extend a hierarchy that currently exists and provide the specific functions that the hierarchy needs
to use the new class is extremely important for reusing existing code.

We categorized the logic gates based on the number of input lines. The AND gate has two input
lines. The OR gate also has two input lines. NOT gates have one input line. The BinaryGate class
will be a subclass of LogicGate and will add two input lines. The UnaryGate class will also
subclass LogicGate but will have only a single input line. In computer circuit design, these lines
are sometimes called “pins” so we will use that terminology in our implementation.

Listing 9

class BinaryGate(LogicGate):

def __init__(self,n):
LogicGate.__init__(self,n)

self.pinA = None
self.pinB = None

def getPinA(self):
return int(input("Enter Pin A input for gate "+

self.getLabel()+"-->"))

def getPinB(self):
return int(input("Enter Pin B input for gate "+

self.getLabel()+"-->"))

Listing 10

class UnaryGate(LogicGate):

def __init__(self,n):
LogicGate.__init__(self,n)

self.pin = None

def getPin(self):
return int(input("Enter Pin input for gate "+

self.getLabel()+"-->"))

Listing 9 and Listing 10 implement these two classes. The constructors in both of these classes
start with an explicit call to the constructor of the parent class using the parent’s __init__ method.



When creating an instance of the BinaryGate class, we first want to initialize any data items that
are inherited from LogicGate. In this case, that means the label for the gate. The constructor then
goes on to add the two input lines (pinA and pinB). This is a very common pattern that you should
always use when building class hierarchies. Child class constructors need to call parent class
constructors and then move on to their own distinguishing data.

Python also has a function called super which can be used in place of explicitly naming the parent
class. This is a more general mechanism, and is widely used, especially when a class has more
than one parent. But, this is not something we are going to discuss in this introduction. For
example in our example above LogicGate.__init__(self,n) could be replaced with
super(UnaryGate,self).__init__(n).

The only behavior that the BinaryGate class adds is the ability to get the values from the two input
lines. Since these values come from some external place, we will simply ask the user via an input
statement to provide them. The same implementation occurs for the UnaryGate class except that
there is only one input line.

Now that we have a general class for gates depending on the number of input lines, we can build
specific gates that have unique behavior. For example, the AndGate class will be a subclass of
BinaryGate since AND gates have two input lines. As before, the first line of the constructor calls
upon the parent class constructor (BinaryGate), which in turn calls its parent class constructor
(LogicGate). Note that the AndGate class does not provide any new data since it inherits two input
lines, one output line, and a label.

Listing 11

class AndGate(BinaryGate):

def __init__(self,n):
BinaryGate.__init__(self,n)

def performGateLogic(self):

a = self.getPinA()
b = self.getPinB()
if a==1 and b==1:

return 1
else:

return 0

The only thing AndGate needs to add is the specific behavior that performs the boolean operation
that was described earlier. This is the place where we can provide the performGateLogic method.
For an AND gate, this method first must get the two input values and then only return 1 if both
input values are 1. The complete class is shown in Listing 11.



We can show the AndGate class in action by creating an instance and asking it to compute its
output. The following session shows an AndGate object, g1, that has an internal label "G1". When
we invoke the getOutput method, the object must first call its performGateLogic method which in
turn queries the two input lines. Once the values are provided, the correct output is shown.

>>> g1 = AndGate("G1")
>>> g1.getOutput()
Enter Pin A input for gate G1-->1
Enter Pin B input for gate G1-->0
0

The same development can be done for OR gates and NOT gates. The OrGate class will also be a
subclass of BinaryGate and the NotGate class will extend the UnaryGate class. Both of these
classes will need to provide their own performGateLogic functions, as this is their specific
behavior.

We can use a single gate by first constructing an instance of one of the gate classes and then
asking the gate for its output (which will in turn need inputs to be provided). For example:

>>> g2 = OrGate("G2")
>>> g2.getOutput()
Enter Pin A input for gate G2-->1
Enter Pin B input for gate G2-->1
1
>>> g2.getOutput()
Enter Pin A input for gate G2-->0
Enter Pin B input for gate G2-->0
0
>>> g3 = NotGate("G3")
>>> g3.getOutput()
Enter Pin input for gate G3-->0
1

Now that we have the basic gates working, we can turn our attention to building circuits. In order
to create a circuit, we need to connect gates together, the output of one flowing into the input of
another. To do this, we will implement a new class called Connector.

The Connector class will not reside in the gate hierarchy. It will, however, use the gate hierarchy
in that each connector will have two gates, one on either end (see Figure 12). This relationship is
very important in object-oriented programming. It is called the HAS-A Relationship. Recall earlier
that we used the phrase “IS-A Relationship” to say that a child class is related to a parent class,
for example UnaryGate IS-A LogicGate.



图 12 A Connector Connects the Output of One Gate to the Input of Another

Now, with the Connector class, we say that a Connector HAS-A LogicGate meaning that
connectors will have instances of the LogicGate class within them but are not part of the hierarchy.
When designing classes, it is very important to distinguish between those that have the IS-A
relationship (which requires inheritance) and those that have HAS-A relationships (with no
inheritance).

Listing 12 shows the Connector class. The two gate instances within each connector object will be
referred to as the fromgate and the togate, recognizing that data values will “flow” from the
output of one gate into an input line of the next. The call to setNextPin is very important for
making connections (see Listing 13). We need to add this method to our gate classes so that each
togate can choose the proper input line for the connection.

Listing 12

class Connector:

def __init__(self, fgate, tgate):
self.fromgate = fgate
self.togate = tgate

tgate.setNextPin(self)

def getFrom(self):
return self.fromgate

def getTo(self):
return self.togate

In the BinaryGate class, for gates with two possible input lines, the connector must be connected
to only one line. If both of them are available, we will choose pinA by default. If pinA is already
connected, then we will choose pinB. It is not possible to connect to a gate with no available input
lines.

Listing 13



def setNextPin(self,source):
if self.pinA == None:

self.pinA = source
else:

if self.pinB == None:
self.pinB = source

else:
raise RuntimeError("Error: NO EMPTY PINS")

Now it is possible to get input from two places: externally, as before, and from the output of a gate
that is connected to that input line. This requires a change to the getPinA and getPinB methods
(see Listing 14). If the input line is not connected to anything (None), then ask the user externally
as before. However, if there is a connection, the connection is accessed and fromgate’s output
value is retrieved. This in turn causes that gate to process its logic. This continues until all input is
available and the final output value becomes the required input for the gate in question. In a sense,
the circuit works backwards to find the input necessary to finally produce output.

Listing 14

def getPinA(self):
if self.pinA == None:

return input("Enter Pin A input for gate " + self.getName()+"-->")
else:

return self.pinA.getFrom().getOutput()

The following fragment constructs the circuit shown earlier in the section:

>>> g1 = AndGate("G1")
>>> g2 = AndGate("G2")
>>> g3 = OrGate("G3")
>>> g4 = NotGate("G4")
>>> c1 = Connector(g1,g3)
>>> c2 = Connector(g2,g3)
>>> c3 = Connector(g3,g4)

The outputs from the two AND gates (g1 and g2) are connected to the OR gate (g3) and that
output is connected to the NOT gate (g4). The output from the NOT gate is the output of the entire
circuit. For example:

>>> g4.getOutput()
Pin A input for gate G1-->0



Pin B input for gate G1-->1
Pin A input for gate G2-->1
Pin B input for gate G2-->1
0

Try it yourself using ActiveCode 4.

class LogicGate:

def __init__(self,n):
self.name = n
self.output = None

def getName(self):
return self.name

def getOutput(self):
self.output = self.performGateLogic()
return self.output

class BinaryGate(LogicGate):

def __init__(self,n):
LogicGate.__init__(self,n)

self.pinA = None
self.pinB = None

def getPinA(self):
if self.pinA == None:

return int(input("Enter Pin A input for gate
"+self.getName()+"-->"))

else:
return self.pinA.getFrom().getOutput()

def getPinB(self):
if self.pinB == None:

return int(input("Enter Pin B input for gate
"+self.getName()+"-->"))

else:
return self.pinB.getFrom().getOutput()



def setNextPin(self,source):
if self.pinA == None:

self.pinA = source
else:

if self.pinB == None:
self.pinB = source

else:
print("Cannot Connect: NO EMPTY PINS on this gate")

class AndGate(BinaryGate):

def __init__(self,n):
BinaryGate.__init__(self,n)

def performGateLogic(self):

a = self.getPinA()
b = self.getPinB()
if a==1 and b==1:

return 1
else:

return 0

class OrGate(BinaryGate):

def __init__(self,n):
BinaryGate.__init__(self,n)

def performGateLogic(self):

a = self.getPinA()
b = self.getPinB()
if a ==1 or b==1:

return 1
else:

return 0

class UnaryGate(LogicGate):

def __init__(self,n):
LogicGate.__init__(self,n)



self.pin = None

def getPin(self):
if self.pin == None:

return int(input("Enter Pin input for gate
"+self.getName()+"-->"))

else:
return self.pin.getFrom().getOutput()

def setNextPin(self,source):
if self.pin == None:

self.pin = source
else:

print("Cannot Connect: NO EMPTY PINS on this gate")

class NotGate(UnaryGate):

def __init__(self,n):
UnaryGate.__init__(self,n)

def performGateLogic(self):
if self.getPin():

return 0
else:

return 1

class Connector:

def __init__(self, fgate, tgate):
self.fromgate = fgate
self.togate = tgate

tgate.setNextPin(self)

def getFrom(self):
return self.fromgate

def getTo(self):
return self.togate

def main():



g1 = AndGate("G1")
g2 = AndGate("G2")
g3 = OrGate("G3")
g4 = NotGate("G4")
c1 = Connector(g1,g3)
c2 = Connector(g2,g3)
c3 = Connector(g3,g4)
print(g4.getOutput())

main()

代码 13 The Complete Circuit Program. (complete_cuircuit)

Self Check
Create a two new gate classes, one called NorGate the other called NandGate. NandGates work
like AndGates that have a Not attached to the output. NorGates work lake OrGates that have a Not
attached to the output.

Create a series of gates that prove the following equality NOT (( A and B) or (C and D)) is that
same as NOT( A and B ) and NOT (C and D). Make sure to use some of your new gates in the
simulation.

代码 14 (self_check_5)

1.8.小结

 计算机科学是研究问题求解的学科；

 计算机科学采用“抽象”作为表示过程与数据的工具；

 采用“抽象数据类型”，程序员可以通过隐藏数据细节来控制问题域的复杂度；

 Python是一个强大的、而又易于使用的面向对象程序设计语言；
 列表、元组和串，是 Python内置的有序集类型；
 字典与集合，是数据的无序集类型；

 采用“类”，程序员可以具体实现一个抽象数据类型；

 程序员可以创建新方法，也可以重载已有的标准方法；

 一个类构造器在处理自身的数据和行为之前，总会调用其父类的构造器。

1.9.关键词

abstract data type abstraction algorithm
class computable data abstraction



data structure data type deep equality
dictionary encapsulation exception
format operator formatted strings HAS-A relationship
implementation-independent information hiding inheritance
inheritance hierarchy interface IS-A relationship
list list comprehension method
mutability object procedural abstraction
programming prompt self
shallow equality simulation string
subclass superclass truth table

1.10. 问题讨论

1. Construct a class hierarchy for people on a college campus. Include faculty, staff, and
students. What do they have in common? What distinguishes them from one another?

2. Construct a class hierarchy for bank accounts.
3. Construct a class hierarchy for different types of computers.
4. Using the classes provided in the chapter, interactively construct a circuit and test it.

1.11. 编程练习

1. Implement the simple methods getNum and getDen that will return the numerator and
denominator of a fraction.

2. In many ways it would be better if all fractions were maintained in lowest terms right from
the start. Modify the constructor for the Fraction class so that GCD is used to reduce fractions
immediately. Notice that this means the __add__ function no longer needs to reduce. Make
the necessary modifications.

3. Implement the remaining simple arithmetic operators (__sub__, __mul__, and __truediv__).
4. Implement the remaining relational operators (__gt__, __ge__, __lt__, __le__, and __ne__)
5. Modify the constructor for the fraction class so that it checks to make sure that the numerator

and denominator are both integers. If either is not an integer the constructor should raise an
exception.

6. In the definition of fractions we assumed that negative fractions have a negative numerator
and a positive denominator. Using a negative denominator would cause some of the relational
operators to give incorrect results. In general, this is an unnecessary constraint. Modify the
constructor to allow the user to pass a negative denominator so that all of the operators
continue to work properly.

7. Research the __radd__ method. How does it differ from __add__? When is it used?
Implement __radd__.

8. Repeat the last question but this time consider the __iadd__ method.
9. Research the __repr__ method. How does it differ from __str__? When is it used? Implement

__repr__.
10. Research other types of gates that exist (such as NAND, NOR, and XOR). Add them to the



circuit hierarchy. How much additional coding did you need to do?
11. The most simple arithmetic circuit is known as the half-adder. Research the simple half-adder

circuit. Implement this circuit.
12. Now extend that circuit and implement an 8 bit full-adder.
13. The circuit simulation shown in this chapter works in a backward direction. In other words,

given a circuit, the output is produced by working back through the input values, which in
turn cause other outputs to be queried. This continues until external input lines are found, at
which point the user is asked for values. Modify the implementation so that the action is in
the forward direction; upon receiving inputs the circuit produces an output.

14. Design a class to represent a playing card. Now design a class to represent a deck of cards.
Using these two classes, implement a favorite card game.

15. Find a Sudoku puzzle in the local newspaper. Write a program to solve the puzzle.



2.算法分析

2.1.目标

 了解为何算法分析非常重要；

 能够采用“大 O”方法来描述算法执行时间；
 了解在 Python列表和字典类型中通用操作执行时间的“大 O”级别；
 了解 Python数据类型的具体实现对算法分析的影响；
 了解如何对简单 Python程序进行执行时间检测。

2.2.什么是算法分析

It is very common for beginning computer science students to compare their programs with one
another. You may also have noticed that it is common for computer programs to look very similar,
especially the simple ones. An interesting question often arises. When two programs solve the
same problem but look different, is one program better than the other?

In order to answer this question, we need to remember that there is an important difference
between a program and the underlying algorithm that the program is representing. As we stated in
Chapter 1, an algorithm is a generic, step-by-step list of instructions for solving a problem. It is a
method for solving any instance of the problem such that given a particular input, the algorithm
produces the desired result. A program, on the other hand, is an algorithm that has been encoded
into some programming language. There may be many programs for the same algorithm,
depending on the programmer and the programming language being used.

To explore this difference further, consider the function shown in ActiveCode 1. This function
solves a familiar problem, computing the sum of the first n integers. The algorithm uses the idea
of an accumulator variable that is initialized to 0. The solution then iterates through the n integers,
adding each to the accumulator.

def sumOfN(n):
theSum = 0
for i in range(1,n+1):

theSum = theSum + i

return theSum

print(sumOfN(10))

代码 15 Summation of the First n Integers (active1)



Now look at the function in ActiveCode 2. At first glance it may look strange, but upon further
inspection you can see that this function is essentially doing the same thing as the previous one.
The reason this is not obvious is poor coding. We did not use good identifier names to assist with
readability, and we used an extra assignment statement during the accumulation step that was not
really necessary.

def foo(tom):
fred = 0
for bill in range(1,tom+1):

barney = bill
fred = fred + barney

return fred

print(foo(10))

代码 16 Another Summation of the First n Integers (active2)

The question we raised earlier asked whether one function is better than another. The answer
depends on your criteria. The function sumOfN is certainly better than the function foo if you are
concerned with readability. In fact, you have probably seen many examples of this in your
introductory programming course since one of the goals there is to help you write programs that
are easy to read and easy to understand. In this course, however, we are also interested in
characterizing the algorithm itself. (We certainly hope that you will continue to strive to write
readable, understandable code.)

Algorithm analysis is concerned with comparing algorithms based upon the amount of computing
resources that each algorithm uses. We want to be able to consider two algorithms and say that one
is better than the other because it is more efficient in its use of those resources or perhaps because
it simply uses fewer. From this perspective, the two functions above seem very similar. They both
use essentially the same algorithm to solve the summation problem.

At this point, it is important to think more about what we really mean by computing resources.
There are two different ways to look at this. One way is to consider the amount of space or
memory an algorithm requires to solve the problem. The amount of space required by a problem
solution is typically dictated by the problem instance itself. Every so often, however, there are
algorithms that have very specific space requirements, and in those cases we will be very careful
to explain the variations.

As an alternative to space requirements, we can analyze and compare algorithms based on the
amount of time they require to execute. This measure is sometimes referred to as the “execution
time” or “running time” of the algorithm. One way we can measure the execution time for the
function sumOfN is to do a benchmark analysis. This means that we will track the actual time
required for the program to compute its result. In Python, we can benchmark a function by noting
the starting time and ending time with respect to the system we are using. In the time module there



is a function called time that will return the current system clock time in seconds since some
arbitrary starting point. By calling this function twice, at the beginning and at the end, and then
computing the difference, we can get an exact number of seconds (fractions in most cases) for
execution.

Listing 1

import time

def sumOfN2(n):
start = time.time()

theSum = 0
for i in range(1,n+1):

theSum = theSum + i

end = time.time()

return theSum,end-start

Listing 1 shows the original sumOfN function with the timing calls embedded before and after the
summation. The function returns a tuple consisting of the result and the amount of time (in
seconds) required for the calculation. If we perform 5 invocations of the function, each computing
the sum of the first 10,000 integers, we get the following:

>>>for i in range(5):
print("Sum is %d required %10.7f seconds"%sumOfN(10000))

Sum is 50005000 required 0.0018950 seconds
Sum is 50005000 required 0.0018620 seconds
Sum is 50005000 required 0.0019171 seconds
Sum is 50005000 required 0.0019162 seconds
Sum is 50005000 required 0.0019360 seconds

We discover that the time is fairly consistent and it takes on average about 0.0019 seconds to
execute that code. What if we run the function adding the first 100,000 integers?

>>>for i in range(5):
print("Sum is %d required %10.7f seconds"%sumOfN(100000))

Sum is 5000050000 required 0.0199420 seconds
Sum is 5000050000 required 0.0180972 seconds
Sum is 5000050000 required 0.0194821 seconds
Sum is 5000050000 required 0.0178988 seconds
Sum is 5000050000 required 0.0188949 seconds



>>>

Again, the time required for each run, although longer, is very consistent, averaging about 10
times more seconds. For n equal to 1,000,000 we get:

>>>for i in range(5):
print("Sum is %d required %10.7f seconds"%sumOfN(1000000))

Sum is 500000500000 required 0.1948988 seconds
Sum is 500000500000 required 0.1850290 seconds
Sum is 500000500000 required 0.1809771 seconds
Sum is 500000500000 required 0.1729250 seconds
Sum is 500000500000 required 0.1646299 seconds
>>>

In this case, the average again turns out to be about 10 times the previous.

Now consider ActiveCode 3, which shows a different means of solving the summation problem.
This function, sumOfN3, takes advantage of a closed equation ∑ni=1i=(n)(n+1)2 to compute the
sum of the first n integers without iterating.

def sumOfN3(n):
return (n*(n+1))/2

print(sumOfN3(10))

代码 17 Summation Without Iteration (active3)

If we do the same benchmark measurement for sumOfN3, using five different values for n (10,000,
100,000, 1,000,000, 10,000,000, and 100,000,000), we get the following results:

Sum is 50005000 required 0.00000095 seconds
Sum is 5000050000 required 0.00000191 seconds
Sum is 500000500000 required 0.00000095 seconds
Sum is 50000005000000 required 0.00000095 seconds
Sum is 5000000050000000 required 0.00000119 seconds

There are two important things to notice about this output. First, the times recorded above are
shorter than any of the previous examples. Second, they are very consistent no matter what the
value of n. It appears that sumOfN3 is hardly impacted by the number of integers being added.

But what does this benchmark really tell us? Intuitively, we can see that the iterative solutions
seem to be doing more work since some program steps are being repeated. This is likely the
reason it is taking longer. Also, the time required for the iterative solution seems to increase as we



increase the value of n. However, there is a problem. If we ran the same function on a different
computer or used a different programming language, we would likely get different results. It could
take even longer to perform sumOfN3 if the computer were older.

We need a better way to characterize these algorithms with respect to execution time. The
benchmark technique computes the actual time to execute. It does not really provide us with a
useful measurement, because it is dependent on a particular machine, program, time of day,
compiler, and programming language. Instead, we would like to have a characterization that is
independent of the program or computer being used. This measure would then be useful for
judging the algorithm alone and could be used to compare algorithms across implementations.

2.2.1. “大 O”表示法

When trying to characterize an algorithm’s efficiency in terms of execution time, independent of
any particular program or computer, it is important to quantify the number of operations or steps
that the algorithm will require. If each of these steps is considered to be a basic unit of
computation, then the execution time for an algorithm can be expressed as the number of steps
required to solve the problem. Deciding on an appropriate basic unit of computation can be a
complicated problem and will depend on how the algorithm is implemented.

A good basic unit of computation for comparing the summation algorithms shown earlier might be
to count the number of assignment statements performed to compute the sum. In the function
sumOfN, the number of assignment statements is 1 (theSum=0) plus the value of n (the number of
times we perform theSum=theSum+i). We can denote this by a function, call it T, where T(n)=1+n.
The parameter n is often referred to as the“size of the problem,” and we can read this as“T(n)
is the time it takes to solve a problem of size n, namely 1+n steps.”

In the summation functions given above, it makes sense to use the number of terms in the
summation to denote the size of the problem. We can then say that the sum of the first 100,000
integers is a bigger instance of the summation problem than the sum of the first 1,000. Because of
this, it might seem reasonable that the time required to solve the larger case would be greater than
for the smaller case. Our goal then is to show how the algorithm’s execution time changes with
respect to the size of the problem.

Computer scientists prefer to take this analysis technique one step further. It turns out that the
exact number of operations is not as important as determining the most dominant part of the T(n)
function. In other words, as the problem gets larger, some portion of the T(n) function tends to
overpower the rest. This dominant term is what, in the end, is used for comparison. The order of
magnitude function describes the part of T(n) that increases the fastest as the value of n increases.
Order of magnitude is often called Big-O notation (for“order”) and written as O(f(n)). It provides
a useful approximation to the actual number of steps in the computation. The function f(n)
provides a simple representation of the dominant part of the original T(n).

In the above example, T(n)=1+n. As n gets large, the constant 1 will become less and less



significant to the final result. If we are looking for an approximation for T(n), then we can drop
the 1 and simply say that the running time is O(n). It is important to note that the 1 is certainly
significant for T(n). However, as n gets large, our approximation will be just as accurate without
it.

As another example, suppose that for some algorithm, the exact number of steps is
T(n)=5n2+27n+1005. When n is small, say 1 or 2, the constant 1005 seems to be the dominant
part of the function. However, as n gets larger, the n2 term becomes the most important. In fact,
when n is really large, the other two terms become insignificant in the role that they play in
determining the final result. Again, to approximate T(n) as n gets large, we can ignore the other
terms and focus on 5n2. In addition, the coefficient 5 becomes insignificant as n gets large. We
would say then that the function T(n) has an order of magnitude f(n)=n2, or simply that it is O(n2).

Although we do not see this in the summation example, sometimes the performance of an
algorithm depends on the exact values of the data rather than simply the size of the problem. For
these kinds of algorithms we need to characterize their performance in terms of best case, worst
case, or average case performance. The worst case performance refers to a particular data set
where the algorithm performs especially poorly. Whereas a different data set for the exact same
algorithm might have extraordinarily good performance. However, in most cases the algorithm
performs somewhere in between these two extremes (average case). It is important for a computer
scientist to understand these distinctions so they are not misled by one particular case.

A number of very common order of magnitude functions will come up over and over as you study
algorithms. These are shown in Table 1. In order to decide which of these functions is the
dominant part of any T(n) function, we must see how they compare with one another as n gets
large.

Table 1:
f(n) Name

1 Constant
logn Logarithmic
n Linear
nlogn Log Linear
n2 Quadratic
n3 Cubic
2n Exponential

表格 11 Common Functions for Big-O

Figure 1 shows graphs of the common functions from Table 1. Notice that when n is small, the
functions are not very well defined with respect to one another. It is hard to tell which is dominant.
However, as n grows, there is a definite relationship and it is easy to see how they compare with
one another.



图 13 Plot of Common Big-O Functions

As a final example, suppose that we have the fragment of Python code shown in Listing 2.
Although this program does not really do anything, it is instructive to see how we can take actual
code and analyze performance.

Listing 2

a=5
b=6
c=10
for i in range(n):

for j in range(n):
x = i * i
y = j * j
z = i * j

for k in range(n):
w = a*k + 45
v = b*b

d = 33

The number of assignment operations is the sum of four terms. The first term is the constant 3,
representing the three assignment statements at the start of the fragment. The second term is
\(3n^{2}\), since there are three statements that are performed \(n^{2}\) times due to the nested
iteration. The third term is \(2n\), two statements iterated n times. Finally, the fourth term is the
constant 1, representing the final assignment statement. This gives us
\(T(n)=3+3n^{2}+2n+1=3n^{2}+2n+4\). By looking at the exponents, we can easily see that the
\(n^{2}\) term will be dominant and therefore this fragment of code is \(O(n^{2})\). Note that all
of the other terms as well as the coefficient on the dominant term can be ignored as n grows larger.



图 14 Comparing T(n) with Common Big-O Functions

Figure 2 shows a few of the common Big-O functions as they compare with the \(T(n)\) function
discussed above. Note that \(T(n)\) is initially larger than the cubic function. However, as n grows,
the cubic function quickly overtakes \(T(n)\). It is easy to see that \(T(n)\) then follows the
quadratic function as \(n\) continues to grow.

Self Check
Write two Python functions to find the minimum number in a list. The first function should
compare each number to every other number on the list. \(O(n^2)\). The second function should be
linear \(O(n)\).

2.2.2. 例子：“变位词”判断

A good example problem for showing algorithms with different orders of magnitude is the classic
anagram detection problem for strings. One string is an anagram of another if the second is simply
a rearrangement of the first. For example, 'heart' and 'earth' are anagrams. The strings 'python' and
'typhon' are anagrams as well. For the sake of simplicity, we will assume that the two strings in
question are of equal length and that they are made up of symbols from the set of 26 lowercase
alphabetic characters. Our goal is to write a boolean function that will take two strings and return
whether they are anagrams.

2.2.2.1. 解法 1：检查标记 Checking Off

Our first solution to the anagram problem will check to see that each character in the first string
actually occurs in the second. If it is possible to “checkoff” each character, then the two strings
must be anagrams. Checking off a character will be accomplished by replacing it with the special



Python value None. However, since strings in Python are immutable, the first step in the process
will be to convert the second string to a list. Each character from the first string can be checked
against the characters in the list and if found, checked off by replacement. ActiveCode 1 shows
this function.

def anagramSolution1(s1,s2):
alist = list(s2)

pos1 = 0
stillOK = True

while pos1 < len(s1) and stillOK:
pos2 = 0
found = False
while pos2 < len(alist) and not found:

if s1[pos1] == alist[pos2]:
found = True

else:
pos2 = pos2 + 1

if found:
alist[pos2] = None

else:
stillOK = False

pos1 = pos1 + 1

return stillOK

print(anagramSolution1('abcd','dcba'))

代码 18 Checking Off (active5)

To analyze this algorithm, we need to note that each of the n characters in s1 will cause an
iteration through up to n characters in the list from s2. Each of the n positions in the list will be
visited once to match a character from s1. The number of visits then becomes the sum of the
integers from 1 to n. We stated earlier that this can be written as

As n gets large, the n2 term will dominate the n term and the 12 can be ignored. Therefore, this
solution is O(n2).



2.2.2.2. 解法 2：排序比较

Another solution to the anagram problem will make use of the fact that even though s1 and s2 are
different, they are anagrams only if they consist of exactly the same characters. So, if we begin by
sorting each string alphabetically, from a to z, we will end up with the same string if the original
two strings are anagrams. ActiveCode 2 shows this solution. Again, in Python we can use the
built-in sort method on lists by simply converting each string to a list at the start.

def anagramSolution2(s1,s2):
alist1 = list(s1)
alist2 = list(s2)

alist1.sort()
alist2.sort()

pos = 0
matches = True

while pos < len(s1) and matches:
if alist1[pos]==alist2[pos]:

pos = pos + 1
else:

matches = False

return matches

print(anagramSolution2('abcde','edcba'))

代码 19 Sort and Compare (active6)
At first glance you may be tempted to think that this algorithm is O(n), since there is one simple
iteration to compare the n characters after the sorting process. However, the two calls to the
Python sort method are not without their own cost. As we will see in a later chapter, sorting is
typically either O(n2) or O(nlogn), so the sorting operations dominate the iteration. In the end, this
algorithm will have the same order of magnitude as that of the sorting process.

2.2.2.3. 解法 3：暴力

A brute force technique for solving a problem typically tries to exhaust all possibilities. For the
anagram detection problem, we can simply generate a list of all possible strings using the
characters from s1 and then see if s2 occurs. However, there is a difficulty with this approach.
When generating all possible strings from s1, there are n possible first characters, n−1 possible
characters for the second position, n−2 for the third, and so on. The total number of candidate
strings is n∗ (n−1)∗ (n−2)∗ ...∗ 3∗ 2∗ 1, which is n!. Although some of the strings may be



duplicates, the program cannot know this ahead of time and so it will still generate n! different
strings.

It turns out that n! grows even faster than 2n as n gets large. In fact, if s1 were 20 characters long,
there would be 20!=2,432,902,008,176,640,000 possible candidate strings. If we processed one
possibility every second, it would still take us 77,146,816,596 years to go through the entire list.
This is probably not going to be a good solution.

2.2.2.4. 解法 4：计数比较

Our final solution to the anagram problem takes advantage of the fact that any two anagrams will
have the same number of a’s, the same number of b’s, the same number of c’s, and so on. In
order to decide whether two strings are anagrams, we will first count the number of times each
character occurs. Since there are 26 possible characters, we can use a list of 26 counters, one for
each possible character. Each time we see a particular character, we will increment the counter at
that position. In the end, if the two lists of counters are identical, the strings must be anagrams.
ActiveCode 3 shows this solution.

def anagramSolution4(s1,s2):
c1 = [0]*26
c2 = [0]*26

for i in range(len(s1)):
pos = ord(s1[i])-ord('a')
c1[pos] = c1[pos] + 1

for i in range(len(s2)):
pos = ord(s2[i])-ord('a')
c2[pos] = c2[pos] + 1

j = 0
stillOK = True
while j<26 and stillOK:

if c1[j]==c2[j]:
j = j + 1

else:
stillOK = False

return stillOK

print(anagramSolution4('apple','pleap'))

代码 20 Count and Compare (active7)



Again, the solution has a number of iterations. However, unlike the first solution, none of them are
nested. The first two iterations used to count the characters are both based on n. The third iteration,
comparing the two lists of counts, always takes 26 steps since there are 26 possible characters in
the strings. Adding it all up gives us T(n)=2n+26 steps. That is O(n). We have found a linear order
of magnitude algorithm for solving this problem.

Before leaving this example, we need to say something about space requirements. Although the
last solution was able to run in linear time, it could only do so by using additional storage to keep
the two lists of character counts. In other words, this algorithm sacrificed space in order to gain
time.

This is a common occurrence. On many occasions you will need to make decisions between time
and space trade-offs. In this case, the amount of extra space is not significant. However, if the
underlying alphabet had millions of characters, there would be more concern. As a computer
scientist, when given a choice of algorithms, it will be up to you to determine the best use of
computing resources given a particular problem.

Self Check
Q-1: Given the following code fragment, what is its Big-O running time?

test = 0
for i in range(n):

for j in range(n):
test = test + i * j

a) O(n)
b) O(n^2)
c) O(log n)
d) O(n^3)

Q-2: Given the following code fragment what is its Big-O running time?

test = 0
for i in range(n):

test = test + 1

for j in range(n):
test = test - 1

a) O(n)
b) O(n^2)
c) O(log n)
d) O(n^3)

Q-3: Given the following code fragment what is its Big-O running time?

i = n
while i > 0:



k = 2 + 2
i = i // 2

a) O(n)
b) O(n^2)
c) O(log n)
d) O(n^3)

2.3.Python数据结构的性能

Now that you have a general idea of Big-O notation and the differences between the different
functions, our goal in this section is to tell you about the Big-O performance for the operations on
Python lists and dictionaries. We will then show you some timing experiments that illustrate the
costs and benefits of using certain operations on each data structure. It is important for you to
understand the efficiency of these Python data structures because they are the building blocks we
will use as we implement other data structures in the remainder of the book. In this section we are
not going to explain why the performance is what it is. In later chapters you will see some possible
implementations of both lists and dictionaries and how the performance depends on the
implementation.

2.3.1. 列表 List

The designers of Python had many choices to make when they implemented the list data structure.
Each of these choices could have an impact on how fast list operations perform. To help them
make the right choices they looked at the ways that people would most commonly use the list data
structure and they optimized their implementation of a list so that the most common operations
were very fast. Of course they also tried to make the less common operations fast, but when a
tradeoff had to be made the performance of a less common operation was often sacrificed in favor
of the more common operation.

Two common operations are indexing and assigning to an index position. Both of these operations
take the same amount of time no matter how large the list becomes. When an operation like this is
independent of the size of the list they are O(1).

Another very common programming task is to grow a list. There are two ways to create a longer
list. You can use the append method or the concatenation operator. The append method is O(1).
However, the concatenation operator is O(k) where k is the size of the list that is being
concatenated. This is important for you to know because it can help you make your own programs
more efficient by choosing the right tool for the job.

Let’s look at four different ways we might generate a list of n numbers starting with 0. First we’



ll try a for loop and create the list by concatenation, then we’ ll use append rather than
concatenation. Next, we’ll try creating the list using list comprehension and finally, and perhaps
the most obvious way, using the range function wrapped by a call to the list constructor. Listing 3
shows the code for making our list four different ways.

Listing 3

def test1():
l = []
for i in range(1000):

l = l + [i]

def test2():
l = []
for i in range(1000):

l.append(i)

def test3():
l = [i for i in range(1000)]

def test4():
l = list(range(1000))

To capture the time it takes for each of our functions to execute we will use Python’s timeit
module. The timeit module is designed to allow Python developers to make cross-platform timing
measurements by running functions in a consistent environment and using timing mechanisms that
are as similar as possible across operating systems.

To use timeit you create a Timer object whose parameters are two Python statements. The first
parameter is a Python statement that you want to time; the second parameter is a statement that
will run once to set up the test. The timeit module will then time how long it takes to execute the
statement some number of times. By default timeit will try to run the statement one million times.
When its done it returns the time as a floating point value representing the total number of seconds.
However, since it executes the statement a million times you can read the result as the number of
microseconds to execute the test one time. You can also pass timeit a named parameter called
number that allows you to specify how many times the test statement is executed. The following
session shows how long it takes to run each of our test functions 1000 times.

t1 = Timer("test1()", "from __main__ import test1")
print("concat ",t1.timeit(number=1000), "milliseconds")
t2 = Timer("test2()", "from __main__ import test2")
print("append ",t2.timeit(number=1000), "milliseconds")
t3 = Timer("test3()", "from __main__ import test3")



print("comprehension ",t3.timeit(number=1000), "milliseconds")
t4 = Timer("test4()", "from __main__ import test4")
print("list range ",t4.timeit(number=1000), "milliseconds")

concat 6.54352807999 milliseconds
append 0.306292057037 milliseconds
comprehension 0.147661924362 milliseconds
list range 0.0655000209808 milliseconds

In the experiment above the statement that we are timing is the function call to test1(), test2(), and
so on. The setup statement may look very strange to you, so let’s consider it in more detail. You
are probably very familiar with the from, import statement, but this is usually used at the
beginning of a Python program file. In this case the statement from __main__ import test1 imports
the function test1 from the __main__ namespace into the namespace that timeit sets up for the
timing experiment. The timeit module does this because it wants to run the timing tests in an
environment that is uncluttered by any stray variables you may have created, that may interfere
with your function’s performance in some unforeseen way.

From the experiment above it is clear that the append operation at 0.30 milliseconds is much faster
than concatenation at 6.54 milliseconds. In the above experiment we also show the times for two
additional methods for creating a list; using the list constructor with a call to range and a list
comprehension. It is interesting to note that the list comprehension is twice as fast as a for loop
with an append operation.

One final observation about this little experiment is that all of the times that you see above include
some overhead for actually calling the test function, but we can assume that the function call
overhead is identical in all four cases so we still get a meaningful comparison of the operations. So
it would not be accurate to say that the concatenation operation takes 6.54 milliseconds but rather
the concatenation test function takes 6.54 milliseconds. As an exercise you could test the time it
takes to call an empty function and subtract that from the numbers above.

Now that we have seen how performance can be measured concretely you can look at Table 2 to
see the Big-O efficiency of all the basic list operations. After thinking carefully about Table 2, you
may be wondering about the two different times for pop. When pop is called on the end of the list
it takes O(1) but when pop is called on the first element in the list or anywhere in the middle it is
O(n). The reason for this lies in how Python chooses to implement lists. When an item is taken
from the front of the list, in Python’s implementation, all the other elements in the list are shifted
one position closer to the beginning. This may seem silly to you now, but if you look at Table 2
you will see that this implementation also allows the index operation to be O(1). This is a tradeoff
that the Python implementors thought was a good one.

Operation Big-O Efficiency
index [] O(1)



index assignment O(1)
append O(1)pop() O(1)
pop(i) O(n)
insert(i,item) O(n)
del operator O(n)
iteration O(n)
contains (in) O(n)
get slice [x:y] O(k)
del slice O(n)
set slice O(n+k)
reverse O(n)
concatenate O(k)
sort O(n log n)
multiply O(nk)

表格 12 Big-O Efficiency of Python List Operators

As a way of demonstrating this difference in performance let’s do another experiment using the
timeit module. Our goal is to be able to verify the performance of the pop operation on a list of
a known size when the program pops from the end of the list, and again when the program pops
from the beginning of the list. We will also want to measure this time for lists of different sizes.
What we would expect to see is that the time required to pop from the end of the list will stay
constant even as the list grows in size, while the time to pop from the beginning of the list will
continue to increase as the list grows.

Listing 4 shows one attempt to measure the difference between the two uses of pop. As you can
see from this first example, popping from the end takes 0.0003 milliseconds, whereas popping
from the beginning takes 4.82 milliseconds. For a list of two million elements this is a factor of
16,000.

There are a couple of things to notice about Listing 4. The first is the statement from __main__
import x. Although we did not define a function we do want to be able to use the list object x in
our test. This approach allows us to time just the single pop statement and get the most accurate
measure of the time for that single operation. Because the timer repeats 1000 times it is also
important to point out that the list is decreasing in size by 1 each time through the loop. But since
the initial list is two million elements in size we only reduce the overall size by 0.05%

Listing 4

popzero = timeit.Timer("x.pop(0)",
"from __main__ import x")

popend = timeit.Timer("x.pop()",
"from __main__ import x")



x = list(range(2000000))
popzero.timeit(number=1000)
4.8213560581207275

x = list(range(2000000))
popend.timeit(number=1000)
0.0003161430358886719

While our first test does show that pop(0) is indeed slower than pop(), it does not validate the
claim that pop(0) is O(n) while pop() is O(1). To validate that claim we need to look at the
performance of both calls over a range of list sizes. Listing 5 implements this test.

Listing 5

popzero = Timer("x.pop(0)",
"from __main__ import x")

popend = Timer("x.pop()",
"from __main__ import x")

print("pop(0) pop()")
for i in range(1000000,100000001,1000000):

x = list(range(i))
pt = popend.timeit(number=1000)
x = list(range(i))
pz = popzero.timeit(number=1000)

print("%15.5f, %15.5f" %(pz,pt))

Figure 3 shows the results of our experiment. You can see that as the list gets longer and longer the
time it takes to pop(0) also increases while the time for pop stays very flat. This is exactly what we
would expect to see for a O(n) and O(1) algorithm.

Some sources of error in our little experiment include the fact that there are other processes
running on the computer as we measure that may slow down our code, so even though we try to
minimize other things happening on the computer there is bound to be some variation in time.
That is why the loop runs the test one thousand times in the first place to statistically gather
enough information to make the measurement reliable.



图 15 Comparing the Performance of pop and pop(0)

2.3.2. 字典 Dictionary

The second major Python data structure is the dictionary. As you probably recall, dictionaries
differ from lists in that you can access items in a dictionary by a key rather than a position. Later
in this book you will see that there are many ways to implement a dictionary. The thing that is
most important to notice right now is that the get item and set item operations on a dictionary are
O(1). Another important dictionary operation is the contains operation. Checking to see whether a
key is in the dictionary or not is also O(1). The efficiency of all dictionary operations is
summarized in Table 3. One important side note on dictionary performance is that the efficiencies
we provide in the table are for average performance. In some rare cases the contains, get item, and
set item operations can degenerate into O(n) performance but we will get into that in a later
chapter when we talk about the different ways that a dictionary could be implemented.

Table 3: Big-O Efficiency of Python Dictionary Operations
operation Big-O Efficiency
copyO(n)
get item O(1)
set item O(1)
delete item O(1)
contains (in) O(1)
iteration O(n)
For our last performance experiment we will compare the performance of the contains operation
between lists and dictionaries. In the process we will confirm that the contains operator for lists is
O(n) and the contains operator for dictionaries is O(1). The experiment we will use to compare the
two is simple. We’ ll make a list with a range of numbers in it. Then we will pick numbers at



random and check to see if the numbers are in the list. If our performance tables are correct the
bigger the list the longer it should take to determine if any one number is contained in the list.

We will repeat the same experiment for a dictionary that contains numbers as the keys. In this
experiment we should see that determining whether or not a number is in the dictionary is not only
much faster, but the time it takes to check should remain constant even as the dictionary grows
larger.

Listing 6 implements this comparison. Notice that we are performing exactly the same operation,
number in container. The difference is that on line 7 x is a list, and on line 9 x is a dictionary.

Listing 6

1
2
3
4
5
6
7
8
9
10
11

import timeit
import random

for i in range(10000,1000001,20000):
t = timeit.Timer("random.randrange(%d) in x"%i,

"from __main__ import random,x")
x = list(range(i))
lst_time = t.timeit(number=1000)
x = {j:None for j in range(i)}
d_time = t.timeit(number=1000)
print("%d,%10.3f,%10.3f" % (i, lst_time, d_time))

Figure 4 summarizes the results of running Listing 6. You can see that the dictionary is
consistently faster. For the smallest list size of 10,000 elements a dictionary is 89.4 times faster
than a list. For the largest list size of 990,000 elements the dictionary is 11,603 times faster! You
can also see that the time it takes for the contains operator on the list grows linearly with the size
of the list. This verifies the assertion that the contains operator on a list is O(n). It can also be seen
that the time for the contains operator on a dictionary is constant even as the dictionary size grows.
In fact for a dictionary size of 10,000 the contains operation took 0.004 milliseconds and for the
dictionary size of 990,000 it also took 0.004 milliseconds.



图 16 Comparing the in Operator for Python Lists and Dictionaries

Since Python is an evolving language, there are always changes going on behind the scenes. The
latest information on the performance of Python data structures can be found on the Python
website. As of this writing the Python wiki has a nice time complexity page that can be found at
the Time Complexity Wiki.

Self Check
Q-4: Which of the list operations shown below is not O(1)?
a) list.pop(0)
b) list.pop()
c) list.append()
d) list[10]
e) all of the above are O(1)

Q-5: Which of the dictionary operations shown below is O(1)?
a) 'x' in mydict
b) del mydict['x']
c) mydict['x'] == 10
d) mydict['x'] = mydict['x'] + 1
e) all of the above are O(1)

2.4.小结

 算法分析是对一个算法进行与具体实现无关的性能分析；

 大 O表示法可以依据一个算法对不同规模问题的主干处理过程，对算法的性能进行分



级。

2.5.关键词

average case Big-O notation brute force
checking off exponential linear
log linear logarithmic order of magnitude
quadratic time complexity worst case

2.6.问题讨论

1. Give the Big-O performance of the following code fragment:

for i in range(n):
for j in range(n):

k = 2 + 2

2. Give the Big-O performance of the following code fragment:

for i in range(n):
k = 2 + 2

3. Give the Big-O performance of the following code fragment:

i = n
while i > 0:

k = 2 + 2
i = i // 2

4. Give the Big-O performance of the following code fragment:

for i in range(n):
for j in range(n):

for k in range(n):
k = 2 + 2

5. Give the Big-O performance of the following code fragment:

i = n
while i > 0:



k = 2 + 2
i = i // 2

6. Give the Big-O performance of the following code fragment:

for i in range(n):
k = 2 + 2

for j in range(n):
k = 2 + 2

for k in range(n):
k = 2 + 2

2.7.编程练习

1. Devise an experiment to verify that the list index operator is O(1)
2. Devise an experiment to verify that get item and set item are O(1) for dictionaries.
3. Devise an experiment that compares the performance of the del operator on lists and

dictionaries.
4. Given a list of numbers in random order, write an algorithm that works in O(nlog(n)) to find

the kth smallest number in the list.
5. Can you improve the algorithm from the previous problem to be linear? Explain.



3.基本数据结构

3.1.目标

 了解抽象数据类型：栈 stack、队列 queue、双端队列 deque和列表 list；
 能够采用 Python列表数据类型来实现 stack/queue/deque等抽象数据类型；
 了解基本线性数据结构各种具体实现算法的性能；

 了解前缀、中缀和后缀表达式；

 采用 stack对后缀表达式进行求值；
 采用 stack将中缀表达式转换为后缀表达式；
 采用 queue进行基本的点名报数模拟；
 能够识别问题属性，选用 stack、queue或者 deque中更为合适的数据结构；
 能够通过节点和节点引用的模式，采用链表来实现抽象数据类型 list；
 能够比较链表实现与 Python的 list实现之间的算法性能。

3.2.什么是线性结构 Linear Structure

We will begin our study of data structures by considering four simple but very powerful concepts.
Stacks, queues, deques, and lists are examples of data collections whose items are ordered
depending on how they are added or removed. Once an item is added, it stays in that position
relative to the other elements that came before and came after it. Collections such as these are
often referred to as linear data structures.

Linear structures can be thought of as having two ends. Sometimes these ends are referred to as
the “left” and the “right” or in some cases the “front” and the “rear.” You could also
call them the “top” and the “bottom.” The names given to the ends are not significant. What
distinguishes one linear structure from another is the way in which items are added and removed,
in particular the location where these additions and removals occur. For example, a structure might
allow new items to be added at only one end. Some structures might allow items to be removed
from either end.

These variations give rise to some of the most useful data structures in computer science. They
appear in many algorithms and can be used to solve a variety of important problems.

3.3.栈 Stack

3.3.1.什么是栈 stack

A stack (sometimes called a “push-down stack” ) is an ordered collection of items where the



addition of new items and the removal of existing items always takes place at the same end. This
end is commonly referred to as the “top.” The end opposite the top is known as the “base.”

The base of the stack is significant since items stored in the stack that are closer to the base
represent those that have been in the stack the longest. The most recently added item is the one
that is in position to be removed first. This ordering principle is sometimes called LIFO, last-in
first-out. It provides an ordering based on length of time in the collection. Newer items are near
the top, while older items are near the base.

Many examples of stacks occur in everyday situations. Almost any cafeteria has a stack of trays or
plates where you take the one at the top, uncovering a new tray or plate for the next customer in
line. Imagine a stack of books on a desk (Figure 1). The only book whose cover is visible is the
one on top. To access others in the stack, we need to remove the ones that are sitting on top of
them. Figure 2 shows another stack. This one contains a number of primitive Python data objects.

图 17 A Stack of Books

图 18 A Stack of Primitive Python Objects

One of the most useful ideas related to stacks comes from the simple observation of items as they
are added and then removed. Assume you start out with a clean desktop. Now place books one at a
time on top of each other. You are constructing a stack. Consider what happens when you begin
removing books. The order that they are removed is exactly the reverse of the order that they were
placed. Stacks are fundamentally important, as they can be used to reverse the order of items. The
order of insertion is the reverse of the order of removal. Figure 3 shows the Python data object
stack as it was created and then again as items are removed. Note the order of the objects.



图 19 The Reversal Property of Stacks
Considering this reversal property, you can perhaps think of examples of stacks that occur as you
use your computer. For example, every web browser has a Back button. As you navigate from web
page to web page, those pages are placed on a stack (actually it is the URLs that are going on the
stack). The current page that you are viewing is on the top and the first page you looked at is at the
base. If you click on the Back button, you begin to move in reverse order through the pages.

3.3.2.抽象数据类型 Stack

The stack abstract data type is defined by the following structure and operations. A stack is
structured, as described above, as an ordered collection of items where items are added to and
removed from the end called the“top.” Stacks are ordered LIFO. The stack operations are given
below.

 Stack() creates a new stack that is empty. It needs no parameters and returns an empty
stack.

 push(item) adds a new item to the top of the stack. It needs the item and returns nothing.
 pop() removes the top item from the stack. It needs no parameters and returns the item. The

stack is modified.
 peek() returns the top item from the stack but does not remove it. It needs no parameters.

The stack is not modified.
 isEmpty() tests to see whether the stack is empty. It needs no parameters and returns a

boolean value.
 size() returns the number of items on the stack. It needs no parameters and returns an

integer.

For example, if s is a stack that has been created and starts out empty, then Table 1 shows the
results of a sequence of stack operations. Under stack contents, the top item is listed at the far
right.

Stack Operation Stack Contents Return Value
s= Stack() [] Stack object
s.isEmpty() [] True
s.push(4) [4]
s.push('dog') [4,'dog']
s.peek() [4,'dog'] 'dog'



s.push(True) [4,'dog',True]
s.size() [4,'dog',True] 3
s.isEmpty() [4,'dog',True] False
s.push(8.4) [4,'dog',True,8.4]
s.pop() [4,'dog',True] 8.4
s.pop() [4,'dog'] True
s.size() [4,'dog'] 2
表格 13 Sample Stack Operations

3.3.3. 用 Python实现 Stack

Now that we have clearly defined the stack as an abstract data type we will turn our attention to
using Python to implement the stack. Recall that when we give an abstract data type a physical
implementation we refer to the implementation as a data structure.

As we described in Chapter 1, in Python, as in any object-oriented programming language, the
implementation of choice for an abstract data type such as a stack is the creation of a new class.
The stack operations are implemented as methods. Further, to implement a stack, which is a
collection of elements, it makes sense to utilize the power and simplicity of the primitive
collections provided by Python. We will use a list.

Recall that the list class in Python provides an ordered collection mechanism and a set of methods.
For example, if we have the list [2,5,3,6,7,4], we need only to decide which end of the list will be
considered the top of the stack and which will be the base. Once that decision is made, the
operations can be implemented using the list methods such as append and pop.

The following stack implementation (ActiveCode 1) assumes that the end of the list will hold the
top element of the stack. As the stack grows (as push operations occur), new items will be added
on the end of the list. pop operations will manipulate that same end.

class Stack:
def __init__(self):

self.items = []

def isEmpty(self):
return self.items == []

def push(self, item):
self.items.append(item)

def pop(self):
return self.items.pop()



def peek(self):
return self.items[len(self.items)-1]

def size(self):
return len(self.items)

代码 21 Implementing a Stack class using Python lists (stack_1ac)

Remember that nothing happens when we click the run button other than the definition of the class.
We must create a Stack object and then use it. ActiveCode 2 shows the Stack class in action as we
perform the sequence of operations from Table 1. Notice that the definition of the Stack class is
imported from the pythonds module.

Note
The pythonds module contains implementations of all data structures
discussed in this book. It is structured according to the sections: basic,
trees, and graphs. The module can be downloaded from pythonworks.org.

from pythonds.basic.stack import Stack

s=Stack()

print(s.isEmpty())
s.push(4)
s.push('dog')
print(s.peek())
s.push(True)
print(s.size())
print(s.isEmpty())
s.push(8.4)
print(s.pop())
print(s.pop())
print(s.size())

代码 22 (stack_ex_1)

It is important to note that we could have chosen to implement the stack using a list where the top
is at the beginning instead of at the end. In this case, the previous pop and append methods would
no longer work and we would have to index position 0 (the first item in the list) explicitly using
pop and insert. The implementation is shown in CodeLens 1.

1 class Stack:
2 def __init__(self):



3 self.items = []
4
5 def isEmpty(self):
6 return self.items == []
7
8 def push(self, item):
9 self.items.insert(0,item)
10
11 def pop(self):
12 return self.items.pop(0)
13
14 def peek(self):
15 return self.items[0]
16
17 def size(self):
18 return len(self.items)
19
20 s = Stack()
21 s.push('hello')
22 s.push('true')
23 print(s.pop())

代码 23 Alternative Implementation of the Stack class (stack_cl_1)

This ability to change the physical implementation of an abstract data type while maintaining the
logical characteristics is an example of abstraction at work. However, even though the stack will
work either way, if we consider the performance of the two implementations, there is definitely a
difference. Recall that the append and pop() operations were both O(1). This means that the first
implementation will perform push and pop in constant time no matter how many items are on the
stack. The performance of the second implementation suffers in that the insert(0) and pop(0)
operations will both require O(n) for a stack of size n. Clearly, even though the implementations
are logically equivalent, they would have very different timings when performing benchmark
testing.

Self Check
Q-10: Given the following sequence of stack operations, what is the top item on the stack when
the sequence is complete?

m = Stack()
m.push('x')
m.push('y')
m.pop()
m.push('z')
m.peek()

a) 'x'



b) 'y'
c) 'z'
d) The stack is empty

Q-11: Given the following sequence of stack operations, what is the top item on the stack when
the sequence is complete?

m = Stack()
m.push('x')
m.push('y')
m.push('z')
while not m.isEmpty():

m.pop()
m.pop()

a) 'x'
b) the stack is empty
c) an error will occur
d) 'z'

Write a function revstring(mystr) that uses a stack to reverse the characters in a string.

3.3.4. 简单括号匹配

We now turn our attention to using stacks to solve real computer science problems. You have no
doubt written arithmetic expressions such as

(5+6)∗ (7+8)/(4+3)

where parentheses are used to order the performance of operations. You may also have some
experience programming in a language such as Lisp with constructs like

(defun square(n)
(* n n))

This defines a function called square that will return the square of its argument n. Lisp is notorious
for using lots and lots of parentheses.

In both of these examples, parentheses must appear in a balanced fashion. Balanced parentheses
means that each opening symbol has a corresponding closing symbol and the pairs of parentheses
are properly nested. Consider the following correctly balanced strings of parentheses:



(()()()())

(((())))

(()((())()))

Compare those with the following, which are not balanced:

((((((())

()))

(()()(()

The ability to differentiate between parentheses that are correctly balanced and those that are
unbalanced is an important part of recognizing many programming language structures.

The challenge then is to write an algorithm that will read a string of parentheses from left to right
and decide whether the symbols are balanced. To solve this problem we need to make an
important observation. As you process symbols from left to right, the most recent opening
parenthesis must match the next closing symbol (see Figure 4). Also, the first opening symbol
processed may have to wait until the very last symbol for its match. Closing symbols match
opening symbols in the reverse order of their appearance; they match from the inside out. This is a
clue that stacks can be used to solve the problem.

图 20 Matching Parentheses

Once you agree that a stack is the appropriate data structure for keeping the parentheses, the
statement of the algorithm is straightforward. Starting with an empty stack, process the parenthesis
strings from left to right. If a symbol is an opening parenthesis, push it on the stack as a signal that
a corresponding closing symbol needs to appear later. If, on the other hand, a symbol is a closing
parenthesis, pop the stack. As long as it is possible to pop the stack to match every closing symbol,
the parentheses remain balanced. If at any time there is no opening symbol on the stack to match a
closing symbol, the string is not balanced properly. At the end of the string, when all symbols have
been processed, the stack should be empty. The Python code to implement this algorithm is shown
in ActiveCode 1.

from pythonds.basic.stack import Stack

def parChecker(symbolString):
s = Stack()
balanced = True



index = 0
while index < len(symbolString) and balanced:

symbol = symbolString[index]
if symbol == "(":

s.push(symbol)
else:

if s.isEmpty():
balanced = False

else:
s.pop()

index = index + 1

if balanced and s.isEmpty():
return True

else:
return False

print(parChecker('((()))'))
print(parChecker('(()'))

代码 24 Solving the Balanced Parentheses Problem (parcheck1)

This function, parChecker, assumes that a Stack class is available and returns a boolean result as
to whether the string of parentheses is balanced. Note that the boolean variable balanced is
initialized to True as there is no reason to assume otherwise at the start. If the current symbol is (,
then it is pushed on the stack (lines 9–10). Note also in line 15 that pop simply removes a symbol
from the stack. The returned value is not used since we know it must be an opening symbol seen
earlier. At the end (lines 19–22), as long as the expression is balanced and the stack has been
completely cleaned off, the string represents a correctly balanced sequence of parentheses.

3.3.5. 匹配符号（通用情况）

The balanced parentheses problem shown above is a specific case of a more general situation that
arises in many programming languages. The general problem of balancing and nesting different
kinds of opening and closing symbols occurs frequently. For example, in Python square brackets,
[ and ], are used for lists; curly braces, { and }, are used for dictionaries; and parentheses, ( and ),
are used for tuples and arithmetic expressions. It is possible to mix symbols as long as each
maintains its own open and close relationship. Strings of symbols such as

{ { ( [ ] [ ] ) } ( ) }

[ [ { { ( ( ) ) } } ] ]



[ ] [ ] [ ] ( ) { }

are properly balanced in that not only does each opening symbol have a corresponding closing
symbol, but the types of symbols match as well.

Compare those with the following strings that are not balanced:

( [ ) ]

( ( ( ) ] ) )

[ { ( ) ]

The simple parentheses checker from the previous section can easily be extended to handle these
new types of symbols. Recall that each opening symbol is simply pushed on the stack to wait for
the matching closing symbol to appear later in the sequence. When a closing symbol does appear,
the only difference is that we must check to be sure that it correctly matches the type of the
opening symbol on top of the stack. If the two symbols do not match, the string is not balanced.
Once again, if the entire string is processed and nothing is left on the stack, the string is correctly
balanced.

The Python program to implement this is shown in ActiveCode 1. The only change appears in line
16 where we call a helper function, matches, to assist with symbol-matching. Each symbol that is
removed from the stack must be checked to see that it matches the current closing symbol. If a
mismatch occurs, the boolean variable balanced is set to False.

from pythonds.basic.stack import Stack

def parChecker(symbolString):
s = Stack()
balanced = True
index = 0
while index < len(symbolString) and balanced:

symbol = symbolString[index]
if symbol in "([{":

s.push(symbol)
else:

if s.isEmpty():
balanced = False

else:
top = s.pop()
if not matches(top,symbol):

balanced = False
index = index + 1



if balanced and s.isEmpty():
return True

else:
return False

def matches(open,close):
opens = "([{"
closers = ")]}"
return opens.index(open) == closers.index(close)

print(parChecker('{{([][])}()}'))
print(parChecker('[{()]'))

代码 25 Solving the General Balanced Symbol Problem (parcheck2)

These two examples show that stacks are very important data structures for the processing of
language constructs in computer science. Almost any notation you can think of has some type of
nested symbol that must be matched in a balanced order. There are a number of other important
uses for stacks in computer science. We will continue to explore them in the next sections.

3.3.6. 十进制数转换为二进制

In your study of computer science, you have probably been exposed in one way or another to the
idea of a binary number. Binary representation is important in computer science since all values
stored within a computer exist as a string of binary digits, a string of 0s and 1s. Without the ability
to convert back and forth between common representations and binary numbers, we would need to
interact with computers in very awkward ways.

Integer values are common data items. They are used in computer programs and computation all
the time. We learn about them in math class and of course represent them using the decimal
number system, or base 10. The decimal number 23310 and its corresponding binary equivalent
111010012 are interpreted respectively as

2×102+3×101+3×100

and

1×27+1×26+1×25+0×24+1×23+0×22+0×21+1×20

But how can we easily convert integer values into binary numbers? The answer is an algorithm
called “Divide by 2” that uses a stack to keep track of the digits for the binary result.



The Divide by 2 algorithm assumes that we start with an integer greater than 0. A simple iteration
then continually divides the decimal number by 2 and keeps track of the remainder. The first
division by 2 gives information as to whether the value is even or odd. An even value will have a
remainder of 0. It will have the digit 0 in the ones place. An odd value will have a remainder of 1
and will have the digit 1 in the ones place. We think about building our binary number as a
sequence of digits; the first remainder we compute will actually be the last digit in the sequence.
As shown in Figure 5, we again see the reversal property that signals that a stack is likely to be the
appropriate data structure for solving the problem.

图 21 Decimal-to-Binary Conversion

The Python code in ActiveCode 1 implements the Divide by 2 algorithm. The function divideBy2
takes an argument that is a decimal number and repeatedly divides it by 2. Line 7 uses the built-in
modulo operator, %, to extract the remainder and line 8 then pushes it on the stack. After the
division process reaches 0, a binary string is constructed in lines 11-13. Line 11 creates an empty
string. The binary digits are popped from the stack one at a time and appended to the right-hand
end of the string. The binary string is then returned.

from pythonds.basic.stack import Stack

def divideBy2(decNumber):
remstack = Stack()

while decNumber > 0:
rem = decNumber % 2
remstack.push(rem)
decNumber = decNumber // 2

binString = ""
while not remstack.isEmpty():

binString = binString + str(remstack.pop())

return binString

print(divideBy2(42))



代码 26 Converting from Decimal to Binary (divby2)

The algorithm for binary conversion can easily be extended to perform the conversion for any
base. In computer science it is common to use a number of different encodings. The most common
of these are binary, octal (base 8), and hexadecimal (base 16).

The decimal number 233 and its corresponding octal and hexadecimal equivalents 3518 and E916
are interpreted as

3×82+5×81+1×80

and

14×161+9×160

The function divideBy2 can be modified to accept not only a decimal value but also a base for the
intended conversion. The“Divide by 2” idea is simply replaced with a more general“Divide by
base.” A new function called baseConverter, shown in ActiveCode 2, takes a decimal number and
any base between 2 and 16 as parameters. The remainders are still pushed onto the stack until the
value being converted becomes 0. The same left-to-right string construction technique can be used
with one slight change. Base 2 through base 10 numbers need a maximum of 10 digits, so the
typical digit characters 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 work fine. The problem comes when we go
beyond base 10. We can no longer simply use the remainders, as they are themselves represented
as two-digit decimal numbers. Instead we need to create a set of digits that can be used to
represent those remainders beyond 9.

from pythonds.basic.stack import Stack

def baseConverter(decNumber,base):
digits = "0123456789ABCDEF"

remstack = Stack()

while decNumber > 0:
rem = decNumber % base
remstack.push(rem)
decNumber = decNumber // base

newString = ""
while not remstack.isEmpty():

newString = newString + digits[remstack.pop()]

return newString



print(baseConverter(25,2))
print(baseConverter(25,16))

代码 27 Converting from Decimal to any Base (baseconvert)

A solution to this problem is to extend the digit set to include some alphabet characters. For
example, hexadecimal uses the ten decimal digits along with the first six alphabet characters for
the 16 digits. To implement this, a digit string is created (line 4 in Listing 6) that stores the digits
in their corresponding positions. 0 is at position 0, 1 is at position 1, A is at position 10, B is at
position 11, and so on. When a remainder is removed from the stack, it can be used to index into
the digit string and the correct resulting digit can be appended to the answer. For example, if the
remainder 13 is removed from the stack, the digit D is appended to the resulting string.

Self Check
Q-6: What is value of 25 expressed as an octal number

Q-7: What is value of 256 expressed as a hexidecimal number

Q-8: What is value of 26 expressed in base 26

3.3.7. 中缀、前缀和后缀表达式

When you write an arithmetic expression such as B * C, the form of the expression provides you
with information so that you can interpret it correctly. In this case we know that the variable B is
being multiplied by the variable C since the multiplication operator * appears between them in the
expression. This type of notation is referred to as infix since the operator is in between the two
operands that it is working on.

Consider another infix example, A + B * C. The operators + and * still appear between the
operands, but there is a problem. Which operands do they work on? Does the + work on A and B
or does the * take B and C? The expression seems ambiguous.

In fact, you have been reading and writing these types of expressions for a long time and they do
not cause you any problem. The reason for this is that you know something about the operators +
and *. Each operator has a precedence level. Operators of higher precedence are used before
operators of lower precedence. The only thing that can change that order is the presence of
parentheses. The precedence order for arithmetic operators places multiplication and division
above addition and subtraction. If two operators of equal precedence appear, then a left-to-right
ordering or associativity is used.

Let’s interpret the troublesome expression A + B * C using operator precedence. B and C are
multiplied first, and A is then added to that result. (A + B) * C would force the addition of A and B
to be done first before the multiplication. In expression A + B + C, by precedence (via



associativity), the leftmost + would be done first.

Although all this may be obvious to you, remember that computers need to know exactly what
operators to perform and in what order. One way to write an expression that guarantees there will
be no confusion with respect to the order of operations is to create what is called a fully
parenthesized expression. This type of expression uses one pair of parentheses for each operator.
The parentheses dictate the order of operations; there is no ambiguity. There is also no need to
remember any precedence rules.

The expression A + B * C + D can be rewritten as ((A + (B * C)) + D) to show that the
multiplication happens first, followed by the leftmost addition. A + B + C + D can be written as
(((A + B) + C) + D) since the addition operations associate from left to right.

There are two other very important expression formats that may not seem obvious to you at first.
Consider the infix expression A + B. What would happen if we moved the operator before the two
operands? The resulting expression would be + A B. Likewise, we could move the operator to the
end. We would get A B +. These look a bit strange.

These changes to the position of the operator with respect to the operands create two new
expression formats, prefix and postfix. Prefix expression notation requires that all operators
precede the two operands that they work on. Postfix, on the other hand, requires that its operators
come after the corresponding operands. A few more examples should help to make this a bit
clearer (see Table 2).

A + B * C would be written as + A * B C in prefix. The multiplication operator comes
immediately before the operands B and C, denoting that * has precedence over +. The addition
operator then appears before the A and the result of the multiplication.

In postfix, the expression would be A B C * +. Again, the order of operations is preserved since
the * appears immediately after the B and the C, denoting that * has precedence, with + coming
after. Although the operators moved and now appear either before or after their respective
operands, the order of the operands stayed exactly the same relative to one another.

Infix Expression Prefix Expression Postfix Expression
A + B + A B A B +
A + B * C + A * B C A B C * +
表格 14 Examples of Infix, Prefix, and Postfix

Now consider the infix expression (A + B) * C. Recall that in this case, infix requires the
parentheses to force the performance of the addition before the multiplication. However, when A +
B was written in prefix, the addition operator was simply moved before the operands, + A B. The
result of this operation becomes the first operand for the multiplication. The multiplication
operator is moved in front of the entire expression, giving us * + A B C. Likewise, in postfix A B
+ forces the addition to happen first. The multiplication can be done to that result and the



remaining operand C. The proper postfix expression is then A B + C *.

Consider these three expressions again (see Table 3). Something very important has happened.
Where did the parentheses go? Why don’t we need them in prefix and postfix? The answer is that
the operators are no longer ambiguous with respect to the operands that they work on. Only infix
notation requires the additional symbols. The order of operations within prefix and postfix
expressions is completely determined by the position of the operator and nothing else. In many
ways, this makes infix the least desirable notation to use.

Infix Expression Prefix Expression Postfix Expression
(A + B) * C * + A B C A B + C *
表格 15 An Expression with Parentheses

Table 4 shows some additional examples of infix expressions and the equivalent prefix and postfix
expressions. Be sure that you understand how they are equivalent in terms of the order of the
operations being performed.

Infix Expression Prefix Expression Postfix Expression
A + B * C + D + + A * B C D A B C * + D +
(A + B) * (C + D) * + A B + C D A B + C D + *
A * B + C * D + * A B * C D A B * C D * +
A + B + C + D + + + A B C D A B + C + D +
表格 16 Additional Examples of Infix, Prefix, and Postfix

3.3.7.1. 中缀表达式转换为前缀和后缀形式

So far, we have used ad hoc methods to convert between infix expressions and the equivalent
prefix and postfix expression notations. As you might expect, there are algorithmic ways to
perform the conversion that allow any expression of any complexity to be correctly transformed.

The first technique that we will consider uses the notion of a fully parenthesized expression that
was discussed earlier. Recall that A + B * C can be written as (A + (B * C)) to show explicitly that
the multiplication has precedence over the addition. On closer observation, however, you can see
that each parenthesis pair also denotes the beginning and the end of an operand pair with the
corresponding operator in the middle.

Look at the right parenthesis in the subexpression (B * C) above. If we were to move the
multiplication symbol to that position and remove the matching left parenthesis, giving us B C *,
we would in effect have converted the subexpression to postfix notation. If the addition operator
were also moved to its corresponding right parenthesis position and the matching left parenthesis
were removed, the complete postfix expression would result (see Figure 6).



图 22 Moving Operators to the Right for Postfix Notation

If we do the same thing but instead of moving the symbol to the position of the right parenthesis,
we move it to the left, we get prefix notation (see Figure 7). The position of the parenthesis pair is
actually a clue to the final position of the enclosed operator.

图 23 Moving Operators to the Left for Prefix Notation

So in order to convert an expression, no matter how complex, to either prefix or postfix notation,
fully parenthesize the expression using the order of operations. Then move the enclosed operator
to the position of either the left or the right parenthesis depending on whether you want prefix or
postfix notation.

Here is a more complex expression: (A + B) * C - (D - E) * (F + G). Figure 8 shows the
conversion to postfix and prefix notations.

图 24 Converting a Complex Expression to Prefix and Postfix Notations

3.3.7.2. 通用的中缀转后缀算法

We need to develop an algorithm to convert any infix expression to a postfix expression. To do
this we will look closer at the conversion process.

Consider once again the expression A + B * C. As shown above, A B C * + is the postfix
equivalent. We have already noted that the operands A, B, and C stay in their relative positions. It
is only the operators that change position. Let’s look again at the operators in the infix expression.
The first operator that appears from left to right is +. However, in the postfix expression, + is at
the end since the next operator, *, has precedence over addition. The order of the operators in the
original expression is reversed in the resulting postfix expression.

As we process the expression, the operators have to be saved somewhere since their corresponding
right operands are not seen yet. Also, the order of these saved operators may need to be reversed
due to their precedence. This is the case with the addition and the multiplication in this example.



Since the addition operator comes before the multiplication operator and has lower precedence, it
needs to appear after the multiplication operator is used. Because of this reversal of order, it makes
sense to consider using a stack to keep the operators until they are needed.

What about (A + B) * C? Recall that A B + C * is the postfix equivalent. Again, processing this
infix expression from left to right, we see + first. In this case, when we see *, + has already been
placed in the result expression because it has precedence over * by virtue of the parentheses. We
can now start to see how the conversion algorithm will work. When we see a left parenthesis, we
will save it to denote that another operator of high precedence will be coming. That operator will
need to wait until the corresponding right parenthesis appears to denote its position (recall the
fully parenthesized technique). When that right parenthesis does appear, the operator can be
popped from the stack.

As we scan the infix expression from left to right, we will use a stack to keep the operators. This
will provide the reversal that we noted in the first example. The top of the stack will always be the
most recently saved operator. Whenever we read a new operator, we will need to consider how
that operator compares in precedence with the operators, if any, already on the stack.

Assume the infix expression is a string of tokens delimited by spaces. The operator tokens are *, /,
+, and -, along with the left and right parentheses, ( and ). The operand tokens are the
single-character identifiers A, B, C, and so on. The following steps will produce a string of tokens
in postfix order.

1. Create an empty stack called opstack for keeping operators. Create an empty list for output.
2. Convert the input infix string to a list by using the string method split.
3. Scan the token list from left to right.

a) If the token is an operand, append it to the end of the output list.
b) If the token is a left parenthesis, push it on the opstack.
c) If the token is a right parenthesis, pop the opstack until the corresponding left

parenthesis is removed. Append each operator to the end of the output list.
d) If the token is an operator, *, /, +, or -, push it on the opstack. However, first remove any

operators already on the opstack that have higher or equal precedence and append them
to the output list.

4. When the input expression has been completely processed, check the opstack. Any operators
still on the stack can be removed and appended to the end of the output list.

Figure 9 shows the conversion algorithm working on the expression A * B + C * D. Note that the
first * operator is removed upon seeing the + operator. Also, + stays on the stack when the second
* occurs, since multiplication has precedence over addition. At the end of the infix expression the
stack is popped twice, removing both operators and placing + as the last operator in the postfix
expression.



图 25 Converting A * B + C * D to Postfix Notation

In order to code the algorithm in Python, we will use a dictionary called prec to hold the
precedence values for the operators. This dictionary will map each operator to an integer that can
be compared against the precedence levels of other operators (we have arbitrarily used the integers
3, 2, and 1). The left parenthesis will receive the lowest value possible. This way any operator that
is compared against it will have higher precedence and will be placed on top of it. Line 15 defines
the operands to be any upper-case character or digit. The complete conversion function is shown
in ActiveCode 1.

from pythonds.basic.stack import Stack

def infixToPostfix(infixexpr):
prec = {}
prec["*"] = 3
prec["/"] = 3
prec["+"] = 2
prec["-"] = 2
prec["("] = 1
opStack = Stack()
postfixList = []
tokenList = infixexpr.split()

for token in tokenList:
if token in "ABCDEFGHIJKLMNOPQRSTUVWXYZ" or token in "0123456789":

postfixList.append(token)
elif token == '(':

opStack.push(token)
elif token == ')':

topToken = opStack.pop()
while topToken != '(':

postfixList.append(topToken)
topToken = opStack.pop()

else:



while (not opStack.isEmpty()) and \
(prec[opStack.peek()] >= prec[token]):

postfixList.append(opStack.pop())
opStack.push(token)

while not opStack.isEmpty():
postfixList.append(opStack.pop())

return " ".join(postfixList)

print(infixToPostfix("A * B + C * D"))
print(infixToPostfix("( A + B ) * C - ( D - E ) * ( F + G )"))

代码 28 Converting Infix Expressions to Postfix Expressions (intopost)

A few more examples of execution in the Python shell are shown below.

>>> infixtopostfix("( A + B ) * ( C + D )")
'A B + C D + *'
>>> infixtopostfix("( A + B ) * C")
'A B + C *'
>>> infixtopostfix("A + B * C")
'A B C * +'
>>>

3.3.7.3. 后缀表达式求值

As a final stack example, we will consider the evaluation of an expression that is already in postfix
notation. In this case, a stack is again the data structure of choice. However, as you scan the
postfix expression, it is the operands that must wait, not the operators as in the conversion
algorithm above. Another way to think about the solution is that whenever an operator is seen on
the input, the two most recent operands will be used in the evaluation.

To see this in more detail, consider the postfix expression 4 5 6 * +. As you scan the expression
from left to right, you first encounter the operands 4 and 5. At this point, you are still unsure what
to do with them until you see the next symbol. Placing each on the stack ensures that they are
available if an operator comes next.

In this case, the next symbol is another operand. So, as before, push it and check the next symbol.
Now we see an operator, *. This means that the two most recent operands need to be used in a
multiplication operation. By popping the stack twice, we can get the proper operands and then
perform the multiplication (in this case getting the result 30).



We can now handle this result by placing it back on the stack so that it can be used as an operand
for the later operators in the expression. When the final operator is processed, there will be only
one value left on the stack. Pop and return it as the result of the expression. Figure 10 shows the
stack contents as this entire example expression is being processed.

图 26 Stack Contents During Evaluation

Figure 11 shows a slightly more complex example, 7 8 + 3 2 + /. There are two things to note in
this example. First, the stack size grows, shrinks, and then grows again as the subexpressions are
evaluated. Second, the division operation needs to be handled carefully. Recall that the operands
in the postfix expression are in their original order since postfix changes only the placement of
operators. When the operands for the division are popped from the stack, they are reversed. Since
division is not a commutative operator, in other words 15/5 is not the same as 5/15, we must be
sure that the order of the operands is not switched.

图 27 A More Complex Example of Evaluation

Assume the postfix expression is a string of tokens delimited by spaces. The operators are *, /, +,
and - and the operands are assumed to be single-digit integer values. The output will be an integer
result.

1. Create an empty stack called operandStack.
2. Convert the string to a list by using the string method split.
3. Scan the token list from left to right.

a) If the token is an operand, convert it from a string to an integer and push the value onto
the operandStack.

b) If the token is an operator, *, /, +, or -, it will need two operands. Pop the operandStack
twice. The first pop is the second operand and the second pop is the first operand.
Perform the arithmetic operation. Push the result back on the operandStack.

4. When the input expression has been completely processed, the result is on the stack. Pop the
operandStack and return the value.



The complete function for the evaluation of postfix expressions is shown in ActiveCode 2. To
assist with the arithmetic, a helper function doMath is defined that will take two operands and an
operator and then perform the proper arithmetic operation.

from pythonds.basic.stack import Stack

def postfixEval(postfixExpr):
operandStack = Stack()
tokenList = postfixExpr.split()

for token in tokenList:
if token in "0123456789":

operandStack.push(int(token))
else:

operand2 = operandStack.pop()
operand1 = operandStack.pop()
result = doMath(token,operand1,operand2)
operandStack.push(result)

return operandStack.pop()

def doMath(op, op1, op2):
if op == "*":

return op1 * op2
elif op == "/":

return op1 / op2
elif op == "+":

return op1 + op2
else:

return op1 - op2

print(postfixEval('7 8 + 3 2 + /'))

代码 29 Postfix Evaluation (postfixeval)

It is important to note that in both the postfix conversion and the postfix evaluation programs we
assumed that there were no errors in the input expression. Using these programs as a starting point,
you can easily see how error detection and reporting can be included. We leave this as an exercise
at the end of the chapter.

Self Check
Q-12: Without using the activecode infixToPostfix function, convert the following expression to
postfix 10 + 3 * 5 / (16 - 4)
Q-13: 17 10 + 3 * 9 / ==
Q-14: Modify the infixToPostfix function so that it can convert the following expression: 5 * 3 ^
(4 - 2) Paste the answer here:



3.4.队列 queue

3.4.1. 什么是队列

A queue is an ordered collection of items where the addition of new items happens at one end,
called the“rear,” and the removal of existing items occurs at the other end, commonly called the
“front.” As an element enters the queue it starts at the rear and makes its way toward the front,
waiting until that time when it is the next element to be removed.

The most recently added item in the queue must wait at the end of the collection. The item that has
been in the collection the longest is at the front. This ordering principle is sometimes called FIFO,
first-in first-out. It is also known as “first-come first-served.”

The simplest example of a queue is the typical line that we all participate in from time to time. We
wait in a line for a movie, we wait in the check-out line at a grocery store, and we wait in the
cafeteria line (so that we can pop the tray stack). Well-behaved lines, or queues, are very
restrictive in that they have only one way in and only one way out. There is no jumping in the
middle and no leaving before you have waited the necessary amount of time to get to the front.
Figure 1 shows a simple queue of Python data objects.

图 28 A Queue of Python Data Objects

Computer science also has common examples of queues. Our computer laboratory has 30
computers networked with a single printer. When students want to print, their print tasks “get in
line”with all the other printing tasks that are waiting. The first task in is the next to be completed.
If you are last in line, you must wait for all the other tasks to print ahead of you. We will explore
this interesting example in more detail later.

In addition to printing queues, operating systems use a number of different queues to control
processes within a computer. The scheduling of what gets done next is typically based on a
queuing algorithm that tries to execute programs as quickly as possible and serve as many users as
it can. Also, as we type, sometimes keystrokes get ahead of the characters that appear on the
screen. This is due to the computer doing other work at that moment. The keystrokes are being
placed in a queue-like buffer so that they can eventually be displayed on the screen in the proper
order.



3.4.2. 抽象数据类型 Queue

The queue abstract data type is defined by the following structure and operations. A queue is
structured, as described above, as an ordered collection of items which are added at one end,
called the“rear,” and removed from the other end, called the“front.”Queues maintain a FIFO
ordering property. The queue operations are given below.

 Queue() creates a new queue that is empty. It needs no parameters and returns an empty
queue.

 enqueue(item) adds a new item to the rear of the queue. It needs the item and returns nothing.
 dequeue() removes the front item from the queue. It needs no parameters and returns the item.

The queue is modified.
 isEmpty() tests to see whether the queue is empty. It needs no parameters and returns a

boolean value.
 size() returns the number of items in the queue. It needs no parameters and returns an integer.
As an example, if we assume that q is a queue that has been created and is currently empty, then
Table 1 shows the results of a sequence of queue operations. The queue contents are shown such
that the front is on the right. 4 was the first item enqueued so it is the first item returned by
dequeue.

Queue Operation Queue Contents Return Value
q=Queue() [] Queue object

q.isEmpty() [] True
q.enqueue(4) [4]
q.enqueue('dog') ['dog',4]
q.enqueue(True) [True,'dog',4]
q.size() [True,'dog',4] 3
q.isEmpty() [True,'dog',4] False
q.enqueue(8.4) [8.4,True,'dog',4]
q.dequeue() [8.4,True,'dog'] 4
q.dequeue() [8.4,True] 'dog'
q.size() [8.4,True] 2
表格 17 Example Queue Operations

3.4.3. 在 Python中实现 Queue

It is again appropriate to create a new class for the implementation of the abstract data type queue.
As before, we will use the power and simplicity of the list collection to build the internal



representation of the queue.

We need to decide which end of the list to use as the rear and which to use as the front. The
implementation shown in Listing 1 assumes that the rear is at position 0 in the list. This allows us
to use the insert function on lists to add new elements to the rear of the queue. The pop operation
can be used to remove the front element (the last element of the list). Recall that this also means
that enqueue will be O(n) and dequeue will be O(1).

Listing 1

class Queue:
def __init__(self):

self.items = []

def isEmpty(self):
return self.items == []

def enqueue(self, item):
self.items.insert(0,item)

def dequeue(self):
return self.items.pop()

def size(self):
return len(self.items)

CodeLens 1 shows the Queue class in action as we perform the sequence of operations from Table
1.

1 class Queue:
2 def __init__(self):
3 self.items = []
4
5 def isEmpty(self):
6 return self.items == []
7
8 def enqueue(self, item):
9 self.items.insert(0,item)
10
11 def dequeue(self):
12 return self.items.pop()
13
14 def size(self):
15 return len(self.items)



16
17 q=Queue()
18
19 q.enqueue(4)
20 q.enqueue('dog')
21 q.enqueue(True)
22 print(q.size())

Further manipulation of this queue would give the following results:

>>> q.size()
3
>>> q.isEmpty()
False
>>> q.enqueue(8.4)
>>> q.dequeue()
4
>>> q.dequeue()
'dog'
>>> q.size()
2

Self Check
Q-9: Suppose you have the following series of queue operations.

q = Queue()
q.enqueue('hello')
q.enqueue('dog')
q.enqueue(3)
q.dequeue()

What items are left on the queue?
a) 'hello', 'dog'
b) 'dog', 3
c) 'hello', 3
d) 'hello', 'dog', 3

3.4.4. 模拟算法：热土豆

One of the typical applications for showing a queue in action is to simulate a real situation that
requires data to be managed in a FIFO manner. To begin, let’s consider the children’s game Hot
Potato. In this game (see Figure 2) children line up in a circle and pass an item from neighbor to
neighbor as fast as they can. At a certain point in the game, the action is stopped and the child who



has the item (the potato) is removed from the circle. Play continues until only one child is left.

图 29 A Six Person Game of Hot Potato

This game is a modern-day equivalent of the famous Josephus problem. Based on a legend about
the famous first-century historian Flavius Josephus, the story is told that in the Jewish revolt
against Rome, Josephus and 39 of his comrades held out against the Romans in a cave. With
defeat imminent, they decided that they would rather die than be slaves to the Romans. They
arranged themselves in a circle. One man was designated as number one, and proceeding
clockwise they killed every seventh man. Josephus, according to the legend, was among other
things an accomplished mathematician. He instantly figured out where he ought to sit in order to
be the last to go. When the time came, instead of killing himself, he joined the Roman side. You
can find many different versions of this story. Some count every third man and some allow the last
man to escape on a horse. In any case, the idea is the same.

We will implement a general simulation of Hot Potato. Our program will input a list of names and
a constant, call it “num,” to be used for counting. It will return the name of the last person
remaining after repetitive counting by num. What happens at that point is up to you.

To simulate the circle, we will use a queue (see Figure 3). Assume that the child holding the potato
will be at the front of the queue. Upon passing the potato, the simulation will simply dequeue and
then immediately enqueue that child, putting her at the end of the line. She will then wait until all
the others have been at the front before it will be her turn again. After num dequeue/enqueue
operations, the child at the front will be removed permanently and another cycle will begin. This
process will continue until only one name remains (the size of the queue is 1).



图 30 A Queue Implementation of Hot Potato

The program is shown in ActiveCode 1. A call to the hotPotato function using 7 as the counting
constant returns Susan.

from pythonds.basic.queue import Queue

def hotPotato(namelist, num):
simqueue = Queue()
for name in namelist:

simqueue.enqueue(name)

while simqueue.size() > 1:
for i in range(num):

simqueue.enqueue(simqueue.dequeue())

simqueue.dequeue()

return simqueue.dequeue()

print(hotPotato(["Bill","David","Susan","Jane","Kent","Brad"],7))

代码 30 Hot Potato Simulation (qujosephussim)

Note that in this example the value of the counting constant is greater than the number of names in
the list. This is not a problem since the queue acts like a circle and counting continues back at the
beginning until the value is reached. Also, notice that the list is loaded into the queue such that the
first name on the list will be at the front of the queue. Bill in this case is the first item in the list
and therefore moves to the front of the queue. A variation of this implementation, described in the
exercises, allows for a random counter.



3.4.5. 模拟算法：打印任务

A more interesting simulation allows us to study the behavior of the printing queue described
earlier in this section. Recall that as students send printing tasks to the shared printer, the tasks are
placed in a queue to be processed in a first-come first-served manner. Many questions arise with
this configuration. The most important of these might be whether the printer is capable of handling
a certain amount of work. If it cannot, students will be waiting too long for printing and may miss
their next class.

Consider the following situation in a computer science laboratory. On any average day about 10
students are working in the lab at any given hour. These students typically print up to twice during
that time, and the length of these tasks ranges from 1 to 20 pages. The printer in the lab is older,
capable of processing 10 pages per minute of draft quality. The printer could be switched to give
better quality, but then it would produce only five pages per minute. The slower printing speed
could make students wait too long. What page rate should be used?

We could decide by building a simulation that models the laboratory. We will need to construct
representations for students, printing tasks, and the printer (Figure 4). As students submit printing
tasks, we will add them to a waiting list, a queue of print tasks attached to the printer. When the
printer completes a task, it will look at the queue to see if there are any remaining tasks to process.
Of interest for us is the average amount of time students will wait for their papers to be printed.
This is equal to the average amount of time a task waits in the queue.

图 31 Computer Science Laboratory Printing Queue

To model this situation we need to use some probabilities. For example, students may print a paper
from 1 to 20 pages in length. If each length from 1 to 20 is equally likely, the actual length for a
print task can be simulated by using a random number between 1 and 20 inclusive. This means



that there is equal chance of any length from 1 to 20 appearing.

If there are 10 students in the lab and each prints twice, then there are 20 print tasks per hour on
average. What is the chance that at any given second, a print task is going to be created? The way
to answer this is to consider the ratio of tasks to time. Twenty tasks per hour means that on
average there will be one task every 180 seconds:

For every second we can simulate the chance that a print task occurs by generating a random
number between 1 and 180 inclusive. If the number is 180, we say a task has been created. Note
that it is possible that many tasks could be created in a row or we may wait quite a while for a task
to appear. That is the nature of simulation. You want to simulate the real situation as closely as
possible given that you know general parameters.

3.4.6. 主要模拟步骤

Here is the main simulation.

1. Create a queue of print tasks. Each task will be given a timestamp upon its arrival. The queue
is empty to start.

2. For each second (currentSecond):
a) Does a new print task get created? If so, add it to the queue with the currentSecond as

the timestamp.
b) If the printer is not busy and if a task is waiting,

i. Remove the next task from the print queue and assign it to the printer.
ii. Subtract the timestamp from the currentSecond to compute the waiting time for that

task.
iii. Append the waiting time for that task to a list for later processing.
iv. Based on the number of pages in the print task, figure out how much time will be

required.
c) The printer now does one second of printing if necessary. It also subtracts one second

from the time required for that task.
d) If the task has been completed, in other words the time required has reached zero, the

printer is no longer busy.
3. After the simulation is complete, compute the average waiting time from the list of waiting

times generated.

3.4.7. Python实现

To design this simulation we will create classes for the three real-world objects described above:
Printer, Task, and PrintQueue.



The Printer class (Listing 2) will need to track whether it has a current task. If it does, then it is
busy (lines 13–17) and the amount of time needed can be computed from the number of pages in
the task. The constructor will also allow the pages-per-minute setting to be initialized. The tick
method decrements the internal timer and sets the printer to idle (line 11) if the task is completed.

Listing 2

class Printer:
def __init__(self, ppm):

self.pagerate = ppm
self.currentTask = None
self.timeRemaining = 0

def tick(self):
if self.currentTask != None:

self.timeRemaining = self.timeRemaining - 1
if self.timeRemaining <= 0:

self.currentTask = None

def busy(self):
if self.currentTask != None:

return True
else:

return False

def startNext(self,newtask):
self.currentTask = newtask
self.timeRemaining = newtask.getPages() * 60/self.pagerate

The Task class (Listing 3) will represent a single printing task. When the task is created, a random
number generator will provide a length from 1 to 20 pages. We have chosen to use the randrange
function from the random module.

Listing 3

>>> import random
>>> random.randrange(1,21)
18
>>> random.randrange(1,21)
8
>>>

Each task will also need to keep a timestamp to be used for computing waiting time. This
timestamp will represent the time that the task was created and placed in the printer queue. The
waitTime method can then be used to retrieve the amount of time spent in the queue before



printing begins.

Listing 3

import random

class Task:
def __init__(self,time):

self.timestamp = time
self.pages = random.randrange(1,21)

def getStamp(self):
return self.timestamp

def getPages(self):
return self.pages

def waitTime(self, currenttime):
return currenttime - self.timestamp

The main simulation (Listing 4) implements the algorithm described above. The printQueue object
is an instance of our existing queue ADT. A boolean helper function, newPrintTask, decides
whether a new printing task has been created. We have again chosen to use the randrange function
from the random module to return a random integer between 1 and 180. Print tasks arrive once
every 180 seconds. By arbitrarily choosing 180 from the range of random integers (line 32), we
can simulate this random event. The simulation function allows us to set the total time and the
pages per minute for the printer.

Listing 4

from pythonds.basic.queue import Queue

import random

def simulation(numSeconds, pagesPerMinute):

labprinter = Printer(pagesPerMinute)
printQueue = Queue()
waitingtimes = []

for currentSecond in range(numSeconds):

if newPrintTask():
task = Task(currentSecond)



printQueue.enqueue(task)

if (not labprinter.busy()) and (not printQueue.isEmpty()):
nexttask = printQueue.dequeue()
waitingtimes.append(nexttask.waitTime(currentSecond))
labprinter.startNext(nexttask)

labprinter.tick()

averageWait=sum(waitingtimes)/len(waitingtimes)
print("Average Wait %6.2f secs %3d tasks

remaining."%(averageWait,printQueue.size()))

def newPrintTask():
num = random.randrange(1,181)
if num == 180:

return True
else:

return False

for i in range(10):
simulation(3600,5)

When we run the simulation, we should not be concerned that the results are different each time.
This is due to the probabilistic nature of the random numbers. We are interested in the trends that
may be occurring as the parameters to the simulation are adjusted. Here are some results.

First, we will run the simulation for a period of 60 minutes (3,600 seconds) using a page rate of
five pages per minute. In addition, we will run 10 independent trials. Remember that because the
simulation works with random numbers each run will return different results.

>>>for i in range(10):
simulation(3600,5)

Average Wait 165.38 secs 2 tasks remaining.
Average Wait 95.07 secs 1 tasks remaining.
Average Wait 65.05 secs 2 tasks remaining.
Average Wait 99.74 secs 1 tasks remaining.
Average Wait 17.27 secs 0 tasks remaining.
Average Wait 239.61 secs 5 tasks remaining.
Average Wait 75.11 secs 1 tasks remaining.
Average Wait 48.33 secs 0 tasks remaining.
Average Wait 39.31 secs 3 tasks remaining.
Average Wait 376.05 secs 1 tasks remaining.



After running our 10 trials we can see that the mean average wait time is 122.155 seconds. You
can also see that there is a large variation in the average weight time with a minimum average of
17.27 seconds and a maximum of 239.61 seconds. You may also notice that in only two of the
cases were all the tasks completed.

Now, we will adjust the page rate to 10 pages per minute, and run the 10 trials again, with a faster
page rate our hope would be that more tasks would be completed in the one hour time frame.

>>>for i in range(10):
simulation(3600,10)

Average Wait 1.29 secs 0 tasks remaining.
Average Wait 7.00 secs 0 tasks remaining.
Average Wait 28.96 secs 1 tasks remaining.
Average Wait 13.55 secs 0 tasks remaining.
Average Wait 12.67 secs 0 tasks remaining.
Average Wait 6.46 secs 0 tasks remaining.
Average Wait 22.33 secs 0 tasks remaining.
Average Wait 12.39 secs 0 tasks remaining.
Average Wait 7.27 secs 0 tasks remaining.
Average Wait 18.17 secs 0 tasks remaining.

You can run the simulation for yourself in ActiveCode 2.

from pythonds.basic.queue import Queue

import random

class Printer:
def __init__(self, ppm):

self.pagerate = ppm
self.currentTask = None
self.timeRemaining = 0

def tick(self):
if self.currentTask != None:

self.timeRemaining = self.timeRemaining - 1
if self.timeRemaining <= 0:

self.currentTask = None

def busy(self):
if self.currentTask != None:

return True
else:



return False

def startNext(self,newtask):
self.currentTask = newtask
self.timeRemaining = newtask.getPages() * 60/self.pagerate

class Task:
def __init__(self,time):

self.timestamp = time
self.pages = random.randrange(1,21)

def getStamp(self):
return self.timestamp

def getPages(self):
return self.pages

def waitTime(self, currenttime):
return currenttime - self.timestamp

def simulation(numSeconds, pagesPerMinute):

labprinter = Printer(pagesPerMinute)
printQueue = Queue()
waitingtimes = []

for currentSecond in range(numSeconds):

if newPrintTask():
task = Task(currentSecond)
printQueue.enqueue(task)

if (not labprinter.busy()) and (not printQueue.isEmpty()):
nexttask = printQueue.dequeue()
waitingtimes.append( nexttask.waitTime(currentSecond))
labprinter.startNext(nexttask)

labprinter.tick()

averageWait=sum(waitingtimes)/len(waitingtimes)
print("Average Wait %6.2f secs %3d tasks

remaining."%(averageWait,printQueue.size()))



def newPrintTask():
num = random.randrange(1,181)
if num == 180:

return True
else:

return False

for i in range(10):
simulation(3600,5)

代码 31 Printer Queue Simulation (qumainsim)

3.4.8. 讨论

We were trying to answer a question about whether the current printer could handle the task load if
it were set to print with a better quality but slower page rate. The approach we took was to write a
simulation that modeled the printing tasks as random events of various lengths and arrival times.

The output above shows that with 5 pages per minute printing, the average waiting time varied
from a low of 17 seconds to a high of 376 seconds (about 6 minutes). With a faster printing rate,
the low value was 1 second with a high of only 28. In addition, in 8 out of 10 runs at 5 pages per
minute there were print tasks still waiting in the queue at the end of the hour.

Therefore, we are perhaps persuaded that slowing the printer down to get better quality may not be
a good idea. Students cannot afford to wait that long for their papers, especially when they need to
be getting on to their next class. A six-minute wait would simply be too long.

This type of simulation analysis allows us to answer many questions, commonly known as “what
if” questions. All we need to do is vary the parameters used by the simulation and we can
simulate any number of interesting behaviors. For example,

 What if enrollment goes up and the average number of students increases by 20?
 What if it is Saturday and students are not needing to get to class? Can they afford to wait?
 What if the size of the average print task decreases since Python is such a powerful language

and programs tend to be much shorter?
These questions could all be answered by modifying the above simulation. However, it is
important to remember that the simulation is only as good as the assumptions that are used to
build it. Real data about the number of print tasks per hour and the number of students per hour
was necessary to construct a robust simulation.

Self Check
How would you modify the printer simulation to reflect a larger number of students? Suppose that
the number of students was doubled. You make need to make some reasonable assumptions about



how this simulation was put together but what would you change? Modify the code. Also suppose
that the length of the average print task was cut in half. Change the code to reflect that change.
Finally How would you parametertize the number of students, rather than changing the code we
would like to make the number of students a parameter of the simulation.

3.5.双端队列 deque

3.5.1. 什么是双端队列 deque

A deque, also known as a double-ended queue, is an ordered collection of items similar to the
queue. It has two ends, a front and a rear, and the items remain positioned in the collection. What
makes a deque different is the unrestrictive nature of adding and removing items. New items can
be added at either the front or the rear. Likewise, existing items can be removed from either end.
In a sense, this hybrid linear structure provides all the capabilities of stacks and queues in a single
data structure. Figure 1 shows a deque of Python data objects.

It is important to note that even though the deque can assume many of the characteristics of stacks
and queues, it does not require the LIFO and FIFO orderings that are enforced by those data
structures. It is up to you to make consistent use of the addition and removal operations.

../_images/basicdeque.png

图 32 A Deque of Python Data Objects

3.5.2. 抽象数据类型 Deque

The deque abstract data type is defined by the following structure and operations. A deque is
structured, as described above, as an ordered collection of items where items are added and
removed from either end, either front or rear. The deque operations are given below.

 Deque() creates a new deque that is empty. It needs no parameters and returns an empty
deque.

 addFront(item) adds a new item to the front of the deque. It needs the item and returns
nothing.

 addRear(item) adds a new item to the rear of the deque. It needs the item and returns nothing.
 removeFront() removes the front item from the deque. It needs no parameters and returns the



item. The deque is modified.
 removeRear() removes the rear item from the deque. It needs no parameters and returns the

item. The deque is modified.
 isEmpty() tests to see whether the deque is empty. It needs no parameters and returns a

boolean value.
 size() returns the number of items in the deque. It needs no parameters and returns an integer.
As an example, if we assume that d is a deque that has been created and is currently empty, then
Table {dequeoperations} shows the results of a sequence of deque operations. Note that the
contents in front are listed on the right. It is very important to keep track of the front and the rear
as you move items in and out of the collection as things can get a bit confusing.

表格 18 Examples of Deque Operations

3.5.3. 在 Python中实现 Deque

As we have done in previous sections, we will create a new class for the implementation of the
abstract data type deque. Again, the Python list will provide a very nice set of methods upon
which to build the details of the deque. Our implementation (Listing 1) will assume that the rear of
the deque is at position 0 in the list.

Listing 1

class Deque:
def __init__(self):

self.items = []

def isEmpty(self):
return self.items == []

Deque Operation Deque Contents Return Value
d=Deque() [] Deque object
d.isEmpty() [] True
d.addRear(4) [4]
d.addRear('dog') ['dog',4,]
d.addFront('cat') ['dog',4,'cat']
d.addFront(True) ['dog',4,'cat',True]
d.size() ['dog',4,'cat',True] 4
d.isEmpty() ['dog',4,'cat',True] False
d.addRear(8.4) [8.4,'dog',4,'cat',Tru

e]
d.removeRear() ['dog',4,'cat',True] 8.4
d.removeFront() ['dog',4,'cat'] True



def addFront(self, item):
self.items.append(item)

def addRear(self, item):
self.items.insert(0,item)

def removeFront(self):
return self.items.pop()

def removeRear(self):
return self.items.pop(0)

def size(self):
return len(self.items)

In removeFront we use the pop method to remove the last element from the list. However, in
removeRear, the pop(0) method must remove the first element of the list. Likewise, we need to use
the insert method (line 12) in addRear since the append method assumes the addition of a new
element to the end of the list.

CodeLens 1 shows the Deque class in action as we perform the sequence of operations from Table
1.

1 class Deque:
2 def __init__(self):
3 self.items = []
4
5 def isEmpty(self):
6 return self.items == []
7
8 def addFront(self, item):
9 self.items.append(item)
10
11 def addRear(self, item):
12 self.items.insert(0,item)
13
14 def removeFront(self):
15 return self.items.pop()
16
17 def removeRear(self):
18 return self.items.pop(0)
19
20 def size(self):
21 return len(self.items)



22
23 d=Deque()
24 print(d.isEmpty())
25 d.addRear(4)
26 d.addRear('dog')
27 d.addFront('cat')
28 d.addFront(True)
29 print(d.size())
30 print(d.isEmpty())
31 d.addRear(8.4)
32 print(d.removeRear())
33 print(d.removeFront())

代码 32 Example Deque Operations (deqtest)

3.5.4. “回文词”判定

An interesting problem that can be easily solved using the deque data structure is the classic
palindrome problem. A palindrome is a string that reads the same forward and backward, for
example, radar, toot, and madam. We would like to construct an algorithm to input a string of
characters and check whether it is a palindrome.

The solution to this problem will use a deque to store the characters of the string. We will process
the string from left to right and add each character to the rear of the deque. At this point, the deque
will be acting very much like an ordinary queue. However, we can now make use of the dual
functionality of the deque. The front of the deque will hold the first character of the string and the
rear of the deque will hold the last character (see Figure 2).



图 33 A Deque

Since we can remove both of them directly, we can compare them and continue only if they match.
If we can keep matching first and the last items, we will eventually either run out of characters or
be left with a deque of size 1 depending on whether the length of the original string was even or
odd. In either case, the string must be a palindrome. The complete function for
palindrome-checking appears in ActiveCode 1.

from pythonds.basic.deque import Deque

def palchecker(aString):
chardeque = Deque()

for ch in aString:
chardeque.addRear(ch)

stillEqual = True

while chardeque.size() > 1 and stillEqual:
first = chardeque.removeFront()
last = chardeque.removeRear()
if first != last:

stillEqual = False

return stillEqual

print(palchecker("lsdkjfskf"))



print(palchecker("radar"))

代码 33 A Palindrome Checker Using Deque (palchecker)

3.6.列表 List

Throughout the discussion of basic data structures, we have used Python lists to implement the
abstract data types presented. The list is a powerful, yet simple, collection mechanism that
provides the programmer with a wide variety of operations. However, not all programming
languages include a list collection. In these cases, the notion of a list must be implemented by the
programmer.

A list is a collection of items where each item holds a relative position with respect to the others.
More specifically, we will refer to this type of list as an unordered list. We can consider the list as
having a first item, a second item, a third item, and so on. We can also refer to the beginning of the
list (the first item) or the end of the list (the last item). For simplicity we will assume that lists
cannot contain duplicate items.

For example, the collection of integers 54, 26, 93, 17, 77, and 31 might represent a simple
unordered list of exam scores. Note that we have written them as comma-delimited values, a
common way of showing the list structure. Of course, Python would show this list as
[54,26,93,17,77,31].

3.6.1.抽象数据类型无序列表 Unordered List

The structure of an unordered list, as described above, is a collection of items where each item
holds a relative position with respect to the others. Some possible unordered list operations are
given below.

 List() creates a new list that is empty. It needs no parameters and returns an empty list.
 add(item) adds a new item to the list. It needs the item and returns nothing. Assume the item

is not already in the list.
 remove(item) removes the item from the list. It needs the item and modifies the list. Assume

the item is present in the list.
 search(item) searches for the item in the list. It needs the item and returns a boolean value.
 isEmpty() tests to see whether the list is empty. It needs no parameters and returns a boolean

value.
 size() returns the number of items in the list. It needs no parameters and returns an integer.
 append(item) adds a new item to the end of the list making it the last item in the collection. It

needs the item and returns nothing. Assume the item is not already in the list.
 index(item) returns the position of item in the list. It needs the item and returns the index.



Assume the item is in the list.
 insert(pos,item) adds a new item to the list at position pos. It needs the item and returns

nothing. Assume the item is not already in the list and there are enough existing items to have
position pos.

 pop() removes and returns the last item in the list. It needs nothing and returns an item.
Assume the list has at least one item.

 pop(pos) removes and returns the item at position pos. It needs the position and returns the
item. Assume the item is in the list.

3.6.2.采用链表实现无序列表

In order to implement an unordered list, we will construct what is commonly known as a linked
list. Recall that we need to be sure that we can maintain the relative positioning of the items.
However, there is no requirement that we maintain that positioning in contiguous memory. For
example, consider the collection of items shown in Figure 1. It appears that these values have been
placed randomly. If we can maintain some explicit information in each item, namely the location
of the next item (see Figure 2), then the relative position of each item can be expressed by simply
following the link from one item to the next.

图 34 Items Not Constrained in Their Physical Placement
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图 35 Relative Positions Maintained by Explicit Links

It is important to note that the location of the first item of the list must be explicitly specified.
Once we know where the first item is, the first item can tell us where the second is, and so on. The
external reference is often referred to as the head of the list. Similarly, the last item needs to know
that there is no next item.



3.6.2.1. 类：节点 Node

The basic building block for the linked list implementation is the node. Each node object must
hold at least two pieces of information. First, the node must contain the list item itself. We will call
this the data field of the node. In addition, each node must hold a reference to the next node.
Listing 1 shows the Python implementation. To construct a node, you need to supply the initial
data value for the node. Evaluating the assignment statement below will yield a node object
containing the value 93 (see Figure 3). You should note that we will typically represent a node
object as shown in Figure 4. The Node class also includes the usual methods to access and modify
the data and the next reference.

Listing 1

class Node:
def __init__(self,initdata):

self.data = initdata
self.next = None

def getData(self):
return self.data

def getNext(self):
return self.next

def setData(self,newdata):
self.data = newdata

def setNext(self,newnext):
self.next = newnext

We create Node objects in the usual way.

>>> temp = Node(93)
>>> temp.getData()
93

The special Python reference value None will play an important role in the Node class and later in
the linked list itself. A reference to None will denote the fact that there is no next node. Note in the
constructor that a node is initially created with next set to None. Since this is sometimes referred
to as“grounding the node,” we will use the standard ground symbol to denote a reference that is
referring to None. It is always a good idea to explicitly assign None to your initial next reference
values.



图 36 A Node Object Contains the Item and a Reference to the Next Node

图 37 A Typical Representation for a Node

3.6.2.2. 类：无序列表 Unordered List

As we suggested above, the unordered list will be built from a collection of nodes, each linked to
the next by explicit references. As long as we know where to find the first node (containing the
first item), each item after that can be found by successively following the next links. With this in
mind, the UnorderedList class must maintain a reference to the first node. Listing 2 shows the
constructor. Note that each list object will maintain a single reference to the head of the list.

Listing 2

class UnorderedList:

def __init__(self):
self.head = None

Initially when we construct a list, there are no items. The assignment statement

>>> mylist = UnorderedList()

creates the linked list representation shown in Figure 5. As we discussed in the Node class, the
special reference None will again be used to state that the head of the list does not refer to
anything. Eventually, the example list given earlier will be represented by a linked list as shown in
Figure 6. The head of the list refers to the first node which contains the first item of the list. In turn,
that node holds a reference to the next node (the next item) and so on. It is very important to note
that the list class itself does not contain any node objects. Instead it contains a single reference to
only the first node in the linked structure.

Figure 5: An Empty List



Figure 6: A Linked List of Integers

The isEmpty method, shown in Listing 3, simply checks to see if the head of the list is a reference
to None. The result of the boolean expression self.head==None will only be true if there are no
nodes in the linked list. Since a new list is empty, the constructor and the check for empty must be
consistent with one another. This shows the advantage to using the reference None to denote the
“ end” of the linked structure. In Python, None can be compared to any reference. Two
references are equal if they both refer to the same object. We will use this often in our remaining
methods.

Listing 3

def isEmpty(self):
return self.head == None

So, how do we get items into our list? We need to implement the add method. However, before we
can do that, we need to address the important question of where in the linked list to place the new
item. Since this list is unordered, the specific location of the new item with respect to the other
items already in the list is not important. The new item can go anywhere. With that in mind, it
makes sense to place the new item in the easiest location possible.

Recall that the linked list structure provides us with only one entry point, the head of the list. All
of the other nodes can only be reached by accessing the first node and then following next links.
This means that the easiest place to add the new node is right at the head, or beginning, of the list.
In other words, we will make the new item the first item of the list and the existing items will need
to be linked to this new first item so that they follow.

The linked list shown in Figure 6 was built by calling the add method a number of times.

>>> mylist.add(31)
>>> mylist.add(77)
>>> mylist.add(17)
>>> mylist.add(93)
>>> mylist.add(26)
>>> mylist.add(54)

Note that since 31 is the first item added to the list, it will eventually be the last node on the linked
list as every other item is added ahead of it. Also, since 54 is the last item added, it will become



the data value in the first node of the linked list.

The add method is shown in Listing 4. Each item of the list must reside in a node object. Line 2
creates a new node and places the item as its data. Now we must complete the process by linking
the new node into the existing structure. This requires two steps as shown in Figure 7. Step 1 (line
3) changes the next reference of the new node to refer to the old first node of the list. Now that the
rest of the list has been properly attached to the new node, we can modify the head of the list to
refer to the new node. The assignment statement in line 4 sets the head of the list.

The order of the two steps described above is very important. What happens if the order of line 3
and line 4 is reversed? If the modification of the head of the list happens first, the result can be
seen in Figure 8. Since the head was the only external reference to the list nodes, all of the original
nodes are lost and can no longer be accessed.

Listing 4

def add(self,item):
temp = Node(item)
temp.setNext(self.head)
self.head = temp

../_images/addtohead.png

Figure 7: Adding a New Node is a Two-Step Process
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Figure 8: Result of Reversing the Order of the Two Steps

The next methods that we will implement–size, search, and remove–are all based on a technique
known as linked list traversal. Traversal refers to the process of systematically visiting each node.
To do this we use an external reference that starts at the first node in the list. As we visit each node,



we move the reference to the next node by “traversing” the next reference.

To implement the size method, we need to traverse the linked list and keep a count of the number
of nodes that occurred. Listing 5 shows the Python code for counting the number of nodes in the
list. The external reference is called current and is initialized to the head of the list in line 2. At the
start of the process we have not seen any nodes so the count is set to 0. Lines 4– 6 actually
implement the traversal. As long as the current reference has not seen the end of the list (None),
we move current along to the next node via the assignment statement in line 6. Again, the ability
to compare a reference to None is very useful. Every time current moves to a new node, we add 1
to count. Finally, count gets returned after the iteration stops. Figure 9 shows this process as it
proceeds down the list.

Listing 5

def size(self):
current = self.head
count = 0
while current != None:

count = count + 1
current = current.getNext()

return count

../_images/traversal.png

Figure 9: Traversing the Linked List from the Head to the End

Searching for a value in a linked list implementation of an unordered list also uses the traversal
technique. As we visit each node in the linked list we will ask whether the data stored there
matches the item we are looking for. In this case, however, we may not have to traverse all the
way to the end of the list. In fact, if we do get to the end of the list, that means that the item we are
looking for must not be present. Also, if we do find the item, there is no need to continue.

Listing 6 shows the implementation for the search method. As in the size method, the traversal is
initialized to start at the head of the list (line 2). We also use a boolean variable called found to
remember whether we have located the item we are searching for. Since we have not found the
item at the start of the traversal, found can be set to False (line 3). The iteration in line 4 takes into
account both conditions discussed above. As long as there are more nodes to visit and we have not



found the item we are looking for, we continue to check the next node. The question in line 5 asks
whether the data item is present in the current node. If so, found can be set to True.

Listing 6

def search(self,item):
current = self.head
found = False
while current != None and not found:

if current.getData() == item:
found = True

else:
current = current.getNext()

return found

As an example, consider invoking the search method looking for the item 17.

>>> mylist.search(17)
True

Since 17 is in the list, the traversal process needs to move only to the node containing 17. At that
point, the variable found is set to True and the while condition will fail, leading to the return value
seen above. This process can be seen in Figure 10.

../_images/search.png

Figure 10: Successful Search for the Value 17

The remove method requires two logical steps. First, we need to traverse the list looking for the
item we want to remove. Once we find the item (recall that we assume it is present), we must
remove it. The first step is very similar to search. Starting with an external reference set to the
head of the list, we traverse the links until we discover the item we are looking for. Since we
assume that item is present, we know that the iteration will stop before current gets to None. This
means that we can simply use the boolean found in the condition.

When found becomes True, current will be a reference to the node containing the item to be
removed. But how do we remove it? One possibility would be to replace the value of the item with



some marker that suggests that the item is no longer present. The problem with this approach is
the number of nodes will no longer match the number of items. It would be much better to remove
the item by removing the entire node.

In order to remove the node containing the item, we need to modify the link in the previous node
so that it refers to the node that comes after current. Unfortunately, there is no way to go backward
in the linked list. Since current refers to the node ahead of the node where we would like to make
the change, it is too late to make the necessary modification.

The solution to this dilemma is to use two external references as we traverse down the linked list.
current will behave just as it did before, marking the current location of the traverse. The new
reference, which we will call previous, will always travel one node behind current. That way,
when current stops at the node to be removed, previous will be referring to the proper place in the
linked list for the modification.

Listing 7 shows the complete remove method. Lines 2– 3 assign initial values to the two
references. Note that current starts out at the list head as in the other traversal examples. previous,
however, is assumed to always travel one node behind current. For this reason, previous starts out
with a value of None since there is no node before the head (see Figure 11). The boolean variable
found will again be used to control the iteration.

In lines 6–7 we ask whether the item stored in the current node is the item we wish to remove. If
so, found can be set to True. If we do not find the item, previous and current must both be moved
one node ahead. Again, the order of these two statements is crucial. previous must first be moved
one node ahead to the location of current. At that point, current can be moved. This process is
often referred to as “inch-worming” as previous must catch up to current before current moves
ahead. Figure 12 shows the movement of previous and current as they progress down the list
looking for the node containing the value 17.

Listing 7

def remove(self,item):
current = self.head
previous = None
found = False
while not found:

if current.getData() == item:
found = True

else:
previous = current
current = current.getNext()

if previous == None:
self.head = current.getNext()



else:
previous.setNext(current.getNext())
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Figure 11: Initial Values for the previous and current References
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Figure 12: previous and current Move Down the List

Once the searching step of the remove has been completed, we need to remove the node from the
linked list. Figure 13 shows the link that must be modified. However, there is a special case that
needs to be addressed. If the item to be removed happens to be the first item in the list, then
current will reference the first node in the linked list. This also means that previous will be None.
We said earlier that previous would be referring to the node whose next reference needs to be
modified in order to complete the remove. In this case, it is not previous but rather the head of the
list that needs to be changed (see Figure 14).

../_images/remove.png



Figure 13: Removing an Item from the Middle of the List
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Figure 14: Removing the First Node from the List

Line 12 allows us to check whether we are dealing with the special case described above. If
previous did not move, it will still have the value None when the boolean found becomes True. In
that case (line 13) the head of the list is modified to refer to the node after the current node, in
effect removing the first node from the linked list. However, if previous is not None, the node to
be removed is somewhere down the linked list structure. In this case the previous reference is
providing us with the node whose next reference must be changed. Line 15 uses the setNext
method from previous to accomplish the removal. Note that in both cases the destination of the
reference change is current.getNext(). One question that often arises is whether the two cases
shown here will also handle the situation where the item to be removed is in the last node of the
linked list. We leave that for you to consider.

You can try out the UnorderedList class in ActiveCode 1.

Run Show/Hide Code

The Complete UnorderedList Class (unorderedlistcomplete)
The remaining methods append, insert, index, and pop are left as exercises. Remember that each
of these must take into account whether the change is taking place at the head of the list or
someplace else. Also, insert, index, and pop require that we name the positions of the list. We will
assume that position names are integers starting with 0.

Self Check
Part I: Implement the append method for UnorderedList. What is the time complexity of the
method you created?

Part II: In the previous problem, you most likely created an append method that was O(n) If you



add an instance variable to the UnorderedList class you can create an append method that is O(1).
Modify your append method to be O(1) Be Careful! To really do this correctly you will need to
consider a couple of special cases that may require you to make a modification to the add method
as well.

3.6.3.抽象数据类型：有序列表 Ordered List

We will now consider a type of list known as an ordered list. For example, if the list of integers
shown above were an ordered list (ascending order), then it could be written as 17, 26, 31, 54, 77,
and 93. Since 17 is the smallest item, it occupies the first position in the list. Likewise, since 93 is
the largest, it occupies the last position.

The structure of an ordered list is a collection of items where each item holds a relative position
that is based upon some underlying characteristic of the item. The ordering is typically either
ascending or descending and we assume that list items have a meaningful comparison operation
that is already defined. Many of the ordered list operations are the same as those of the unordered
list.

 OrderedList() creates a new ordered list that is empty. It needs no parameters and returns an
empty list.

 add(item) adds a new item to the list making sure that the order is preserved. It needs the item
and returns nothing. Assume the item is not already in the list.

 remove(item) removes the item from the list. It needs the item and modifies the list. Assume
the item is present in the list.

 search(item) searches for the item in the list. It needs the item and returns a boolean value.
 isEmpty() tests to see whether the list is empty. It needs no parameters and returns a boolean

value.
 size() returns the number of items in the list. It needs no parameters and returns an integer.
 index(item) returns the position of item in the list. It needs the item and returns the index.

Assume the item is in the list.
 pop() removes and returns the last item in the list. It needs nothing and returns an item.

Assume the list has at least one item.
 pop(pos) removes and returns the item at position pos. It needs the position and returns the

item. Assume the item is in the list.

3.6.4. 实现有序列表

In order to implement the ordered list, we must remember that the relative positions of the items
are based on some underlying characteristic. The ordered list of integers given above (17, 26, 31,
54, 77, and 93) can be represented by a linked structure as shown in Figure 15. Again, the node
and link structure is ideal for representing the relative positioning of the items.

../_images/orderlinkedlist.png



Figure 15: An Ordered Linked List

To implement the OrderedList class, we will use the same technique as seen previously with
unordered lists. Once again, an empty list will be denoted by a head reference to None (see Listing
8).

Listing 8

class OrderedList:
def __init__(self):

self.head = None

As we consider the operations for the ordered list, we should note that the isEmpty and size
methods can be implemented the same as with unordered lists since they deal only with the
number of nodes in the list without regard to the actual item values. Likewise, the remove method
will work just fine since we still need to find the item and then link around the node to remove it.
The two remaining methods, search and add, will require some modification.

The search of an unordered linked list required that we traverse the nodes one at a time until we
either find the item we are looking for or run out of nodes (None). It turns out that the same
approach would actually work with the ordered list and in fact in the case where we find the item
it is exactly what we need. However, in the case where the item is not in the list, we can take
advantage of the ordering to stop the search as soon as possible.

For example, Figure 16 shows the ordered linked list as a search is looking for the value 45. As we
traverse, starting at the head of the list, we first compare against 17. Since 17 is not the item we
are looking for, we move to the next node, in this case 26. Again, this is not what we want, so we
move on to 31 and then on to 54. Now, at this point, something is different. Since 54 is not the
item we are looking for, our former strategy would be to move forward. However, due to the fact
that this is an ordered list, that will not be necessary. Once the value in the node becomes greater
than the item we are searching for, the search can stop and return False. There is no way the item
could exist further out in the linked list.

../_images/orderedsearch.png

Figure 16: Searching an Ordered Linked List



Listing 9 shows the complete search method. It is easy to incorporate the new condition discussed
above by adding another boolean variable, stop, and initializing it to False (line 4). While stop is
False (not stop) we can continue to look forward in the list (line 5). If any node is ever discovered
that contains data greater than the item we are looking for, we will set stop to True (lines 9–10).
The remaining lines are identical to the unordered list search.

Listing 9

def search(self,item):
current = self.head
found = False
stop = False
while current != None and not found and not stop:

if current.getData() == item:
found = True

else:
if current.getData() > item:

stop = True
else:

current = current.getNext()

return found

The most significant method modification will take place in add. Recall that for unordered lists,
the add method could simply place a new node at the head of the list. It was the easiest point of
access. Unfortunately, this will no longer work with ordered lists. It is now necessary that we
discover the specific place where a new item belongs in the existing ordered list.

Assume we have the ordered list consisting of 17, 26, 54, 77, and 93 and we want to add the value
31. The add method must decide that the new item belongs between 26 and 54. Figure 17 shows
the setup that we need. As we explained earlier, we need to traverse the linked list looking for the
place where the new node will be added. We know we have found that place when either we run
out of nodes (current becomes None) or the value of the current node becomes greater than the
item we wish to add. In our example, seeing the value 54 causes us to stop.

../_images/linkedlistinsert.png

Figure 17: Adding an Item to an Ordered Linked List



As we saw with unordered lists, it is necessary to have an additional reference, again called
previous, since current will not provide access to the node that must be modified. Listing 10 shows
the complete add method. Lines 2–3 set up the two external references and lines 9–10 again
allow previous to follow one node behind current every time through the iteration. The condition
(line 5) allows the iteration to continue as long as there are more nodes and the value in the current
node is not larger than the item. In either case, when the iteration fails, we have found the location
for the new node.

The remainder of the method completes the two-step process shown in Figure 17. Once a new
node has been created for the item, the only remaining question is whether the new node will be
added at the beginning of the linked list or some place in the middle. Again, previous == None
(line 13) can be used to provide the answer.

Listing 10

def add(self,item):
current = self.head
previous = None
stop = False
while current != None and not stop:

if current.getData() > item:
stop = True

else:
previous = current
current = current.getNext()

temp = Node(item)
if previous == None:

temp.setNext(self.head)
self.head = temp

else:
temp.setNext(current)
previous.setNext(temp)

The OrderedList class with methods discussed thus far can be found in ActiveCode 1. We leave
the remaining methods as exercises. You should carefully consider whether the unordered
implementations will work given that the list is now ordered.

Run Show/Hide Code

OrderedList Class Thus Far (orderedlistclass)



3.6.5. 链表实现算法分析

Analysis of Linked Lists
To analyze the complexity of the linked list operations, we need to consider whether they require
traversal. Consider a linked list that has n nodes. The isEmpty method is O(1) since it requires one
step to check the head reference for None. size, on the other hand, will always require n steps
since there is no way to know how many nodes are in the linked list without traversing from head
to end. Therefore, length is O(n). Adding an item to an unordered list will always be O(1) since we
simply place the new node at the head of the linked list. However, search and remove, as well as
add for an ordered list, all require the traversal process. Although on average they may need to
traverse only half of the nodes, these methods are all O(n) since in the worst case each will
process every node in the list.

You may also have noticed that the performance of this implementation differs from the actual
performance given earlier for Python lists. This suggests that linked lists are not the way Python
lists are implemented. The actual implementation of a Python list is based on the notion of an
array. We discuss this in more detail in another chapter.

3.7.小结

 Linear data structures maintain their data in an ordered fashion.
 Stacks are simple data structures that maintain a LIFO, last-in first-out, ordering.
 The fundamental operations for a stack are push, pop, and isEmpty.
 Queues are simple data structures that maintain a FIFO, first-in first-out, ordering.
 The fundamental operations for a queue are enqueue, dequeue, and isEmpty.
 Prefix, infix, and postfix are all ways to write expressions.
 Stacks are very useful for designing algorithms to evaluate and translate expressions.
 Stacks can provide a reversal characteristic.
 Queues can assist in the construction of timing simulations.
 Simulations use random number generators to create a real-life situation and allow us to

answer “what if” types of questions.
 Deques are data structures that allow hybrid behavior like that of stacks and queues.
 The fundamental operations for a deque are addFront, addRear, removeFront, removeRear,

and isEmpty.
 Lists are collections of items where each item holds a relative position.
 A linked list implementation maintains logical order without requiring physical storage

requirements.
 Modification to the head of the linked list is a special case.



3.8.关键词

balanced parentheses data field deque
first-in first-out (FIFO) fully parenthesized head
infix last-in first-out (LIFO) linear data structure
linked list linked list traversal list
node palindrome postfix
precedence prefix queue
simulation stack

3.9.问题讨论

1. Convert the following values to binary using “divide by 2.” Show the stack of remainders.
a) 17
b) 45
c) 96

2. Convert the following infix expressions to prefix (use full parentheses):
a) (A+B)*(C+D)*(E+F)
b) A+((B+C)*(D+E))
c) A*B*C*D+E+F

3. Convert the above infix expressions to postfix (use full parentheses).
4. Convert the above infix expressions to postfix using the direct conversion algorithm. Show

the stack as the conversion takes place.
5. Evaluate the following postfix expressions. Show the stack as each operand and operator is

processed.
a) 2 3 * 4 +
b) 1 2 + 3 + 4 + 5 +
c) 1 2 3 4 5 * + * +

6. The alternative implementation of the Queue ADT is to use a list such that the rear of the
queue is at the end of the list. What would this mean for Big-O performance?

7. What is the result of carrying out both steps of the linked list add method in reverse order?
What kind of reference results? What types of problems may result?

8. Explain how the linked list remove method works when the item to be removed is in the last
node.

9. Explain how the remove method works when the item is in the only node in the linked list.

3.10. 编程练习

1. Modify the infix-to-postfix algorithm so that it can handle errors.
2. Modify the postfix evaluation algorithm so that it can handle errors.
3. Implement a direct infix evaluator that combines the functionality of infix-to-postfix

conversion and the postfix evaluation algorithm. Your evaluator should process infix tokens



from left to right and use two stacks, one for operators and one for operands, to perform the
evaluation.

4. Turn your direct infix evaluator from the previous problem into a calculator.
5. Implement the Queue ADT, using a list such that the rear of the queue is at the end of the list.
6. Design and implement an experiment to do benchmark comparisons of the two queue

implementations. What can you learn from such an experiment?
7. It is possible to implement a queue such that both enqueue and dequeue have O(1)

performance on average. In this case it means that most of the time enqueue and dequeue will
be O(1) except in one particular circumstance where dequeue will be O(n).

8. Consider a real life situation. Formulate a question and then design a simulation that can help
to answer it. Possible situations include:
a) Cars lined up at a car wash
b) Customers at a grocery store check-out
c) Airplanes taking off and landing on a runway
d) A bank teller
Be sure to state any assumptions that you make and provide any probabilistic data that must
be considered as part of the scenario.

9. Modify the Hot Potato simulation to allow for a randomly chosen counting value so that each
pass is not predictable from the previous one.

10. Implement a radix sorting machine. A radix sort for base 10 integers is a mechanical sorting
technique that utilizes a collection of bins, one main bin and 10 digit bins. Each bin acts like
a queue and maintains its values in the order that they arrive. The algorithm begins by
placing each number in the main bin. Then it considers each value digit by digit. The first
value is removed and placed in a digit bin corresponding to the digit being considered. For
example, if the ones digit is being considered, 534 is placed in digit bin 4 and 667 is placed in
digit bin 7. Once all the values are placed in the corresponding digit bins, the values are
collected from bin 0 to bin 9 and placed back in the main bin. The process continues with the
tens digit, the hundreds, and so on. After the last digit is processed, the main bin contains the
values in order.

11. Another example of the parentheses matching problem comes from hypertext markup
language (HTML). In HTML, tags exist in both opening and closing forms and must be
balanced to properly describe a web document. This very simple HTML document:

<html>
<head>

<title>
Example

</title>
</head>

<body>
<h1>Hello, world</h1>

</body>
</html>

is intended only to show the matching and nesting structure for tags in the language. Write a



program that can check an HTML document for proper opening and closing tags.

12. Extend the program from Listing 2.15 to handle palindromes with spaces. For example, I
PREFER PI is a palindrome that reads the same forward and backward if you ignore the
blank characters.

13. To implement the length method, we counted the number of nodes in the list. An alternative
strategy would be to store the number of nodes in the list as an additional piece of data in the
head of the list. Modify the UnorderedList class to include this information and rewrite the
length method.

14. Implement the remove method so that it works correctly in the case where the item is not in
the list.

15. Modify the list classes to allow duplicates. Which methods will be impacted by this change?

16. Implement the __str__ method in the UnorderedList class. What would be a good string
representation for a list?

17. Implement __str__ method so that lists are displayed the Python way (with square brackets).

18. Implement the remaining operations defined in the UnorderedList ADT (append, index, pop,
insert).

19. Implement a slice method for the UnorderedList class. It should take two parameters, start
and stop, and return a copy of the list starting at the start position and going up to but not
including the stop position.

20. Implement the remaining operations defined in the OrderedList ADT.

21. Consider the relationship between Unordered and Ordered lists. Is it possible that inheritance
could be used to build a more efficient implementation? Implement this inheritance
hierarchy.

22. Implement a stack using linked lists.

23. Implement a queue using linked lists.

24. Implement a deque using linked lists.

25. Design and implement an experiment that will compare the performance of a Python list with
a list implemented as a linked list.

26. Design and implement an experiment that will compare the performance of the Python list



based stack and queue with the linked list implementation.

27. The linked list implementation given above is called a singly linked list because each node
has a single reference to the next node in sequence. An alternative implementation is known
as a doubly linked list. In this implementation, each node has a reference to the next node
(commonly called next) as well as a reference to the preceding node (commonly called back).
The head reference also contains two references, one to the first node in the linked list and
one to the last. Code this implementation in Python.

28. Create an implementation of a queue that would have an average



4.递归 Recursion

4.1.目标

 了解某些难解的问题具有简单的递归解决法；

 学会如何用递归方式写程序；

 了解和应用递归的三法则；

 了解递归是迭代 iteration的一种形式；
 实现问题的递归描述；

 了解递归在计算机系统中是如何实现的。

4.2.什么是递归

Recursion is a method of solving problems that involves breaking a problem down into smaller
and smaller subproblems until you get to a small enough problem that it can be solved trivially.
Usually recursion involves a function calling itself. While it may not seem like much on the
surface, recursion allows us to write elegant solutions to problems that may otherwise be very
difficult to program.

4.2.1. 计算数列表的和

We will begin our investigation with a simple problem that you already know how to solve
without using recursion. Suppose that you want to calculate the sum of a list of numbers such as:
[1,3,5,7,9]. An iterative function that computes the sum is shown in ActiveCode 1. The function
uses an accumulator variable (theSum) to compute a running total of all the numbers in the list by
starting with 0 and adding each number in the list.

def listsum(numList):
theSum = 0
for i in numList:

theSum = theSum + i
return theSum

print(listsum([1,3,5,7,9]))


Iterative Summation (lst_itsum)
Pretend for a minute that you do not have while loops or for loops. How would you compute the
sum of a list of numbers? If you were a mathematician you might start by recalling that addition is
a function that is defined for two parameters, a pair of numbers. To redefine the problem from
adding a list to adding pairs of numbers, we could rewrite the list as a fully parenthesized



expression. Such an expression looks like this:

((((1+3)+5)+7)+9)

We can also parenthesize the expression the other way around,

(1+(3+(5+(7+9))))

Notice that the innermost set of parentheses, (7+9), is a problem that we can solve without a loop
or any special constructs. In fact, we can use the following sequence of simplifications to compute
a final sum.

total= (1+(3+(5+(7+9))))
total= (1+(3+(5+16)))
total= (1+(3+21))
total= (1+24)
total= 25

How can we take this idea and turn it into a Python program? First, let’s restate the sum problem
in terms of Python lists. We might say the the sum of the list numList is the sum of the first
element of the list (numList[0]), and the sum of the numbers in the rest of the list (numList[1:]).
To state it in a functional form:

listSum(numList)=first(numList)+listSum(rest(numList))

In this equation first(numList) returns the first element of the list and rest(numList) returns a list of
everything but the first element. This is easily expressed in Python as shown in ActiveCode 2.

def listsum(numList):
if len(numList) == 1:

return numList[0]
else:

return numList[0] + listsum(numList[1:])
print(listsum([1,3,5,7,9]))


Recursive Summation (lst_recsum)
There are a few key ideas in this listing to look at. First, on line 2 we are checking to see if the list
is one element long. This check is crucial and is our escape clause from the function. The sum of a
list of length 1 is trivial; it is just the number in the list. Second, on line 5 our function calls itself!
This is the reason that we call the listsum algorithm recursive. A recursive function is a function
that calls itself.

Figure 1 shows the series of recursive calls that are needed to sum the list [1,3,5,7,9]. You should
think of this series of calls as a series of simplifications. Each time we make a recursive call we



are solving a smaller problem, until we reach the point where the problem cannot get any smaller.

Figure 1: Series of Recursive Calls Adding a List of Numbers

When we reach the point where the problem is as simple as it can get, we begin to piece together
the solutions of each of the small problems until the initial problem is solved. Figure 2 shows the
additions that are performed as listsum works its way backward through the series of calls. When
listsum returns from the topmost problem, we have the solution to the whole problem.
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Figure2: Series of Recursive Returns from Adding a List of Numbers

4.2.2. 递归的三法则

Like the robots of Asimov, all recursive algorithms must obey three important laws:



 A recursive algorithm must have a base case.
 A recursive algorithm must change its state and move toward the base case.
 A recursive algorithm must call itself, recursively.
Let’s look at each one of these laws in more detail and see how it was used in the listsum
algorithm. First, a base case is the condition that allows the algorithm to stop recursing. A base
case is typically a problem that is small enough to solve directly. In the listsum algorithm the base
case is a list of length 1.

To obey the second law, we must arrange for a change of state that moves the algorithm toward the
base case. A change of state means that some data that the algorithm is using is modified. Usually
the data that represents our problem gets smaller in some way. In the listsum algorithm our
primary data structure is a list, so we must focus our state-changing efforts on the list. Since the
base case is a list of length 1, a natural progression toward the base case is to shorten the list. This
is exactly what happens on line 5 of ActiveCode 2 when we call listsum with a shorter list.

The final law is that the algorithm must call itself. This is the very definition of recursion.
Recursion is a confusing concept to many beginning programmers. As a novice programmer, you
have learned that functions are good because you can take a large problem and break it up into
smaller problems. The smaller problems can be solved by writing a function to solve each problem.
When we talk about recursion it may seem that we are talking ourselves in circles. We have a
problem to solve with a function, but that function solves the problem by calling itself! But the
logic is not circular at all; the logic of recursion is an elegant expression of solving a problem by
breaking it down into a smaller and easier problems.

In the remainder of this chapter we will look at more examples of recursion. In each case we will
focus on designing a solution to a problem by using the three laws of recursion.

Self Check
Q-15: How many recursive calls are made when computing the sum of the list [2,4,6,8,10]?
a) 6
b) 5
c) 4
d) 3

Q-16: Suppose you are going to write a recusive function to calculate the factorial of a number.
fact(n) returns n * n-1 * n-2 * ... Where the factorial of zero is definded to be 1. What would be
the most appropriate base case?
a) n == 0
b) n == 1
c) n >= 0
d) n <= 1



4.2.3. 将整数转换为字符串形式的任意进制表示

Suppose you want to convert an integer to a string in some base between binary and hexadecimal.
For example, convert the integer 10 to its string representation in decimal as "10", or to its string
representation in binary as "1010". While there are many algorithms to solve this problem,
including the algorithm discussed in the stack section, the recursive formulation of the problem is
very elegant.

Let’s look at a concrete example using base 10 and the number 769. Suppose we have a sequence
of characters corresponding to the first 10 digits, like convString = "0123456789". It is easy to
convert a number less than 10 to its string equivalent by looking it up in the sequence. For
example, if the number is 9, then the string is convString[9] or "9". If we can arrange to break up
the number 769 into three single-digit numbers, 7, 6, and 9, then converting it to a string is simple.
A number less than 10 sounds like a good base case.

Knowing what our base is suggests that the overall algorithm will involve three components:

1) Reduce the original number to a series of single-digit numbers.
2) Convert the single digit-number to a string using a lookup.
3) Concatenate the single-digit strings together to form the final result.
The next step is to figure out how to change state and make progress toward the base case. Since
we are working with an integer, let’ s consider what mathematical operations might reduce a
number. The most likely candidates are division and subtraction. While subtraction might work, it
is unclear what we should subtract from what. Integer division with remainders gives us a clear
direction. Let’s look at what happens if we divide a number by the base we are trying to convert
to.

Using integer division to divide 769 by 10, we get 76 with a remainder of 9. This gives us two
good results. First, the remainder is a number less than our base that can be converted to a string
immediately by lookup. Second, we get a number that is smaller than our original and moves us
toward the base case of having a single number less than our base. Now our job is to convert 76 to
its string representation. Again we will use integer division plus remainder to get results of 7 and 6
respectively. Finally, we have reduced the problem to converting 7, which we can do easily since it
satisfies the base case condition of n<base, where base=10. The series of operations we have just
performed is illustrated in Figure 3. Notice that the numbers we want to remember are in the
remainder boxes along the right side of the diagram.



Figure 3: Converting an Integer to a String in Base 10

ActiveCode 1 shows the Python code that implements the algorithm outlined above for any base
between 2 and 16.

def toStr(n,base):
convertString = "0123456789ABCDEF"
if n < base:

return convertString[n]
else:

return toStr(n//base,base) + convertString[n%base]
print(toStr(1453,16))


Recursively Converting from Integer to String (lst_rectostr)
Notice that in line 3 we check for the base case where n is less than the base we are converting to.
When we detect the base case, we stop recursing and simply return the string from the
convertString sequence. In line 6 we satisfy both the second and third laws– by making the
recursive call and by reducing the problem size–using division.

Let’ s trace the algorithm again; this time we will convert the number 10 to its base 2 string
representation ("1010").



Figure 4: Converting the Number 10 to its Base 2 String Representation

Figure 4 shows that we get the results we are looking for, but it looks like the digits are in the
wrong order. The algorithm works correctly because we make the recursive call first on line 6,
then we add the string representation of the remainder. If we reversed returning the convertString
lookup and returning the toStr call, the resulting string would be backward! But by delaying the
concatenation operation until after the recursive call has returned, we get the result in the proper
order. This should remind you of our discussion of stacks back in the previous chapter.

Self Check
Write a function that takes a string as a parameter and returns a new string that is the reverse of the
old string.

Write a function that takes a string as a parameter and returns True if the string is a palindrome,
False otherwise. Remember that a string is a palindrome if it is spelled the same both forward and
backward. For example: radar is a palindrome. for bonus points palindromes can also be phrases,
but you need to remove the spaces and punctuation before checking. for example: madam i’m
adam is a palindrome. Other fun palindromes include:
 kayak
 aibohphobia
 Live not on evil
 Reviled did I live, said I, as evil I did deliver
 Go hang a salami; I’m a lasagna hog.
 Able was I ere I saw Elba
 Kanakanak – a town in Alaska
 Wassamassaw – a town in South Dakota

4.3.栈帧：实现递归

Suppose that instead of concatenating the result of the recursive call to toStr with the string from



convertString, we modified our algorithm to push the strings onto a stack prior to making the
recursive call. The code for this modified algorithm is shown in ActiveCode 1.

from pythonds.basic.stack import Stack
rStack = Stack()
def toStr(n,base):

convertString = "0123456789ABCDEF"
while n > 0:

if n < base:
rStack.push(convertString[n])

else:
rStack.push(convertString[n % base])

n = n // base
res = ""
while not rStack.isEmpty():

res = res + str(rStack.pop())
return res


print(toStr(1453,16))


Converting an Integer to a String Using a Stack (lst_recstack)
Each time we make a call to toStr, we push a character on the stack. Returning to the previous
example we can see that after the fourth call to toStr the stack would look like Figure 5. Notice
that now we can simply pop the characters off the stack and concatenate them into the final result,
"1010".

../_images/recstack.png

Figure 5: Strings Placed on the Stack During Conversion

The previous example gives us some insight into how Python implements a recursive function call.
When a function is called in Python, a stack frame is allocated to handle the local variables of the



function. When the function returns, the return value is left on top of the stack for the calling
function to access. Figure 6 illustrates the call stack after the return statement on line 4.

../_images/newcallstack.png

Figure 6: Call Stack Generated from toStr(10,2)

Notice that the call to toStr(2//2,2) leaves a return value of "1" on the stack. This return value is
then used in place of the function call (toStr(1,2)) in the expression "1" + convertString[2%2],
which will leave the string "10" on the top of the stack. In this way, the Python call stack takes the
place of the stack we used explicitly in Listing 4. In our list summing example, you can think of
the return value on the stack taking the place of an accumulator variable.

The stack frames also provide a scope for the variables used by the function. Even though we are
calling the same function over and over, each call creates a new scope for the variables that are
local to the function.

4.4.图示递归

In the previous section we looked at some problems that were easy to solve using recursion;
however, it can still be difficult to find a mental model or a way of visualizing what is happening
in a recursive function. This can make recursion difficult for people to grasp. In this section we
will look at a couple of examples of using recursion to draw some interesting pictures. As you
watch these pictures take shape you will get some new insight into the recursive process that may
be helpful in cementing your understanding of recursion.

The tool we will use for our illustrations is Python’s turtle graphics module called turtle. The
turtle module is standard with all versions of Python and is very easy to use. The metaphor is quite
simple. You can create a turtle and the turtle can move forward, backward, turn left, turn right, etc.
The turtle can have its tail up or down. When the turtle’s tail is down and the turtle moves it
draws a line as it moves. To increase the artistic value of the turtle you can change the width of the



tail as well as the color of the ink the tail is dipped in.

Here is a simple example to illustrate some turtle graphics basics. We will use the turtle module to
draw a spiral recursively. ActiveCode 1 shows how it is done. After importing the turtle module
we create a turtle. When the turtle is created it also creates a window for itself to draw in. Next we
define the drawSpiral function. The base case for this simple function is when the length of the
line we want to draw, as given by the len parameter, is reduced to zero or less. If the length of the
line is longer than zero we instruct the turtle to go forward by len units and then turn right 90
degrees. The recursive step is when we call drawSpiral again with a reduced length. At the end of
ActiveCode 1 you will notice that we call the function myWin.exitonclick(), this is a handy little
method of the window that puts the turtle into a wait mode until you click inside the window, after
which the program cleans up and exits.

import turtle

myTurtle = turtle.Turtle()
myWin = turtle.Screen()

def drawSpiral(myTurtle, lineLen):

if lineLen > 0:
myTurtle.forward(lineLen)
myTurtle.right(90)
drawSpiral(myTurtle,lineLen-5)


drawSpiral(myTurtle,100)
myWin.exitonclick()


Drawing a Recursive Spriral using turtle (lst_turt1)
That is really about all the turtle graphics you need to know in order to make some pretty
impressive drawings. For our next program we are going to draw a fractal tree. Fractals come from
a branch of mathematics, and have much in common with recursion. The definition of a fractal is
that when you look at it the fractal has the same basic shape no matter how much you magnify it.
Some examples from nature are the coastlines of continents, snowflakes, mountains, and even
trees or shrubs. The fractal nature of many of these natural phenomenon makes it possible for
programmers to generate very realistic looking scenery for computer generated movies. In our
next example we will generate a fractal tree.

To understand how this is going to work it is helpful to think of how we might describe a tree
using a fractal vocabulary. Remember that we said above that a fractal is something that looks the
same at all different levels of magnification. If we translate this to trees and shrubs we might say
that even a small twig has the same shape and characteristics as a whole tree. Using this idea we
could say that a tree is a trunk, with a smaller tree going off to the right and another smaller tree
going off to the left. If you think of this definition recursively it means that we will apply the



recursive definition of a tree to both of the smaller left and right trees.

Let’ s translate this idea to some Python code. Listing 1 shows how we can use our turtle to
generate a fractal tree. Let’s look at the code a bit more closely. You will see that on lines 5 and 7
we are making a recursive call. On line 5 we make the recursive call right after the turtle turns to
the right by 20 degrees; this is the right tree mentioned above. Then in line 7 the turtle makes
another recursive call, but this time after turning left by 40 degrees. The reason the turtle must turn
left by 40 degrees is that it needs to undo the original 20 degree turn to the right and then do an
additional 20 degree turn to the left in order to draw the left tree. Also notice that each time we
make a recursive call to tree we subtract some amount from the branchLen parameter; this is to
make sure that the recursive trees get smaller and smaller. You should also recognize the initial if
statement on line 2 as a check for the base case of branchLen getting too small.

Listing 1

def tree(branchLen,t):
if branchLen > 5:

t.forward(branchLen)
t.right(20)
tree(branchLen-15,t)
t.left(40)
tree(branchLen-10,t)
t.right(20)
t.backward(branchLen)

The complete program for this tree example is shown in ActiveCode 2. Before you run the code
think about how you expect to see the tree take shape. Look at the recursive calls and think about
how this tree will unfold. Will it be drawn symmetrically with the right and left halves of the tree
taking shape simultaneously? Will it be drawn right side first then left side?

import turtle

def tree(branchLen,t):

if branchLen > 5:
t.forward(branchLen)
t.right(20)
tree(branchLen-15,t)
t.left(40)
tree(branchLen-15,t)
t.right(20)
t.backward(branchLen)


def main():

t = turtle.Turtle()



myWin = turtle.Screen()
t.left(90)
t.up()
t.backward(100)
t.down()
t.color("green")
tree(75,t)
myWin.exitonclick()


main()


Recursively Drawing a Tree (lst_complete_tree)
Notice how each branch point on the tree corresponds to a recursive call, and notice how the tree
is drawn to the right all the way down to its shortest twig. You can see this in Figure 1. Now,
notice how the program works its way back up the trunk until the entire right side of the tree is
drawn. You can see the right half of the tree in Figure 2. Then the left side of the tree is drawn, but
not by going as far out to the left as possible. Rather, once again the entire right side of the left tree
is drawn until we finally make our way out to the smallest twig on the left.
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Figure 1: The Beginning of a Fractal Tree



Figure 2: The First Half of the Tree

This simple tree program is just a starting point for you, and you will notice that the tree does not
look particularly realistic because nature is just not as symmetric as a computer program. The
exercises at the end of the chapter will give you some ideas for how to explore some interesting
options to make your tree look more realistic.

Self Check
Modify the recursive tree program using one or all of the following ideas:
 Modify the thickness of the branches so that as the branchLen gets smaller, the line gets

thinner.
 Modify the color of the branches so that as the branchLen gets very short it is colored like a

leaf.
 Modify the angle used in turning the turtle so that at each branch point the angle is selected at

random in some range. For example choose the angle between 15 and 45 degrees. Play
around to see what looks good.

 Modify the branchLen recursively so that instead of always subtracting the same amount you
subtract a random amount in some range.

4.4.1. 谢尔宾斯基三角形 Sierpinski Triangle

Another fractal that exhibits the property of self-similarity is the Sierpinski triangle. An example is
shown in Figure 3. The Sierpinski triangle illustrates a three-way recursive algorithm. The
procedure for drawing a Sierpinski triangle by hand is simple. Start with a single large triangle.
Divide this large triangle into four new triangles by connecting the midpoint of each side. Ignoring
the middle triangle that you just created, apply the same procedure to each of the three corner
triangles. Each time you create a new set of triangles, you recursively apply this procedure to the
three smaller corner triangles. You can continue to apply this procedure indefinitely if you have a



sharp enough pencil. Before you continue reading, you may want to try drawing the Sierpinski
triangle yourself, using the method described.

../_images/sierpinski.png

Figure 3: The Sierpinski Triangle

Since we can continue to apply the algorithm indefinitely, what is the base case? We will see that
the base case is set arbitrarily as the number of times we want to divide the triangle into pieces.
Sometimes we call this number the “degree” of the fractal. Each time we make a recursive call,
we subtract 1 from the degree until we reach 0. When we reach a degree of 0, we stop making
recursive calls. The code that generated the Sierpinski Triangle in Figure 3 is shown in
ActiveCode 1.

import turtle

def drawTriangle(points,color,myTurtle):

myTurtle.fillcolor(color)
myTurtle.up()
myTurtle.goto(points[0][0],points[0][1])
myTurtle.down()
myTurtle.begin_fill()
myTurtle.goto(points[1][0],points[1][1])
myTurtle.goto(points[2][0],points[2][1])
myTurtle.goto(points[0][0],points[0][1])
myTurtle.end_fill()


def getMid(p1,p2):

return ( (p1[0]+p2[0]) / 2, (p1[1] + p2[1]) / 2)




def sierpinski(points,degree,myTurtle):

colormap = ['blue','red','green','white','yellow', \
'violet','orange']

drawTriangle(points,colormap[degree],myTurtle)
if degree > 0:

sierpinski([points[0], \
getMid(points[0], points[1]), \
getMid(points[0], points[2])], \

degree-1, myTurtle)
sierpinski([points[1], \

getMid(points[0], points[1]), \
getMid(points[1], points[2])], \

degree-1, myTurtle)
sierpinski([points[2], \

getMid(points[2], points[1]), \
getMid(points[0], points[2])], \

degree-1, myTurtle)

def main():

myTurtle = turtle.Turtle()
myWin = turtle.Screen()
myPoints = [[-100,-50],[0,100],[100,-50]]
sierpinski(myPoints,3,myTurtle)
myWin.exitonclick()


main()


Drawing a Sierpinski Triangle (lst_st)
The program in ActiveCode 1 follows the ideas outlined above. The first thing sierpinski does is
draw the outer triangle. Next, there are three recursive calls, one for each of the new corner
triangles we get when we connect the midpoints. Once again we make use of the standard turtle
module that comes with Python. You can learn all the details of the methods available in the turtle
module by using help('turtle') from the Python prompt.

Look at the code and think about the order in which the triangles will be drawn. While the exact
order of the corners depends upon how the initial set is specified, let’s assume that the corners are
ordered lower left, top, lower right. Because of the way the sierpinski function calls itself,
sierpinski works its way to the smallest allowed triangle in the lower-left corner, and then begins
to fill out the rest of the triangles working back. Then it fills in the triangles in the top corner by
working toward the smallest, topmost triangle. Finally, it fills in the lower-right corner, working its
way toward the smallest triangle in the lower right.

Sometimes it is helpful to think of a recursive algorithm in terms of a diagram of function calls.



Figure 4 shows that the recursive calls are always made going to the left. The active functions are
outlined in black, and the inactive function calls are in gray. The farther you go toward the bottom
of Figure 4, the smaller the triangles. The function finishes drawing one level at a time; once it is
finished with the bottom left it moves to the bottom middle, and so on.
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Figure 4: Building a Sierpinski Triangle

The sierpinski function relies heavily on the getMid function. getMid takes as arguments two
endpoints and returns the point halfway between them. In addition, ActiveCode 1 has a function
that draws a filled triangle using the begin_fill and end_fill turtle methods.

4.5.复杂递归问题

In the previous sections we looked at some problems that are relatively easy to solve and some
graphically interesting problems that can help us gain a mental model of what is happening in a
recursive algorithm. In this section we will look at some problems that are really difficult to solve
using an iterative programming style but are very elegant and easy to solve using recursion. We
will finish up by looking at a deceptive problem that at first looks like it has an elegant recursive
solution but in fact does not.

4.5.1. 河内塔问题 Towers of Hanoi

The Tower of Hanoi puzzle was invented by the French mathematician Edouard Lucas in 1883.
He was inspired by a legend that tells of a Hindu temple where the puzzle was presented to young
priests. At the beginning of time, the priests were given three poles and a stack of 64 gold disks,
each disk a little smaller than the one beneath it. Their assignment was to transfer all 64 disks



from one of the three poles to another, with two important constraints. They could only move one
disk at a time, and they could never place a larger disk on top of a smaller one. The priests worked
very efficiently, day and night, moving one disk every second. When they finished their work, the
legend said, the temple would crumble into dust and the world would vanish.

Although the legend is interesting, you need not worry about the world ending any time soon. The
number of moves required to correctly move a tower of 64 disks is 264 −
1=18,446,744,073,709,551,615. At a rate of one move per second, that is 584,942,417,355 years!
Clearly there is more to this puzzle than meets the eye.

Figure 1 shows an example of a configuration of disks in the middle of a move from the first peg
to the third. Notice that, as the rules specify, the disks on each peg are stacked so that smaller disks
are always on top of the larger disks. If you have not tried to solve this puzzle before, you should
try it now. You do not need fancy disks and poles–a pile of books or pieces of paper will work.
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Figure 1: An Example Arrangement of Disks for the Tower of Hanoi

How do we go about solving this problem recursively? How would you go about solving this
problem at all? What is our base case? Let’ s think about this problem from the bottom up.
Suppose you have a tower of five disks, originally on peg one. If you already knew how to move a
tower of four disks to peg two, you could then easily move the bottom disk to peg three, and then
move the tower of four from peg two to peg three. But what if you do not know how to move a
tower of height four? Suppose that you knew how to move a tower of height three to peg three;
then it would be easy to move the fourth disk to peg two and move the three from peg three on top
of it. But what if you do not know how to move a tower of three? How about moving a tower of
two disks to peg two and then moving the third disk to peg three, and then moving the tower of
height two on top of it? But what if you still do not know how to do this? Surely you would agree
that moving a single disk to peg three is easy enough, trivial you might even say. This sounds like
a base case in the making.

Here is a high-level outline of how to move a tower from the starting pole, to the goal pole, using
an intermediate pole:



 Move a tower of height-1 to an intermediate pole, using the final pole.
 Move the remaining disk to the final pole.
 Move the tower of height-1 from the intermediate pole to the final pole using the original

pole.
As long as we always obey the rule that the larger disks remain on the bottom of the stack, we can
use the three steps above recursively, treating any larger disks as though they were not even there.
The only thing missing from the outline above is the identification of a base case. The simplest
Tower of Hanoi problem is a tower of one disk. In this case, we need move only a single disk to its
final destination. A tower of one disk will be our base case. In addition, the steps outlined above
move us toward the base case by reducing the height of the tower in steps 1 and 3. Listing 1 shows
the Python code to solve the Tower of Hanoi puzzle.

Listing 1

def moveTower(height,fromPole, toPole, withPole):
if height >= 1:

moveTower(height-1,fromPole,withPole,toPole)
moveDisk(fromPole,toPole)
moveTower(height-1,withPole,toPole,fromPole)

Notice that the code in Listing 1 is almost identical to the English description. The key to the
simplicity of the algorithm is that we make two different recursive calls, one on line 3 and a
second on line 5. On line 3 we move all but the bottom disk on the initial tower to an intermediate
pole. The next line simply moves the bottom disk to its final resting place. Then on line 5 we
move the tower from the intermediate pole to the top of the largest disk. The base case is detected
when the tower height is 0; in this case there is nothing to do, so the moveTower function simply
returns. The important thing to remember about handling the base case this way is that simply
returning from moveTower is what finally allows the moveDisk function to be called.

The function moveDisk, shown in Listing 2, is very simple. All it does is print out that it is
moving a disk from one pole to another. If you type in and run the moveTower program you can
see that it gives you a very efficient solution to the puzzle.

Listing 2

def moveDisk(fp,tp):
print("moving disk from",fp,"to",tp)

The program in ActiveCode 1 provides the entire solution for three disks.

def moveTower(height,fromPole, toPole, withPole):
if height >= 1:

moveTower(height-1,fromPole,withPole,toPole)
moveDisk(fromPole,toPole)



moveTower(height-1,withPole,toPole,fromPole)

def moveDisk(fp,tp):

print("moving disk from",fp,"to",tp)

moveTower(3,"A","B","C")


Solving Tower of Hanoi Recursively (hanoi)
Now that you have seen the code for both moveTower and moveDisk, you may be wondering why
we do not have a data structure that explicitly keeps track of what disks are on what poles. Here is
a hint: if you were going to explicitly keep track of the disks, you would probably use three Stack
objects, one for each pole. The answer is that Python provides the stacks that we need implicitly
through the call stack.

4.6.探索迷宫

In this section we will look at a problem that has relevance to the expanding world of robotics:
How do you find your way out of a maze? If you have a Roomba vacuum cleaner for your dorm
room (don’t all college students?) you will wish that you could reprogram it using what you have
learned in this section. The problem we want to solve is to help our turtle find its way out of a
virtual maze. The maze problem has roots as deep as the Greek myth about Theseus who was sent
into a maze to kill the minotaur. Theseus used a ball of thread to help him find his way back out
again once he had finished off the beast. In our problem we will assume that our turtle is dropped
down somewhere into the middle of the maze and must find its way out. Look at Figure 2 to get an
idea of where we are going in this section.

../_images/maze.png



Figure 2: The Finished Maze Search Program

To make it easier for us we will assume that our maze is divided up into “squares.” Each square
of the maze is either open or occupied by a section of wall. The turtle can only pass through the
open squares of the maze. If the turtle bumps into a wall it must try a different direction. The turtle
will require a systematic procedure to find its way out of the maze. Here is the procedure:

 From our starting position we will first try going North one square and then recursively try
our procedure from there.

 If we are not successful by trying a Northern path as the first step then we will take a step to
the South and recursively repeat our procedure.

 If South does not work then we will try a step to the West as our first step and recursively
apply our procedure.

 If North, South, and West have not been successful then apply the procedure recursively from
a position one step to our East.

 If none of these directions works then there is no way to get out of the maze and we fail.
Now, that sounds pretty easy, but there are a couple of details to talk about first. Suppose we take
our first recursive step by going North. By following our procedure our next step would also be to
the North. But if the North is blocked by a wall we must look at the next step of the procedure and
try going to the South. Unfortunately that step to the south brings us right back to our original
starting place. If we apply the recursive procedure from there we will just go back one step to the
North and be in an infinite loop. So, we must have a strategy to remember where we have been. In
this case we will assume that we have a bag of bread crumbs we can drop along our way. If we
take a step in a certain direction and find that there is a bread crumb already on that square, we
know that we should immediately back up and try the next direction in our procedure. As we will
see when we look at the code for this algorithm, backing up is as simple as returning from a
recursive function call.



As we do for all recursive algorithms let us review the base cases. Some of them you may already
have guessed based on the description in the previous paragraph. In this algorithm, there are four
base cases to consider:

 The turtle has run into a wall. Since the square is occupied by a wall no further exploration
can take place.

 The turtle has found a square that has already been explored. We do not want to continue
exploring from this position or we will get into a loop.

 We have found an outside edge, not occupied by a wall. In other words we have found an exit
from the maze.

 We have explored a square unsuccessfully in all four directions.
For our program to work we will need to have a way to represent the maze. To make this even
more interesting we are going to use the turtle module to draw and explore our maze so we can
watch this algorithm in action. The maze object will provide the following methods for us to use
in writing our search algorithm:

 __init__ Reads in a data file representing a maze, initializes the internal representation of the
maze, and finds the starting position for the turtle.

 drawMaze Draws the maze in a window on the screen.
 updatePosition Updates the internal representation of the maze and changes the position of

the turtle in the window.
 isExit Checks to see if the current position is an exit from the maze.
The Maze class also overloads the index operator [] so that our algorithm can easily access the
status of any particular square.

Let’s examine the code for the search function which we call searchFrom. The code is shown in
Listing 3. Notice that this function takes three parameters: a maze object, the starting row, and the
starting column. This is important because as a recursive function the search logically starts again
with each recursive call.

Listing 3

def searchFrom(maze, startRow, startColumn):
maze.updatePosition(startRow, startColumn)
# Check for base cases:
# 1. We have run into an obstacle, return false
if maze[startRow][startColumn] == OBSTACLE :

return False
# 2. We have found a square that has already been explored
if maze[startRow][startColumn] == TRIED:

return False
# 3. Success, an outside edge not occupied by an obstacle
if maze.isExit(startRow,startColumn):



maze.updatePosition(startRow, startColumn, PART_OF_PATH)
return True

maze.updatePosition(startRow, startColumn, TRIED)

# Otherwise, use logical short circuiting to try each
# direction in turn (if needed)
found = searchFrom(maze, startRow-1, startColumn) or \

searchFrom(maze, startRow+1, startColumn) or \
searchFrom(maze, startRow, startColumn-1) or \
searchFrom(maze, startRow, startColumn+1)

if found:
maze.updatePosition(startRow, startColumn, PART_OF_PATH)

else:
maze.updatePosition(startRow, startColumn, DEAD_END)

return found

As you look through the algorithm you will see that the first thing the code does (line 2) is call
updatePosition. This is simply to help you visualize the algorithm so that you can watch exactly
how the turtle explores its way through the maze. Next the algorithm checks for the first three of
the four base cases: Has the turtle run into a wall (line 5)? Has the turtle circled back to a square
already explored (line 8)? Has the turtle found an exit (line 11)? If none of these conditions is true
then we continue the search recursively.

You will notice that in the recursive step there are four recursive calls to searchFrom. It is hard to
predict how many of these recursive calls will be used since they are all connected by or
statements. If the first call to searchFrom returns True then none of the last three calls would be
needed. You can interpret this as meaning that a step to (row-1,column) (or North if you want to
think geographically) is on the path leading out of the maze. If there is not a good path leading out
of the maze to the North then the next recursive call is tried, this one to the South. If South fails
then try West, and finally East. If all four recursive calls return false then we have found a dead
end. You should download or type in the whole program and experiment with it by changing the
order of these calls.

The code for the Maze class is shown in Listing 4, Listing 5, and Listing 6. The __init__ method
takes the name of a file as its only parameter. This file is a text file that represents a maze by using
“+” characters for walls, spaces for open squares, and the letter “S” to indicate the starting
position. Figure 3 is an example of a maze data file. The internal representation of the maze is a
list of lists. Each row of the mazelist instance variable is also a list. This secondary list contains
one character per square using the characters described above. For the data file in Figure 3 the
internal representation looks like the following:

[ ['+','+','+','+',...,'+','+','+','+','+','+','+'],
['+',' ',' ',' ',...,' ',' ',' ','+',' ',' ',' '],
['+',' ','+',' ',...,'+','+',' ','+',' ','+','+'],



['+',' ','+',' ',...,' ',' ',' ','+',' ','+','+'],
['+','+','+',' ',...,'+','+',' ','+',' ',' ','+'],
['+',' ',' ',' ',...,'+','+',' ',' ',' ',' ','+'],
['+','+','+','+',...,'+','+','+','+','+',' ','+'],
['+',' ',' ',' ',...,'+','+',' ',' ','+',' ','+'],
['+',' ','+','+',...,' ',' ','+',' ',' ',' ','+'],
['+',' ',' ',' ',...,' ',' ','+',' ','+','+','+'],
['+','+','+','+',...,'+','+','+',' ','+','+','+']]

The drawMaze method uses this internal representation to draw the initial view of the maze on the
screen.

Figure 3: An Example Maze Data File

The updatePosition method, as shown in Listing 5 uses the same internal representation to see if
the turtle has run into a wall. It also updates the internal representation with a “.” or “-” to
indicate that the turtle has visited a particular square or if the square is part of a dead end. In
addition, the updatePosition method uses two helper methods, moveTurtle and dropBreadCrumb,
to update the view on the screen.

Finally, the isExit method uses the current position of the turtle to test for an exit condition. An
exit condition is whenever the turtle has navigated to the edge of the maze, either row zero or
column zero, or the far right column or the bottom row.

Listing 4

class Maze:
def __init__(self,mazeFileName):

rowsInMaze = 0
columnsInMaze = 0
self.mazelist = []
mazeFile = open(mazeFileName,'r')
rowsInMaze = 0
for line in mazeFile:

rowList = []



col = 0
for ch in line[:-1]:

rowList.append(ch)
if ch == 'S':

self.startRow = rowsInMaze
self.startCol = col

col = col + 1
rowsInMaze = rowsInMaze + 1
self.mazelist.append(rowList)
columnsInMaze = len(rowList)

self.rowsInMaze = rowsInMaze
self.columnsInMaze = columnsInMaze
self.xTranslate = -columnsInMaze/2
self.yTranslate = rowsInMaze/2
self.t = Turtle(shape='turtle')
setup(width=600,height=600)
setworldcoordinates(-(columnsInMaze-1)/2-.5,

-(rowsInMaze-1)/2-.5,
(columnsInMaze-1)/2+.5,
(rowsInMaze-1)/2+.5)

Listing 5

def drawMaze(self):
for y in range(self.rowsInMaze):

for x in range(self.columnsInMaze):
if self.mazelist[y][x] == OBSTACLE:

self.drawCenteredBox(x+self.xTranslate,
-y+self.yTranslate,
'tan')

self.t.color('black','blue')

def drawCenteredBox(self,x,y,color):
tracer(0)
self.t.up()
self.t.goto(x-.5,y-.5)
self.t.color('black',color)
self.t.setheading(90)
self.t.down()
self.t.begin_fill()
for i in range(4):

self.t.forward(1)
self.t.right(90)



self.t.end_fill()
update()
tracer(1)

def moveTurtle(self,x,y):
self.t.up()
self.t.setheading(self.t.towards(x+self.xTranslate,

-y+self.yTranslate))
self.t.goto(x+self.xTranslate,-y+self.yTranslate)

def dropBreadcrumb(self,color):
self.t.dot(color)

def updatePosition(self,row,col,val=None):
if val:

self.mazelist[row][col] = val
self.moveTurtle(col,row)

if val == PART_OF_PATH:
color = 'green'

elif val == OBSTACLE:
color = 'red'

elif val == TRIED:
color = 'black'

elif val == DEAD_END:
color = 'red'

else:
color = None

if color:
self.dropBreadcrumb(color)

Listing 6

def isExit(self,row,col):
return (row == 0 or

row == self.rowsInMaze-1 or
col == 0 or
col == self.columnsInMaze-1 )

def __getitem__(self,idx):
return self.mazelist[idx]

The complete program is shown in ActiveCode 1. This program uses the data file maze2.txt shown
below. Note that it is a much more simple example file in that the exit is very close to the starting



position of the turtle.

import turtle

PART_OF_PATH = 'O'
TRIED = '.'
OBSTACLE = '+'
DEAD_END = '-'

class Maze:

def __init__(self,mazeFileName):
rowsInMaze = 0
columnsInMaze = 0
self.mazelist = []
mazeFile = open(mazeFileName,'r')
rowsInMaze = 0
for line in mazeFile:

rowList = []
col = 0
for ch in line[:-1]:

rowList.append(ch)
if ch == 'S':

self.startRow = rowsInMaze
self.startCol = col

col = col + 1
rowsInMaze = rowsInMaze + 1
self.mazelist.append(rowList)
columnsInMaze = len(rowList)


self.rowsInMaze = rowsInMaze
self.columnsInMaze = columnsInMaze
self.xTranslate = -columnsInMaze/2



self.yTranslate = rowsInMaze/2
self.t = turtle.Turtle()
self.t.shape('turtle')

Complete Maze Solver (completemaze)

Self Check
Modify the maze search program so that the calls to searchFrom are in a different order. Watch the
program run. Can you explain why the behavior is different? Can you predict what path the turtle
will follow for a given change in order?

4.7.动态规划

Many programs in computer science are written to optimize some value; for example, find the
shortest path between two points, find the line that best fits a set of points, or find the smallest set
of objects that satisfies some criteria. There are many strategies that computer scientists use to
solve these problems. One of the goals of this book is to expose you to several different problem
solving strategies. Dynamic programming is one strategy for these types of optimization problems.

A classic example of an optimization problem involves making change using the fewest coins.
Suppose you are a programmer for a vending machine manufacturer. Your company wants to
streamline effort by giving out the fewest possible coins in change for each transaction. Suppose a
customer puts in a dollar bill and purchases an item for 37 cents. What is the smallest number of
coins you can use to make change? The answer is six coins: two quarters, one dime, and three
pennies. How did we arrive at the answer of six coins? We start with the largest coin in our arsenal
(a quarter) and use as many of those as possible, then we go to the next lowest coin value and use
as many of those as possible. This first approach is called a greedy method because we try to solve
as big a piece of the problem as possible right away.

The greedy method works fine when we are using U.S. coins, but suppose that your company
decides to deploy its vending machines in Lower Elbonia where, in addition to the usual 1, 5, 10,
and 25 cent coins they also have a 21 cent coin. In this instance our greedy method fails to find the
optimal solution for 63 cents in change. With the addition of the 21 cent coin the greedy method
would still find the solution to be six coins. However, the optimal answer is three 21 cent pieces.

Let’s look at a method where we could be sure that we would find the optimal answer to the
problem. Since this section is about recursion, you may have guessed that we will use a recursive
solution. Let’s start with identifying the base case. If we are trying to make change for the same
amount as the value of one of our coins, the answer is easy, one coin.

If the amount does not match we have several options. What we want is the minimum of a penny
plus the number of coins needed to make change for the original amount minus a penny, or a
nickel plus the number of coins needed to make change for the original amount minus five cents,
or a dime plus the number of coins needed to make change for the original amount minus ten cents,



and so on. So the number of coins needed to make change for the original amount can be
computed according to the following:

The algorithm for doing what we have just described is shown in Listing 7. In line 3 we are
checking our base case; that is, we are trying to make change in the exact amount of one of our
coins. If we do not have a coin equal to the amount of change, we make recursive calls for each
different coin value less than the amount of change we are trying to make. Line 6 shows how we
filter the list of coins to those less than the current value of change using a list comprehension.
The recursive call also reduces the total amount of change we need to make by the value of the
coin selected. The recursive call is made in line 7. Notice that on that same line we add 1 to our
number of coins to account for the fact that we are using a coin. Just adding 1 is the same as if we
had made a recursive call asking where we satisfy the base case condition immediately.

Listing 7

def recMC(coinValueList,change):
minCoins = change
if change in coinValueList:
return 1

else:
for i in [c for c in coinValueList if c <= change]:

numCoins = 1 + recMC(coinValueList,change-i)
if numCoins < minCoins:

minCoins = numCoins
return minCoins

print(recMC([1,5,10,25],63))

The trouble with the algorithm in Listing 7 is that it is extremely inefficient. In fact, it takes
67,716,925 recursive calls to find the optimal solution to the 4 coins, 63 cents problem! To
understand the fatal flaw in our approach look at Figure 5, which illustrates a small fraction of the
377 function calls needed to find the optimal set of coins to make change for 26 cents.

Each node in the graph corresponds to a call to recMC. The label on the node indicates the amount
of change for which we are computing the number of coins. The label on the arrow indicates the
coin that we just used. By following the graph we can see the combination of coins that got us to
any point in the graph. The main problem is that we are re-doing too many calculations. For
example, the graph shows that the algorithm would recalculate the optimal number of coins to
make change for 15 cents at least three times. Each of these computations to find the optimal
number of coins for 15 cents itself takes 52 function calls. Clearly we are wasting a lot of time and



effort recalculating old results.
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Figure 3: Call Tree for Listing 7

The key to cutting down on the amount of work we do is to remember some of the past results so
we can avoid recomputing results we already know. A simple solution is to store the results for the
minimum number of coins in a table when we find them. Then before we compute a new
minimum, we first check the table to see if a result is already known. If there is already a result in
the table, we use the value from the table rather than recomputing. ActiveCode 1 shows a modified
algorithm to incorporate our table lookup scheme.

Run Save Load

def recDC(coinValueList,change,knownResults):
minCoins = change
if change in coinValueList:

knownResults[change] = 1
return 1

elif knownResults[change] > 0:
return knownResults[change]

else:
for i in [c for c in coinValueList if c <= change]:
numCoins = 1 + recDC(coinValueList, change-i,

knownResults)
if numCoins < minCoins:

minCoins = numCoins
knownResults[change] = minCoins

return minCoins

print(recDC([1,5,10,25],63,[0]*64))





Recursively Counting Coins with Table Lookup (lst_change2)
Notice that in line 6 we have added a test to see if our table contains the minimum number of
coins for a certain amount of change. If it does not, we compute the minimum recursively and
store the computed minimum in the table. Using this modified algorithm reduces the number of
recursive calls we need to make for the four coin, 63 cent problem to 221 calls!

Although the algorithm in AcitveCode 3 is correct, it looks and feels like a bit of a hack. Also, if
we look at the knownResults lists we can see that there are some holes in the table. In fact the term
for what we have done is not dynamic programming but rather we have improved the performance
of our program by using a technique known as “memoization,” or more commonly called
“caching.”

A truly dynamic programming algorithm will take a more systematic approach to the problem.
Our dynamic programming solution is going to start with making change for one cent and
systematically work its way up to the amount of change we require. This guarantees us that at each
step of the algorithm we already know the minimum number of coins needed to make change for
any smaller amount.

Let’s look at how we would fill in a table of minimum coins to use in making change for 11 cents.
Figure 4 illustrates the process. We start with one cent. The only solution possible is one coin (a
penny). The next row shows the minimum for one cent and two cents. Again, the only solution is
two pennies. The fifth row is where things get interesting. Now we have two options to consider,
five pennies or one nickel. How do we decide which is best? We consult the table and see that the
number of coins needed to make change for four cents is four, plus one more penny to make five,
equals five coins. Or we can look at zero cents plus one more nickel to make five cents equals 1
coin. Since the minimum of one and five is one we store 1 in the table. Fast forward again to the
end of the table and consider 11 cents. Figure 5 shows the three options that we have to consider:

1. A penny plus the minimum number of coins to make change for 11−1=10 cents (1)
2. A nickel plus the minimum number of coins to make change for 11−5=6 cents (2)
3. A dime plus the minimum number of coins to make change for 11−10=1 cent (1)
Either option 1 or 3 will give us a total of two coins which is the minimum number of coins for 11
cents.

Image



Figure 4: Minimum Number of Coins Needed to Make Change

Image

Figure 5: Three Options to Consider for the Minimum Number of Coins for Eleven Cents

Listing 8 is a dynamic programming algorithm to solve our change-making problem.
dpMakeChange takes three parameters: a list of valid coin values, the amount of change we want
to make, and a list of the minimum number of coins needed to make each value. When the
function is done minCoins will contain the solution for all values from 0 to the value of change.

Listing 8

def dpMakeChange(coinValueList,change,minCoins):
for cents in range(change+1):

coinCount = cents



for j in [c for c in coinValueList if c <= cents]:
if minCoins[cents-j] + 1 < coinCount:

coinCount = minCoins[cents-j]+1
minCoins[cents] = coinCount

return minCoins[change]

Note that dpMakeChange is not a recursive function, even though we started with a recursive
solution to this problem. It is important to realize that just because you can write a recursive
solution to a problem does not mean it is the best or most efficient solution. The bulk of the work
in this function is done by the loop that starts on line 4. In this loop we consider using all possible
coins to make change for the amount specified by cents. Like we did for the 11 cent example
above, we remember the minimum value and store it in our minCoins list.

Although our making change algorithm does a good job of figuring out the minimum number of
coins, it does not help us make change since we do not keep track of the coins we use. We can
easily extend dpMakeChange to keep track of the coins used by simply remembering the last coin
we add for each entry in the minCoins table. If we know the last coin added, we can simply
subtract the value of the coin to find a previous entry in the table that tells us the last coin we
added to make that amount. We can keep tracing back through the table until we get to the
beginning.

ActiveCode 2 shows the dpMakeChange algorithm modified to keep track of the coins used, along
with a function printCoins that walks backward through the table to print out the value of each
coin used. This shows the algorithm in action solving the problem for our friends in Lower
Elbonia. The first two lines of main set the amount to be converted and create the list of coins used.
The next two lines create the lists we need to store the results. coinsUsed is a list of the coins used
to make change, and coinCount is the minimum number of coins used to make change for the
amount corresponding to the position in the list.

Notice that the coins we print out come directly from the coinsUsed array. For the first call we
start at array position 63 and print 21. Then we take 63−21=42 and look at the 42nd element of the
list. Once again we find a 21 stored there. Finally, element 21 of the array also contains 21, giving
us the three 21 cent pieces.

def dpMakeChange(coinValueList,change,minCoins,coinsUsed):
for cents in range(change+1):

coinCount = cents
newCoin = 1
for j in [c for c in coinValueList if c <= cents]:

if minCoins[cents-j] + 1 < coinCount:
coinCount = minCoins[cents-j]+1
newCoin = j

minCoins[cents] = coinCount
coinsUsed[cents] = newCoin



return minCoins[change]

def printCoins(coinsUsed,change):

coin = change
while coin > 0:

thisCoin = coinsUsed[coin]
print(thisCoin)
coin = coin - thisCoin


def main():

amnt = 63
clist = [1,5,10,21,25]
coinsUsed = [0]*(amnt+1)
coinCount = [0]*(amnt+1)


print("Making change for",amnt,"requires")
print(dpMakeChange(clist,amnt,coinCount,coinsUsed),"coins")
print("They are:")
printCoins(coinsUsed,amnt)
print("The used list is as follows:")
print(coinsUsed)


main()


Complete Solution to the Change Problem (lst_dpremember)

4.8.小结

In this chapter we have looked at examples of several recursive algorithms. These algorithms were
chosen to expose you to several different problems where recursion is an effective
problem-solving technique. The key points to remember from this chapter are as follows:
 All recursive algorithms must have a base case.
 A recursive algorithm must change its state and make progress toward the base case.
 A recursive algorithm must call itself (recursively).
 Recursion can take the place of iteration in some cases.
 Recursive algorithms often map very naturally to a formal expression of the problem you are

trying to solve.
 Recursion is not always the answer. Sometimes a recursive solution may be more

computationally expensive than an alternative algorithm.



4.9.关键词

base case decrypt dynamic programming
recursion recursive call stack frame

4.10. 问题讨论

1. Draw a call stack for the Tower of Hanoi problem. Assume that you start with a stack of three
disks.

2. Using the recursive rules as described, draw a Sierpinski triangle using paper and pencil.
3. Using the dynamic programming algorithm for making change, find the smallest number of

coins that you can use to make 33 cents in change. In addition to the usual coins assume that
you have an 8 cent coin.

4.11. 词汇表

base case
A branch of the conditional statement in a recursive function that does not give rise to further
recursive calls.
data structure
An organization of data for the purpose of making it easier to use.
exception
An error that occurs at runtime.
handle an exception
To prevent an exception from terminating a program by wrapping the block of code in a try /
except construct.
immutable data type
A data type which cannot be modified. Assignments to elements or slices of immutable types
cause a runtime error.
infinite recursion
A function that calls itself recursively without ever reaching the base case. Eventually, an infinite
recursion causes a runtime error.
mutable data type
A data type which can be modified. All mutable types are compound types. Lists and dictionaries
(see next chapter) are mutable data types; strings and tuples are not.
raise
To cause an exception by using the raise statement.
recursion
The process of calling the function that is already executing.
recursive call
The statement that calls an already executing function. Recursion can even be indirect —



function f can call g which calls h, and h could make a call back to f.
recursive definition
A definition which defines something in terms of itself. To be useful it must include base cases
which are not recursive. In this way it differs from a circular definition. Recursive definitions
often provide an elegant way to express complex data structures.
tuple
A data type that contains a sequence of elements of any type, like a list, but is immutable. Tuples
can be used wherever an immutable type is required, such as a key in a dictionary (see next
chapter).
tuple assignment
An assignment to all of the elements in a tuple using a single assignment statement. Tuple
assignment occurs in parallel rather than in sequence, making it useful for swapping values.

4.12. 编程练习

1. Write a recursive function to compute the factorial of a number.

2. Write a recursive function to reverse a list.

3. Modify the recursive tree program using one or all of the following ideas:

 Modify the thickness of the branches so that as the branchLen gets smaller, the line gets
thinner.

 Modify the color of the branches so that as the branchLen gets very short it is colored
like a leaf.

 Modify the angle used in turning the turtle so that at each branch point the angle is
selected at random in some range. For example choose the angle between 15 and 45
degrees. Play around to see what looks good.

 Modify the branchLen recursively so that instead of always subtracting the same amount
you subtract a random amount in some range.

If you implement all of the above ideas you will have a very realistic looking tree.

4. Find or invent an algorithm for drawing a fractal mountain. Hint: One approach to this uses
triangles again.

5. Write a recursive function to compute the Fibonacci sequence. How does the performance of
the recursive function compare to that of an iterative version?

6. Implement a solution to the Tower of Hanoi using three stacks to keep track of the disks.

7. Using the turtle graphics module, write a recursive program to display a Hilbert curve.

8. Using the turtle graphics module, write a recursive program to display a Koch snowflake.



9. Write a program to solve the following problem: You have two jugs: a 4-gallon jug and a
3-gallon jug. Neither of the jugs have markings on them. There is a pump that can be used to
fill the jugs with water. How can you get exactly two gallons of water in the 4-gallon jug?

10. Generalize the problem above so that the parameters to your solution include the sizes of
each jug and the final amount of water to be left in the larger jug.

11. Write a program that solves the following problem: Three missionaries and three cannibals
come to a river and find a boat that holds two people. Everyone must get across the river to
continue on the journey. However, if the cannibals ever outnumber the missionaries on either
bank, the missionaries will be eaten. Find a series of crossings that will get everyone safely to
the other side of the river.

12. Modify the Tower of Hanoi program using turtle graphics to animate the movement of the
disks. Hint: You can make multiple turtles and have them shaped like rectangles.

13. Pascal’s triangle is a number triangle with numbers arranged in staggered rows such that

This equation is the equation for a binomial coefficient. You can build Pascal’s triangle by adding
the two numbers that are diagonally above a number in the triangle. An example of Pascal’ s
triangle is shown below.

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
Write a program that prints out Pascal’s triangle. Your program should accept a parameter that
tells how many rows of the triangle to print.

14. Suppose you are a computer scientist/art thief who has broken into a major art gallery. All
you have with you to haul out your stolen art is your knapsack which only holds W pounds of
art, but for every piece of art you know its value and its weight. Write a dynamic
programming function to help you maximize your profit. Here is a sample problem for you to
use to get started: Suppose your knapsack can hold a total weight of 20. You have 5 items as
follows:

item weight value
1 2 3



2 3 4
3 4 8
4 5 8
5 9 10

15. This problem is called the string edit distance problem, and is quite useful in many areas of
research. Suppose that you want to transform the word “ algorithm” into the word
“alligator.” For each letter you can either copy the letter from one word to another at a cost
of 5, you can delete a letter at cost of 20, or insert a letter at a cost of 20. The total cost to
transform one word into another is used by spell check programs to provide suggestions for
words that are close to one another. Use dynamic programming techniques to develop an
algorithm that gives you the smallest edit distance between any two words.

5.排序与搜索

5.1.目标

 了解和实现顺序搜索和二分法搜索；

 了解和实现选择排序、冒泡排序、归并排序、快速排序、插入排序和希尔排序；

 了解用散列 Hashing实现搜索的技术；
 了解抽象数据类型：映射Map；
 采用散列实现抽象数据类型Map。

5.2.搜索

5.2.1. 顺序搜索

When data items are stored in a collection such as a list, we say that they have a linear or
sequential relationship. Each data item is stored in a position relative to the others. In Python lists,
these relative positions are the index values of the individual items. Since these index values are
ordered, it is possible for us to visit them in sequence. This process gives rise to our first searching
technique, the sequential search.

Figure 1 shows how this search works. Starting at the first item in the list, we simply move from
item to item, following the underlying sequential ordering until we either find what we are looking
for or run out of items. If we run out of items, we have discovered that the item we were searching
for was not present.

../_images/seqsearch.png



Figure 1: Sequential Search of a List of Integers

The Python implementation for this algorithm is shown in CodeLens 1. The function needs the list
and the item we are looking for and returns a boolean value as to whether it is present. The
boolean variable found is initialized to False and is assigned the value True if we discover the item
in the list.

1 def sequentialSearch(alist, item):
2 pos = 0
3 found = False
4
5 while pos < len(alist) and not found:
6 if alist[pos] == item:
7 found = True
8 else:
9 pos = pos+1
10
11 return found
12
13 testlist = [1, 2, 32, 8, 17, 19, 42, 13, 0]
14 print(sequentialSearch(testlist, 3))
15 print(sequentialSearch(testlist, 13))

Sequential Search of an Unordered List (search1)

5.2.1.1. Analysis of Sequential Search

To analyze searching algorithms, we need to decide on a basic unit of computation. Recall that this
is typically the common step that must be repeated in order to solve the problem. For searching, it
makes sense to count the number of comparisons performed. Each comparison may or may not
discover the item we are looking for. In addition, we make another assumption here. The list of
items is not ordered in any way. The items have been placed randomly into the list. In other words,
the probability that the item we are looking for is in any particular position is exactly the same for
each position of the list.

If the item is not in the list, the only way to know it is to compare it against every item present. If
there are n items, then the sequential search requires n comparisons to discover that the item is not



there. In the case where the item is in the list, the analysis is not so straightforward. There are
actually three different scenarios that can occur. In the best case we will find the item in the first
place we look, at the beginning of the list. We will need only one comparison. In the worst case,
we will not discover the item until the very last comparison, the nth comparison.

What about the average case? On average, we will find the item about halfway into the list; that is,
we will compare against n/2 items. Recall, however, that as n gets large, the coefficients, no matter
what they are, become insignificant in our approximation, so the complexity of the sequential
search, is O(n). Table 1 summarizes these results.

Table 1: Comparisons Used in a Sequential Search of an Unordered List
Case Best Case Worst Case Average Case

item is present 1 n n/2
item is not present n n n

We assumed earlier that the items in our collection had been randomly placed so that there is no
relative order between the items. What would happen to the sequential search if the items were
ordered in some way? Would we be able to gain any efficiency in our search technique?

Assume that the list of items was constructed so that the items were in ascending order, from low
to high. If the item we are looking for is present in the list, the chance of it being in any one of the
n positions is still the same as before. We will still have the same number of comparisons to find
the item. However, if the item is not present there is a slight advantage. Figure 2 shows this
process as the algorithm looks for the item 50. Notice that items are still compared in sequence
until 54. At this point, however, we know something extra. Not only is 54 not the item we are
looking for, but no other elements beyond 54 can work either since the list is sorted. In this case,
the algorithm does not have to continue looking through all of the items to report that the item was
not found. It can stop immediately. CodeLens 2 shows this variation of the sequential search
function.

../_images/seqsearch2.png

Figure 2: Sequential Search of an Ordered List of Integers

1 def orderedSequentialSearch(alist, item):
2 pos = 0
3 found = False
4 stop = False
5 while pos < len(alist) and not found and not stop:



6 if alist[pos] == item:
7 found = True
8 else:
9 if alist[pos] > item:
10 stop = True
11 else:
12 pos = pos+1
13
14 return found
15
16 testlist = [0, 1, 2, 8, 13, 17, 19, 32, 42,]
17 print(orderedSequentialSearch(testlist, 3))
18 print(orderedSequentialSearch(testlist, 13))

Sequential Search of an Ordered List (search2)

Table 2 summarizes these results. Note that in the best case we might discover that the item is not
in the list by looking at only one item. On average, we will know after looking through only n2
items. However, this technique is still O(n). In summary, a sequential search is improved by
ordering the list only in the case where we do not find the item.

Table 2: Comparisons Used in Sequential Search of an Ordered List

Case Best Case Worst Case Average Case
item is present 1 n n/2
item not present 1 n n/2

Self Check
Q-29: Suppose you are doing a sequential search of the list [15, 18, 2, 19, 18, 0, 8, 14, 19, 14].
How many comparisons would you need to do in order to find the key 18?
a) 5
b) 10
c) 4
d) 2

Q-30: Suppose you are doing a sequential search of the ordered list [3, 5, 6, 8, 11, 12, 14, 15, 17,
18]. How many comparisons would you need to do in order to find the key 13?
a) 10
b) 5
c) 7
d) 6



5.2.2. 二分法搜索

It is possible to take greater advantage of the ordered list if we are clever with our comparisons. In
the sequential search, when we compare against the first item, there are at most n−1 more items to
look through if the first item is not what we are looking for. Instead of searching the list in
sequence, a binary search will start by examining the middle item. If that item is the one we are
searching for, we are done. If it is not the correct item, we can use the ordered nature of the list to
eliminate half of the remaining items. If the item we are searching for is greater than the middle
item, we know that the entire lower half of the list as well as the middle item can be eliminated
from further consideration. The item, if it is in the list, must be in the upper half.

We can then repeat the process with the upper half. Start at the middle item and compare it against
what we are looking for. Again, we either find it or split the list in half, therefore eliminating
another large part of our possible search space. Figure 3 shows how this algorithm can quickly
find the value 54. The complete function is shown in CodeLens 3.
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Figure 3: Binary Search of an Ordered List of Integers

1 def binarySearch(alist, item):
2 first = 0
3 last = len(alist)-1
4 found = False
5
6 while first<=last and not found:
7 midpoint = (first + last)//2
8 if alist[midpoint] == item:
9 found = True
10 else:
11 if item < alist[midpoint]:
12 last = midpoint-1
13 else:
14 first = midpoint+1
15
16 return found



17
18 testlist = [0, 1, 2, 8, 13, 17, 19, 32, 42,]
19 print(binarySearch(testlist, 3))
20 print(binarySearch(testlist, 13))

Binary Search of an Ordered List (search3)

Before we move on to the analysis, we should note that this algorithm is a great example of a
divide and conquer strategy. Divide and conquer means that we divide the problem into smaller
pieces, solve the smaller pieces in some way, and then reassemble the whole problem to get the
result. When we perform a binary search of a list, we first check the middle item. If the item we
are searching for is less than the middle item, we can simply perform a binary search of the left
half of the original list. Likewise, if the item is greater, we can perform a binary search of the right
half. Either way, this is a recursive call to the binary search function passing a smaller list.
CodeLens 4 shows this recursive version.

1 def binarySearch(alist, item):
2 if len(alist) == 0:
3 return False
4 else:
5 midpoint = len(alist)//2
6 if alist[midpoint]==item:
7 return True
8 else:
9 if item<alist[midpoint]:
10 return binarySearch(alist[:midpoint],item)
11 else:
12 return binarySearch(alist[midpoint+1:],item)
13
14 testlist = [0, 1, 2, 8, 13, 17, 19, 32, 42,]
15 print(binarySearch(testlist, 3))
16 print(binarySearch(testlist, 13))

ABinary Search--Recursive Version (search4)

5.2.2.1. Analysis of Binary Search

To analyze the binary search algorithm, we need to recall that each comparison eliminates about
half of the remaining items from consideration. What is the maximum number of comparisons this
algorithm will require to check the entire list? If we start with n items, about n/2 items will be left
after the first comparison. After the second comparison, there will be about n/4. Then n/8, n/16,
and so on. How many times can we split the list? Table 3 helps us to see the answer.



Table 3: Tabular Analysis for a Binary Search
Comparisons Approximate Number of Items Left

1 n/2
2 n/4
3 n/8
...
i n/2^i

When we split the list enough times, we end up with a list that has just one item. Either that is the
item we are looking for or it is not. Either way, we are done. The number of comparisons
necessary to get to this point is i where n/2^i=1. Solving for i gives us i=logn. The maximum
number of comparisons is logar ithmic with respect to the number of items in the list. Therefore,
the binary search is O(logn).

One additional analysis issue needs to be addressed. In the recursive solution shown above, the
recursive call,

binarySearch(alist[:midpoint],item)

uses the slice operator to create the left half of the list that is then passed to the next invocation
(similarly for the right half as well). The analysis that we did above assumed that the slice operator
takes constant time. However, we know that the slice operator in Python is actually O(k). This
means that the binary search using slice will not perform in strict logarithmic time. Luckily this
can be remedied by passing the list along with the starting and ending indices. The indices can be
calculated as we did in Listing 3. We leave this implementation as an exercise.

Even though a binary search is generally better than a sequential search, it is important to note that
for small values of n, the additional cost of sorting is probably not worth it. In fact, we should
always consider whether it is cost effective to take on the extra work of sorting to gain searching
benefits. If we can sort once and then search many times, the cost of the sort is not so significant.
However, for large lists, sorting even once can be so expensive that simply performing a
sequential search from the start may be the best choice.

Self Check
Q-19: Suppose you have the following sorted list [3, 5, 6, 8, 11, 12, 14, 15, 17, 18] and are using
the recursive binary search algorithm. Which group of numbers correctly shows the sequence of
comparisons used to find the key 8.
a) 11, 5, 6, 8
b) 12, 6, 11, 8
c) 3, 5, 6, 8
d) 18, 12, 6, 8

Q-20: Suppose you have the following sorted list [3, 5, 6, 8, 11, 12, 14, 15, 17, 18] and are using
the recursive binary search algorithm. Which group of numbers correctly shows the sequence of



comoparisons used to search for the key 16?
a) 11, 14, 17
b) 18, 17, 15
c) 14, 17, 15
d) 12, 17, 15

5.2.3. 散列

In previous sections we were able to make improvements in our search algorithms by taking
advantage of information about where items are stored in the collection with respect to one
another. For example, by knowing that a list was ordered, we could search in logarithmic time
using a binary search. In this section we will attempt to go one step further by building a data
structure that can be searched in O(1) time. This concept is referred to as hashing.

In order to do this, we will need to know even more about where the items might be when we go
to look for them in the collection. If every item is where it should be, then the search can use a
single comparison to discover the presence of an item. We will see, however, that this is typically
not the case.

A hash table is a collection of items which are stored in such a way as to make it easy to find them
later. Each position of the hash table, often called a slot, can hold an item and is named by an
integer value starting at 0. For example, we will have a slot named 0, a slot named 1, a slot named
2, and so on. Initially, the hash table contains no items so every slot is empty. We can implement a
hash table by using a list with each element initialized to the special Python value None. Figure 4
shows a hash table of size m=11. In other words, there are m slots in the table, named 0 through
10.

../_images/hashtable.png

Figure 4: Hash Table with 11 Empty Slots

The mapping between an item and the slot where that item belongs in the hash table is called the
hash function. The hash function will take any item in the collection and return an integer in the
range of slot names, between 0 and m-1. Assume that we have the set of integer items 54, 26, 93,
17, 77, and 31. Our first hash function, sometimes referred to as the“remainder method,” simply
takes an item and divides it by the table size, returning the remainder as its hash value
(h(item)=item%11). Table 4 gives all of the hash values for our example items. Note that this
remainder method (modulo arithmetic) will typically be present in some form in all hash functions,
since the result must be in the range of slot names.



Table 4: Simple Hash Function Using Remainders
Item Hash Value
54 10
26 4
93 5
17 6
77 0
31 9

Once the hash values have been computed, we can insert each item into the hash table at the
designated position as shown in Figure 5. Note that 6 of the 11 slots are now occupied. This is
referred to as the load factor, and is commonly denoted by λ=numberofitems/tablesize. For this
example, λ=6/11.
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Figure 5: Hash Table with Six Items

Now when we want to search for an item, we simply use the hash function to compute the slot
name for the item and then check the hash table to see if it is present. This searching operation is
O(1), since a constant amount of time is required to compute the hash value and then index the
hash table at that location. If everything is where it should be, we have found a constant time
search algorithm.

You can probably already see that this technique is going to work only if each item maps to a
unique location in the hash table. For example, if the item 44 had been the next item in our
collection, it would have a hash value of 0 (44%11==0). Since 77 also had a hash value of 0, we
would have a problem. According to the hash function, two or more items would need to be in the
same slot. This is referred to as a collision (it may also be called a “clash”). Clearly, collisions
create a problem for the hashing technique. We will discuss them in detail later.

5.2.3.1. Hash Functions

Given a collection of items, a hash function that maps each item into a unique slot is referred to as
a perfect hash function. If we know the items and the collection will never change, then it is
possible to construct a perfect hash function (refer to the exercises for more about perfect hash
functions). Unfortunately, given an arbitrary collection of items, there is no systematic way to
construct a perfect hash function. Luckily, we do not need the hash function to be perfect to still
gain performance efficiency.



One way to always have a perfect hash function is to increase the size of the hash table so that
each possible value in the item range can be accommodated. This guarantees that each item will
have a unique slot. Although this is practical for small numbers of items, it is not feasible when the
number of possible items is large. For example, if the items were nine-digit Social Security
numbers, this method would require almost one billion slots. If we only want to store data for a
class of 25 students, we will be wasting an enormous amount of memory.

Our goal is to create a hash function that minimizes the number of collisions, is easy to compute,
and evenly distributes the items in the hash table. There are a number of common ways to extend
the simple remainder method. We will consider a few of them here.

The folding method for constructing hash functions begins by dividing the item into equal-size
pieces (the last piece may not be of equal size). These pieces are then added together to give the
resulting hash value. For example, if our item was the phone number 436-555-4601, we would
take the digits and divide them into groups of 2 (43,65,55,46,01). After the addition,
43+65+55+46+01, we get 210. If we assume our hash table has 11 slots, then we need to perform
the extra step of dividing by 11 and keeping the remainder. In this case 210 % 11 is 1, so the
phone number 436-555-4601 hashes to slot 1. Some folding methods go one step further and
reverse every other piece before the addition. For the above example, we get
43+56+55+64+01=219 which gives 219 % 11=10.

Another numerical technique for constructing a hash function is called the mid-square method. We
first square the item, and then extract some portion of the resulting digits. For example, if the item
were 44, we would first compute 442=1,936. By extracting the middle two digits, 93, and
performing the remainder step, we get 5 (93 % 11). Table 5 shows items under both the remainder
method and the mid-square method. You should verify that you understand how these values were
computed.

Table 5: Comparison of Remainder and Mid-Square Methods
Item Remainder Mid-Square
54 10 3
26 4 7
93 5 9
17 6 8
77 0 4
31 9 6

We can also create hash functions for character-based items such as strings. The word “cat” can
be thought of as a sequence of ordinal values.

>>> ord('c')
99
>>> ord('a')
97
>>> ord('t')



116

We can then take these three ordinal values, add them up, and use the remainder method to get a
hash value (see Figure 6). Listing 1 shows a function called hash that takes a string and a table size
and returns the hash value in the range from 0 to tablesize-1.
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Figure 6: Hashing a String Using Ordinal Values

Listing 1

def hash(astring, tablesize):
sum = 0
for pos in range(len(astring)):

sum = sum + ord(astring[pos])

return sum%tablesize

It is interesting to note that when using this hash function, anagrams will always be given the same
hash value. To remedy this, we could use the position of the character as a weight. Figure 7 shows
one possible way to use the positional value as a weighting factor. The modification to the hash
function is left as an exercise.

../_images/stringhash2.png

Figure 7: Hashing a String Using Ordinal Values with Weighting

You may be able to think of a number of additional ways to compute hash values for items in a
collection. The important thing to remember is that the hash function has to be efficient so that it
does not become the dominant part of the storage and search process. If the hash function is too



complex, then it becomes more work to compute the slot name than it would be to simply do a
basic sequential or binary search as described earlier. This would quickly defeat the purpose of
hashing.

5.2.3.2. Collision Resolution

We now return to the problem of collisions. When two items hash to the same slot, we must have a
systematic method for placing the second item in the hash table. This process is called collision
resolution. As we stated earlier, if the hash function is perfect, collisions will never occur.
However, since this is often not possible, collision resolution becomes a very important part of
hashing.

One method for resolving collisions looks into the hash table and tries to find another open slot to
hold the item that caused the collision. A simple way to do this is to start at the original hash value
position and then move in a sequential manner through the slots until we encounter the first slot
that is empty. Note that we may need to go back to the first slot (circularly) to cover the entire
hash table. This collision resolution process is referred to as open addressing in that it tries to find
the next open slot or address in the hash table. By systematically visiting each slot one at a time,
we are performing an open addressing technique called linear probing.

Figure 8 shows an extended set of integer items under the simple remainder method hash function
(54,26,93,17,77,31,44,55,20). Table 4 above shows the hash values for the original items. Figure 5
shows the original contents. When we attempt to place 44 into slot 0, a collision occurs. Under
linear probing, we look sequentially, slot by slot, until we find an open position. In this case, we
find slot 1.

Again, 55 should go in slot 0 but must be placed in slot 2 since it is the next open position. The
final value of 20 hashes to slot 9. Since slot 9 is full, we begin to do linear probing. We visit slots
10, 0, 1, and 2, and finally find an empty slot at position 3.

../_images/linearprobing1.png

Figure 8: Collision Resolution with Linear Probing

Once we have built a hash table using open addressing and linear probing, it is essential that we
utilize the same methods to search for items. Assume we want to look up the item 93. When we
compute the hash value, we get 5. Looking in slot 5 reveals 93, and we can return True. What if
we are looking for 20? Now the hash value is 9, and slot 9 is currently holding 31. We cannot
simply return False since we know that there could have been collisions. We are now forced to do
a sequential search, starting at position 10, looking until either we find the item 20 or we find an



empty slot.

A disadvantage to linear probing is the tendency for clustering; items become clustered in the table.
This means that if many collisions occur at the same hash value, a number of surrounding slots
will be filled by the linear probing resolution. This will have an impact on other items that are
being inserted, as we saw when we tried to add the item 20 above. A cluster of values hashing to 0
had to be skipped to finally find an open position. This cluster is shown in Figure 9.
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Figure 9: A Cluster of Items for Slot 0

One way to deal with clustering is to extend the linear probing technique so that instead of looking
sequentially for the next open slot, we skip slots, thereby more evenly distributing the items that
have caused collisions. This will potentially reduce the clustering that occurs. Figure 10 shows the
items when collision resolution is done with a “plus 3” probe. This means that once a collision
occurs, we will look at every third slot until we find one that is empty.

../_images/linearprobing2.png

Figure 10: Collision Resolution Using “Plus 3”

The general name for this process of looking for another slot after a collision is rehashing. With
simple linear probing, the rehash function is newhashvalue=rehash(oldhashvalue) where
rehash(pos)=(pos+1)%sizeoftable. The “ plus 3 ” rehash can be defined as
rehash(pos)=(pos+3)%sizeoftable. In general, rehash(pos)=(pos+skip)%sizeoftable. It is important
to note that the size of the “skip” must be such that all the slots in the table will eventually be
visited. Otherwise, part of the table will be unused. To ensure this, it is often suggested that the
table size be a prime number. This is the reason we have been using 11 in our examples.

A variation of the linear probing idea is called quadratic probing. Instead of using a constant
“skip” value, we use a rehash function that increments the hash value by 1, 3, 5, 7, 9, and so on.
This means that if the first hash value is h, the successive values are h+1, h+4, h+9, h+16, and so
on. In other words, quadratic probing uses a skip consisting of successive perfect squares. Figure
11 shows our example values after they are placed using this technique.

../_images/quadratic.png



Figure 11: Collision Resolution with Quadratic Probing

An alternative method for handling the collision problem is to allow each slot to hold a reference
to a collection (or chain) of items. Chaining allows many items to exist at the same location in the
hash table. When collisions happen, the item is still placed in the proper slot of the hash table. As
more and more items hash to the same location, the difficulty of searching for the item in the
collection increases. Figure 12 shows the items as they are added to a hash table that uses chaining
to resolve collisions.
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Figure 12: Collision Resolution with Chaining

When we want to search for an item, we use the hash function to generate the slot where it should
reside. Since each slot holds a collection, we use a searching technique to decide whether the item
is present. The advantage is that on the average there are likely to be many fewer items in each
slot, so the search is perhaps more efficient. We will look at the analysis for hashing at the end of
this section.

Self Check
Q-17: In a hash table of size 13 which index positions would the following two keys map to? 27,
130
a) 1, 10
b) 13, 0
c) 1, 0
d) 2, 3

Q-18: Suppose you are given the following set of keys to insert into a hash table that holds exactly



11 values: 113 , 117 , 97 , 100 , 114 , 108 , 116 , 105 , 99 Which of the following best
demonstrates the contents of the has table after all the keys have been inserted using linear
probing?
a) 100, __, __, 113, 114, 105, 116, 117, 97, 108, 99
b) 99, 100, __, 113, 114, __, 116, 117, 105, 97, 108
c) 100, 113, 117, 97, 14, 108, 116, 105, 99, __, __
d) 117, 114, 108, 116, 105, 99, __, __, 97, 100, 113

5.2.3.3. Implementing the Map Abstract Data Type

One of the most useful Python collections is the dictionary. Recall that a dictionary is an
associative data type where you can store key– data pairs. The key is used to look up the
associated data value. We often refer to this idea as a map.

The map abstract data type is defined as follows. The structure is an unordered collection of
associations between a key and a data value. The keys in a map are all unique so that there is a
one-to-one relationship between a key and a value. The operations are given below.

 Map() Create a new, empty map. It returns an empty map collection.
 put(key,val) Add a new key-value pair to the map. If the key is already in the map then

replace the old value with the new value.
 get(key) Given a key, return the value stored in the map or None otherwise.
 del Delete the key-value pair from the map using a statement of the form del map[key].
 len() Return the number of key-value pairs stored in the map.
 in Return True for a statement of the form key in map, if the given key is in the map, False

otherwise.
One of the great benefits of a dictionary is the fact that given a key, we can look up the associated
data value very quickly. In order to provide this fast look up capability, we need an
implementation that supports an efficient search. We could use a list with sequential or binary
search but it would be even better to use a hash table as described above since looking up an item
in a hash table can approach O(1) performance.

In Listing 2 we use two lists to create a HashTable class that implements the Map abstract data
type. One list, called slots, will hold the key items and a parallel list, called data, will hold the data
values. When we look up a key, the corresponding position in the data list will hold the associated
data value. We will treat the key list as a hash table using the ideas presented earlier. Note that the
initial size for the hash table has been chosen to be 11. Although this is arbitrary, it is important
that the size be a prime number so that the collision resolution algorithm can be as efficient as
possible.

Listing 2



class HashTable:
def __init__(self):

self.size = 11
self.slots = [None] * self.size
self.data = [None] * self.size

hashfunction implements the simple remainder method. The collision resolution technique is
linear probing with a “plus 1” rehash function. The put function (see Listing 3) assumes that
there will eventually be an empty slot unless the key is already present in the self.slots. It
computes the original hash value and if that slot is not empty, iterates the rehash function until an
empty slot occurs. If a nonempty slot already contains the key, the old data value is replaced with
the new data value.

Listing 3

def put(self,key,data):
hashvalue = self.hashfunction(key,len(self.slots))

if self.slots[hashvalue] == None:
self.slots[hashvalue] = key
self.data[hashvalue] = data

else:
if self.slots[hashvalue] == key:
self.data[hashvalue] = data #replace

else:
nextslot = self.rehash(hashvalue,len(self.slots))
while self.slots[nextslot] != None and \

self.slots[nextslot] != key:
nextslot = self.rehash(nextslot,len(self.slots))

if self.slots[nextslot] == None:
self.slots[nextslot]=key
self.data[nextslot]=data

else:
self.data[nextslot] = data #replace

def hashfunction(self,key,size):
return key%size

def rehash(self,oldhash,size):
return (oldhash+1)%size

Likewise, the get function (see Listing 4) begins by computing the initial hash value. If the value
is not in the initial slot, rehash is used to locate the next possible position. Notice that line 15
guarantees that the search will terminate by checking to make sure that we have not returned to the



initial slot. If that happens, we have exhausted all possible slots and the item must not be present.

The final methods of the HashTable class provide additional dictionary functionality. We overload
the __getitem__ and __setitem__ methods to allow access using``[]``. This means that once a
HashTable has been created, the familiar index operator will be available. We leave the remaining
methods as exercises.

Listing 4

def get(self,key):
startslot = self.hashfunction(key,len(self.slots))

data = None
stop = False
found = False
position = startslot
while self.slots[position] != None and \

not found and not stop:
if self.slots[position] == key:
found = True
data = self.data[position]

else:
position=self.rehash(position,len(self.slots))
if position == startslot:

stop = True
return data

def __getitem__(self,key):
return self.get(key)

def __setitem__(self,key,data):
self.put(key,data)

The following session shows the HashTable class in action. First we will create a hash table and
store some items with integer keys and string data values.

>>> H=HashTable()
>>> H[54]="cat"
>>> H[26]="dog"
>>> H[93]="lion"
>>> H[17]="tiger"
>>> H[77]="bird"
>>> H[31]="cow"
>>> H[44]="goat"



>>> H[55]="pig"
>>> H[20]="chicken"
>>> H.slots
[77, 44, 55, 20, 26, 93, 17, None, None, 31, 54]
>>> H.data
['bird', 'goat', 'pig', 'chicken', 'dog', 'lion',

'tiger', None, None, 'cow', 'cat']

Next we will access and modify some items in the hash table. Note that the value for the key 20 is
being replaced.

>>> H[20]
'chicken'
>>> H[17]
'tiger'
>>> H[20]='duck'
>>> H[20]
'duck'
>>> H.data
['bird', 'goat', 'pig', 'duck', 'dog', 'lion',

'tiger', None, None, 'cow', 'cat']
>> print(H[99])
None

The complete hash table example can be found in ActiveCode 1.

Complete Hash Table Example (hashtablecomplete)

5.2.3.4. Analysis of Hashing

We stated earlier that in the best case hashing would provide a O(1), constant time search
technique. However, due to collisions, the number of comparisons is typically not so simple. Even
though a complete analysis of hashing is beyond the scope of this text, we can state some
well-known results that approximate the number of comparisons necessary to search for an item.

The most important piece of information we need to analyze the use of a hash table is the load
factor, λ. Conceptually, if λ is small, then there is a lower chance of collisions, meaning that
items are more likely to be in the slots where they belong. If λ is large, meaning that the table is
filling up, then there are more and more collisions. This means that collision resolution is more
difficult, requiring more comparisons to find an empty slot. With chaining, increased collisions
means an increased number of items on each chain.

As before, we will have a result for both a successful and an unsuccessful search. For a successful
search using open addressing with linear probing, the average number of comparisons is



approximately 12(1+1/1−λ) and an unsuccessful search gives 12(1+(1/1−λ)^2) If we are using
chaining, the average number of comparisons is 1+λ /2 for the successful case, and simply λ
comparisons if the search is unsuccessful.

5.3.排序

5.3.1. 冒泡排序

The bubble sort makes multiple passes through a list. It compares adjacent items and exchanges
those that are out of order. Each pass through the list places the next largest value in its proper
place. In essence, each item “bubbles” up to the location where it belongs.

Figure 1 shows the first pass of a bubble sort. The shaded items are being compared to see if they
are out of order. If there are n items in the list, then there are n−1 pairs of items that need to be
compared on the first pass. It is important to note that once the largest value in the list is part of a
pair, it will continually be moved along until the pass is complete.

../_images/bubblepass.png

Figure 1: bubbleSort: The First Pass

At the start of the second pass, the largest value is now in place. There are n−1 items left to sort,
meaning that there will be n−2 pairs. Since each pass places the next largest value in place, the
total number of passes necessary will be n−1. After completing the n−1 passes, the smallest item



must be in the correct position with no further processing required. ActiveCode 1 shows the
complete bubbleSort function. It takes the list as a parameter, and modifies it by exchanging items
as necessary.

The exchange operation, sometimes called a “swap,” is slightly different in Python than in most
other programming languages. Typically, swapping two elements in a list requires a temporary
storage location (an additional memory location). A code fragment such as

temp = alist[i]
alist[i] = alist[j]
alist[j] = temp

will exchange the ith and jth items in the list. Without the temporary storage, one of the values
would be overwritten.

In Python, it is possible to perform simultaneous assignment. The statement a,b=b,a will result in
two assignment statements being done at the same time (see Figure 2). Using simultaneous
assignment, the exchange operation can be done in one statement.

Lines 5-7 in ActiveCode 1 perform the exchange of the i and (i+1)th items using the three–step
procedure described earlier. Note that we could also have used the simultaneous assignment to
swap the items.

../_images/swap.png

Figure 2: Exchanging Two Values in Python

The following activecode example shows the complete bubbleSort function working on the list
shown above.
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def bubbleSort(alist):
for passnum in range(len(alist)-1,0,-1):

for i in range(passnum):
if alist[i]>alist[i+1]:

temp = alist[i]
alist[i] = alist[i+1]
alist[i+1] = temp


alist = [54,26,93,17,77,31,44,55,20]
bubbleSort(alist)
print(alist)


The Bubble Sort (lst_bubble)
The following animation shows bubbleSort in action.

Initialize Run Stop
Beginning Step Forward Step Backward End
To analyze the bubble sort, we should note that regardless of how the items are arranged in the
initial list, n − 1 passes will be made to sort a list of size n. Table 1 shows the number of
comparisons for each pass. The total number of comparisons is the sum of the first n−1 integers.
Recall that the sum of the first n integers is 12n2+12n. The sum of the first n − 1 integers is
12n2+12n−n, which is 12n2−12n. This is still O(n2) comparisons. In the best case, if the list is
already ordered, no exchanges will be made. However, in the worst case, every comparison will
cause an exchange. On average, we exchange half of the time.

Table 1: Comparisons for Each Pass of Bubble Sort
Pass Comparisons

1 n−1
2 n−2
3 n−3
... ...
n−1 1
A bubble sort is often considered the most inefficient sorting method since it must exchange items
before the final location is known. These“wasted”exchange operations are very costly. However,
because the bubble sort makes passes through the entire unsorted portion of the list, it has the
capability to do something most sorting algorithms cannot. In particular, if during a pass there are
no exchanges, then we know that the list must be sorted. A bubble sort can be modified to stop
early if it finds that the list has become sorted. This means that for lists that require just a few
passes, a bubble sort may have an advantage in that it will recognize the sorted list and stop.
ActiveCode 2 shows this modification, which is often referred to as the short bubble.
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def shortBubbleSort(alist):
exchanges = True
passnum = len(alist)-1
while passnum > 0 and exchanges:

exchanges = False
for i in range(passnum):

if alist[i]>alist[i+1]:
exchanges = True
temp = alist[i]
alist[i] = alist[i+1]
alist[i+1] = temp

passnum = passnum-1

alist=[20,30,40,90,50,60,70,80,100,110]
shortBubbleSort(alist)
print(alist)


The Short Bubble Sort (lst_shortbubble)
Self Check
Q-21: Suppose you have the following list of numbers to sort: <br> [19, 1, 9, 7, 3, 10, 13, 15, 8,
12] which list represents the partially sorted list after three complete passes of bubble sort?
a) [1, 9, 19, 7, 3, 10, 13, 15, 8, 12]
b) [1, 3, 7, 9, 10, 8, 12, 13, 15, 19]
c) [1, 7, 3, 9, 10, 13, 8, 12, 15, 19]
d) [1, 9, 19, 7, 3, 10, 13, 15, 8, 12]

5.3.2. 选择排序

The selection sort improves on the bubble sort by making only one exchange for every pass
through the list. In order to do this, a selection sort looks for the largest value as it makes a pass
and, after completing the pass, places it in the proper location. As with a bubble sort, after the first
pass, the largest item is in the correct place. After the second pass, the next largest is in place. This
process continues and requires n−1 passes to sort n items, since the final item must be in place
after the (n−1) st pass.

Figure 3 shows the entire sorting process. On each pass, the largest remaining item is selected and
then placed in its proper location. The first pass places 93, the second pass places 77, the third
places 55, and so on. The function is shown in ActiveCode 1.

../_images/selectionsortnew.png



Figure 3: selectionSort

def selectionSort(alist):
for fillslot in range(len(alist)-1,0,-1):

positionOfMax=0
for location in range(1,fillslot+1):

if alist[location]>alist[positionOfMax]:
positionOfMax = location


temp = alist[fillslot]
alist[fillslot] = alist[positionOfMax]
alist[positionOfMax] = temp


alist = [54,26,93,17,77,31,44,55,20]
selectionSort(alist)
print(alist)


Selection Sort (lst_selectionsortcode)
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You may see that the selection sort makes the same number of comparisons as the bubble sort and
is therefore also O(n2). However, due to the reduction in the number of exchanges, the selection
sort typically executes faster in benchmark studies. In fact, for our list, the bubble sort makes 20
exchanges, while the selection sort makes only 8.

Self Check
Q-28: Suppose you have the following list of numbers to sort: [11, 7, 12, 14, 19, 1, 6, 18, 8, 20]
which list represents the partially sorted list after three complete passes of selection sort?
a) [7, 11, 12, 1, 6, 14, 8, 18, 19, 20]
b) [7, 11, 12, 14, 19, 1, 6, 18, 8, 20]
c) [11, 7, 12, 14, 1, 6, 8, 18, 19, 20]
d) [11, 7, 12, 14, 8, 1, 6, 18, 19, 20]

5.3.3. 插入排序

The insertion sort, although still O(n2), works in a slightly different way. It always maintains a
sorted sublist in the lower positions of the list. Each new item is then “inserted” back into the
previous sublist such that the sorted sublist is one item larger. Figure 4 shows the insertion sorting
process. The shaded items represent the ordered sublists as the algorithm makes each pass.

../_images/insertionsort.png

Figure 4: insertionSort



We begin by assuming that a list with one item (position 0) is already sorted. On each pass, one for
each item 1 through n−1, the current item is checked against those in the already sorted sublist. As
we look back into the already sorted sublist, we shift those items that are greater to the right.
When we reach a smaller item or the end of the sublist, the current item can be inserted.

Figure 5 shows the fifth pass in detail. At this point in the algorithm, a sorted sublist of five items
consisting of 17, 26, 54, 77, and 93 exists. We want to insert 31 back into the already sorted items.
The first comparison against 93 causes 93 to be shifted to the right. 77 and 54 are also shifted.
When the item 26 is encountered, the shifting process stops and 31 is placed in the open position.
Now we have a sorted sublist of six items.

../_images/insertionpass.png

Figure 5: insertionSort: Fifth Pass of the Sort

The implementation of insertionSort (ActiveCode 1) shows that there are again n−1 passes to sort
n items. The iteration starts at position 1 and moves through position n−1, as these are the items
that need to be inserted back into the sorted sublists. Line 8 performs the shift operation that
moves a value up one position in the list, making room behind it for the insertion. Remember that
this is not a complete exchange as was performed in the previous algorithms.

The maximum number of comparisons for an insertion sort is the sum of the first n−1 integers.
Again, this is O(n2). However, in the best case, only one comparison needs to be done on each
pass. This would be the case for an already sorted list.

One note about shifting versus exchanging is also important. In general, a shift operation requires
approximately a third of the processing work of an exchange since only one assignment is
performed. In benchmark studies, insertion sort will show very good performance.
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def insertionSort(alist):
for index in range(1,len(alist)):


currentvalue = alist[index]
position = index


while position>0 and alist[position-1]>currentvalue:

alist[position]=alist[position-1]
position = position-1


alist[position]=currentvalue


alist = [54,26,93,17,77,31,44,55,20]
insertionSort(alist)
print(alist)


Insertion Sort (lst_insertion)

Initialize Run Stop
Beginning Step Forward Step Backward End
Self Check
Q-22: Suppose you have the following list of numbers to sort: <br>
[15, 5, 4, 18, 12, 19, 14, 10, 8, 20] which list represents the partially sorted list after three
complete passes of insertion sort?
a) [4, 5, 12, 15, 14, 10, 8, 18, 19, 20]
b) [15, 5, 4, 10, 12, 8, 14, 18, 19, 20]
c) [4, 5, 15, 18, 12, 19, 14, 10, 8, 20]
d) [15, 5, 4, 18, 12, 19, 14, 8, 10, 20]

5.3.4. 希尔排序

The shell sort, sometimes called the“diminishing increment sort,” improves on the insertion sort
by breaking the original list into a number of smaller sublists, each of which is sorted using an
insertion sort. The unique way that these sublists are chosen is the key to the shell sort. Instead of
breaking the list into sublists of contiguous items, the shell sort uses an increment i, sometimes
called the gap, to create a sublist by choosing all items that are i items apart.

This can be seen in Figure 6. This list has nine items. If we use an increment of three, there are
three sublists, each of which can be sorted by an insertion sort. After completing these sorts, we
get the list shown in Figure 7. Although this list is not completely sorted, something very
interesting has happened. By sorting the sublists, we have moved the items closer to where they
actually belong.



../_images/shellsortA.png

Figure 6: A Shell Sort with Increments of Three

../_images/shellsortB.png

Figure 7: A Shell Sort after Sorting Each Sublist

Figure 8 shows a final insertion sort using an increment of one; in other words, a standard
insertion sort. Note that by performing the earlier sublist sorts, we have now reduced the total
number of shifting operations necessary to put the list in its final order. For this case, we need only
four more shifts to complete the process.

../_images/shellsortC.png

Figure 8: ShellSort: A Final Insertion Sort with Increment of 1
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Figure 9: Initial Sublists for a Shell Sort

We said earlier that the way in which the increments are chosen is the unique feature of the shell
sort. The function shown in ActiveCode 1 uses a different set of increments. In this case, we begin
with n2 sublists. On the next pass, n4 sublists are sorted. Eventually, a single list is sorted with the
basic insertion sort. Figure 9 shows the first sublists for our example using this increment.

The following invocation of the shellSort function shows the partially sorted lists after each
increment, with the final sort being an insertion sort with an increment of one.
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def shellSort(alist):
sublistcount = len(alist)//2
while sublistcount > 0:


for startposition in range(sublistcount):
gapInsertionSort(alist,startposition,sublistcount)


print("After increments of size",sublistcount,

"The list is",alist)


sublistcount = sublistcount // 2

def gapInsertionSort(alist,start,gap):

for i in range(start+gap,len(alist),gap):


currentvalue = alist[i]
position = i


while position>=gap and alist[position-gap]>currentvalue:

alist[position]=alist[position-gap]



position = position-gap


alist[position]=currentvalue

alist = [54,26,93,17,77,31,44,55,20]
shellSort(alist)
print(alist)


Shell Sort (lst_shellSort)
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Beginning Step Forward Step Backward End
At first glance you may think that a shell sort cannot be better than an insertion sort, since it does a
complete insertion sort as the last step. It turns out, however, that this final insertion sort does not
need to do very many comparisons (or shifts) since the list has been pre-sorted by earlier
incremental insertion sorts, as described above. In other words, each pass produces a list that is
“more sorted” than the previous one. This makes the final pass very efficient.

Although a general analysis of the shell sort is well beyond the scope of this text, we can say that
it tends to fall somewhere between O(n) and O(n2), based on the behavior described above. For
the increments shown in Listing 5, the performance is O(n2). By changing the increment, for
example using 2k−1 (1, 3, 7, 15, 31, and so on), a shell sort can perform at O(n32).

Self Check
Q-31: Given the following list of numbers: [5, 16, 20, 12, 3, 8, 9, 17, 19, 7] Which answer
illustrates the contents of the list after all swapping is complete for a gap size of 3?
a) [5, 3, 8, 7, 16, 19, 9, 17, 20, 12]
b) [3, 7, 5, 8, 9, 12, 19, 16, 20, 17]
c) [3, 5, 7, 8, 9, 12, 16, 17, 19, 20]
d) [5, 16, 20, 3, 8, 12, 9, 17, 20, 7]

5.3.5. 归并排序

We now turn our attention to using a divide and conquer strategy as a way to improve the
performance of sorting algorithms. The first algorithm we will study is the merge sort. Merge sort
is a recursive algorithm that continually splits a list in half. If the list is empty or has one item, it is
sorted by definition (the base case). If the list has more than one item, we split the list and
recursively invoke a merge sort on both halves. Once the two halves are sorted, the fundamental
operation, called a merge, is performed. Merging is the process of taking two smaller sorted lists
and combining them together into a single, sorted, new list. Figure 10 shows our familiar example
list as it is being split by mergeSort. Figure 11 shows the simple lists, now sorted, as they are
merged back together.
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Figure 10: Splitting the List in a Merge Sort

../_images/mergesortB.png

Figure 11: Lists as They Are Merged Together

The mergeSort function shown in ActiveCode 1 begins by asking the base case question. If the
length of the list is less than or equal to one, then we already have a sorted list and no more
processing is necessary. If, on the other hand, the length is greater than one, then we use the
Python slice operation to extract the left and right halves. It is important to note that the list may
not have an even number of items. That does not matter, as the lengths will differ by at most one.
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def mergeSort(alist):
print("Splitting ",alist)
if len(alist)>1:

mid = len(alist)//2
lefthalf = alist[:mid]
righthalf = alist[mid:]


mergeSort(lefthalf)
mergeSort(righthalf)


i=0
j=0
k=0
while i<len(lefthalf) and j<len(righthalf):

if lefthalf[i]<righthalf[j]:
alist[k]=lefthalf[i]
i=i+1

else:
alist[k]=righthalf[j]
j=j+1

k=k+1


while i<len(lefthalf):
alist[k]=lefthalf[i]
i=i+1
k=k+1


while j<len(righthalf):

alist[k]=righthalf[j]
j=j+1
k=k+1

print("Merging ",alist)

alist = [54,26,93,17,77,31,44,55,20]
mergeSort(alist)
print(alist)


Merge Sort (lst_merge)
Once the mergeSort function is invoked on the left half and the right half (lines 8– 9), it is
assumed they are sorted. The rest of the function (lines 11–31) is responsible for merging the two
smaller sorted lists into a larger sorted list. Notice that the merge operation places the items back
into the original list (alist) one at a time by repeatedly taking the smallest item from the sorted



lists.

The mergeSort function has been augmented with a print statement (line 2) to show the contents of
the list being sorted at the start of each invocation. There is also a print statement (line 32) to show
the merging process. The transcript shows the result of executing the function on our example list.
Note that the list with 44, 55, and 20 will not divide evenly. The first split gives [44] and the
second gives [55,20]. It is easy to see how the splitting process eventually yields a list that can be
immediately merged with other sorted lists.

Initialize Run Stop
Beginning Step Forward Step Backward End
In order to analyze the mergeSort function, we need to consider the two distinct processes that
make up its implementation. First, the list is split into halves. We already computed (in a binary
search) that we can divide a list in half logn times where n is the length of the list. The second
process is the merge. Each item in the list will eventually be processed and placed on the sorted
list. So the merge operation which results in a list of size n requires n operations. The result of this
analysis is that logn splits, each of which costs n for a total of nlogn operations. A merge sort is an
O(nlogn) algorithm.

Recall that the slicing operator is O(k) where k is the size of the slice. In order to guarantee that
mergeSort will be O(nlogn) we will need to remove the slice operator. Again, this is possible if we
simply pass the starting and ending indices along with the list when we make the recursive call.
We leave this as an exercise.

It is important to notice that the mergeSort function requires extra space to hold the two halves as
they are extracted with the slicing operations. This additional space can be a critical factor if the
list is large and can make this sort problematic when working on large data sets.

Self Check
Q-23: Given the following list of numbers: <br> [21, 1, 26, 45, 29, 28, 2, 9, 16, 49, 39, 27, 43, 34,
46, 40] <br> which answer illustrates the list to be sorted after 3 recursive calls to mergesort?
a) [16, 49, 39, 27, 43, 34, 46, 40]
b) [21,1]
c) [21, 1, 26, 45]
d) [21]

Check Me Compare Me

Q-24: Given the following list of numbers: <br> [21, 1, 26, 45, 29, 28, 2, 9, 16, 49, 39, 27, 43, 34,
46, 40] <br> which answer illustrates the first two lists to be merged?
a) [21, 1] and [26, 45]
b) [[1, 2, 9, 21, 26, 28, 29, 45] and [16, 27, 34, 39, 40, 43, 46, 49]
c) [21] and [1]
d) [9] and [16]



5.3.6. 快速排序

The quick sort uses divide and conquer to gain the same advantages as the merge sort, while not
using additional storage. As a trade-off, however, it is possible that the list may not be divided in
half. When this happens, we will see that performance is diminished.

A quick sort first selects a value, which is called the pivot value. Although there are many
different ways to choose the pivot value, we will simply use the first item in the list. The role of
the pivot value is to assist with splitting the list. The actual position where the pivot value belongs
in the final sorted list, commonly called the split point, will be used to divide the list for
subsequent calls to the quick sort.

Figure 12 shows that 54 will serve as our first pivot value. Since we have looked at this example a
few times already, we know that 54 will eventually end up in the position currently holding 31.
The partition process will happen next. It will find the split point and at the same time move other
items to the appropriate side of the list, either less than or greater than the pivot value.

../_images/firstsplit.png

Figure 12: The First Pivot Value for a Quick Sort

Partitioning begins by locating two position markers—let’s call them leftmark and rightmark—at
the beginning and end of the remaining items in the list (positions 1 and 8 in Figure 13). The goal
of the partition process is to move items that are on the wrong side with respect to the pivot value
while also converging on the split point. Figure 13 shows this process as we locate the position of
54.

../_images/partitionA.png



Figure 13: Finding the Split Point for 54

We begin by incrementing leftmark until we locate a value that is greater than the pivot value. We
then decrement rightmark until we find a value that is less than the pivot value. At this point we
have discovered two items that are out of place with respect to the eventual split point. For our
example, this occurs at 93 and 20. Now we can exchange these two items and then repeat the
process again.

At the point where rightmark becomes less than leftmark, we stop. The position of rightmark is
now the split point. The pivot value can be exchanged with the contents of the split point and the
pivot value is now in place (Figure 14). In addition, all the items to the left of the split point are
less than the pivot value, and all the items to the right of the split point are greater than the pivot
value. The list can now be divided at the split point and the quick sort can be invoked recursively
on the two halves.

../_images/partitionB.png



Figure 14: Completing the Partition Process to Find the Split Point for 54

The quickSort function shown in ActiveCode 1 invokes a recursive function, quickSortHelper.
quickSortHelper begins with the same base case as the merge sort. If the length of the list is less
than or equal to one, it is already sorted. If it is greater, then it can be partitioned and recursively
sorted. The partition function implements the process described earlier.
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def quickSort(alist):
quickSortHelper(alist,0,len(alist)-1)


def quickSortHelper(alist,first,last):

if first<last:


splitpoint = partition(alist,first,last)


quickSortHelper(alist,first,splitpoint-1)
quickSortHelper(alist,splitpoint+1,last)



def partition(alist,first,last):

pivotvalue = alist[first]


leftmark = first+1
rightmark = last


done = False
while not done:


while leftmark <= rightmark and \

alist[leftmark] <= pivotvalue:
leftmark = leftmark + 1


while alist[rightmark] >= pivotvalue and \



rightmark >= leftmark:
rightmark = rightmark -1


if rightmark < leftmark:

done = True
else:

temp = alist[leftmark]
alist[leftmark] = alist[rightmark]
alist[rightmark] = temp

temp = alist[first]
alist[first] = alist[rightmark]
alist[rightmark] = temp

return rightmark

alist = [54,26,93,17,77,31,44,55,20]
quickSort(alist)
print(alist)

Quick Sort (lst_quick)

Initialize Run Stop
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To analyze the quickSort function, note that for a list of length n, if the partition always occurs in
the middle of the list, there will again be logn divisions. In order to find the split point, each of the
n items needs to be checked against the pivot value. The result is nlogn. In addition, there is no
need for additional memory as in the merge sort process.

Unfortunately, in the worst case, the split points may not be in the middle and can be very skewed
to the left or the right, leaving a very uneven division. In this case, sorting a list of n items divides
into sorting a list of 0 items and a list of n−1 items. Then sorting a list of n−1 divides into a list of
size 0 and a list of size n−2, and so on. The result is an O(n2) sort with all of the overhead that
recursion requires.

We mentioned earlier that there are different ways to choose the pivot value. In particular, we can
attempt to alleviate some of the potential for an uneven division by using a technique called
median of three. To choose the pivot value, we will consider the first, the middle, and the last
element in the list. In our example, those are 54, 77, and 20. Now pick the median value, in our
case 54, and use it for the pivot value (of course, that was the pivot value we used originally). The
idea is that in the case where the the first item in the list does not belong toward the middle of the
list, the median of three will choose a better “middle” value. This will be particularly useful
when the original list is somewhat sorted to begin with. We leave the implementation of this pivot



value selection as an exercise.

Self Check
Q-25: Given the following list of numbers [14, 17, 13, 15, 19, 10, 3, 16, 9, 12] which answer
shows the contents of the list after the second partitioning according to the quicksort algorithm?
a) [9, 3, 10, 13, 12]
b) [9, 3, 10, 13, 12, 14]
c) [9, 3, 10, 13, 12, 14, 17, 16, 15, 19]
d) [9, 3, 10, 13, 12, 14, 19, 16, 15, 17]

Check Me Compare Me

Q-26: Given the following list of numbers [1, 20, 11, 5, 2, 9, 16, 14, 13, 19] what would be the
first pivot value using the median of 3 method?
a) 1
b) 9
c) 16
d) 19

Check Me Compare Me

Q-27: Which of the following sort algorithms are guaranteed to be O(n log n) even in the worst
case?
a) Shell Sort
b) Quick Sort
c) Merge Sort
d) Insertion Sort

5.4.小结

 A sequential search is O(n) for ordered and unordered lists.
 A binary search of an ordered list is O(logn) in the worst case.
 Hash tables can provide constant time searching.
 A bubble sort, a selection sort, and an insertion sort are O(n2) algorithms.
 A shell sort improves on the insertion sort by sorting incremental sublists. It falls between

O(n) and O(n2).
 Amerge sort is O(nlogn), but requires additional space for the merging process.
 A quick sort is O(nlogn), but may degrade to O(n2) if the split points are not near the middle

of the list. It does not require additional space.

5.5.关键词

binary Search bubble Sort chaining
clustering collision collision resolution



folding method gap hash function
hash table hashing insertion sort
linear probing load factor map
median of three merge merge sort
mid-square method open addressing partition
perfect hash function pivot value quadratic probing
quick sort rehashing selection sort
sequential search shell sort short bubble
slot split point

5.6.问题讨论

1. Using the hash table performance formulas given in the chapter, compute the average number of
comparisons necessary when the table is

 10% full
 25% full
 50% full
 75% full
 90% full
 99% full

At what point do you think the hash table is too small? Explain.

2. Modify the hash function for strings to use positional weightings.

3. We used a hash function for strings that weighted the characters by position. Devise an
alternative weighting scheme. What are the biases that exist with these functions?

4. Research perfect hash functions. Using a list of names (classmates, family members, etc.),
generate the hash values using the perfect hash algorithm.

5. Generate a random list of integers. Show how this list is sorted by the following algorithms:

 bubble sort
 selection sort
 insertion sort
 shell sort (you decide on the increments)
 merge sort
 quick sort (you decide on the pivot value)

6. Consider the following list of integers: [1,2,3,4,5,6,7,8,9,10]. Show how this list is sorted by the
following algorithms:

 bubble sort



 selection sort
 insertion sort
 shell sort (you decide on the increments)
 merge sort
 quick sort (you decide on the pivot value)

7. Consider the following list of integers: [10,9,8,7,6,5,4,3,2,1]. Show how this list is sorted by the
following algorithms:

 bubble sort
 selection sort
 insertion sort
 shell sort (you decide on the increments)
 merge sort
 quick sort (you decide on the pivot value)

8. Consider the list of characters: ['P','Y','T','H','O','N']. Show how this list is sorted using the
following algorithms:

 bubble sort
 selection sort
 insertion sort
 shell sort (you decide on the increments)
 merge sort
 quick sort (you decide on the pivot value)
9. Devise alternative strategies for choosing the pivot value in quick sort. For example, pick the
middle item. Re-implement the algorithm and then execute it on random data sets. Under what
criteria does your new strategy perform better or worse than the strategy from this chapter?

5.7.编程练习

1. Set up a random experiment to test the difference between a sequential search and a binary
search on a list of integers.

2. Use the binary search functions given in the text (recursive and iterative). Generate a random,
ordered list of integers and do a benchmark analysis for each one. What are your results? Can
you explain them?

3. Implement the binary search using recursion without the slice operator. Recall that you will
need to pass the list along with the starting and ending index values for the sublist. Generate
a random, ordered list of integers and do a benchmark analysis.

4. Implement the len method (__len__) for the hash table Map ADT implementation.
5. Implement the in method (__contains__) for the hash table Map ADT implementation.
6. How can you delete items from a hash table that uses chaining for collision resolution? How

about if open addressing is used? What are the special circumstances that must be handled?
Implement the del method for the HashTable class.

7. In the hash table map implementation, the hash table size was chosen to be 101. If the table
gets full, this needs to be increased. Re-implement the put method so that the table will



automatically resize itself when the loading factor reaches a predetermined value (you can
decide the value based on your assessment of load versus performance).

8. Implement quadratic probing as a rehash technique.
9. Using a random number generator, create a list of 500 integers. Perform a benchmark

analysis using some of the sorting algorithms from this chapter. What is the difference in
execution speed?

10. Implement the bubble sort using simultaneous assignment.
11. A bubble sort can be modified to “bubble” in both directions. The first pass moves “up”

the list, and the second pass moves“down.”This alternating pattern continues until no more
passes are necessary. Implement this variation and describe under what circumstances it
might be appropriate.

12. Implement the selection sort using simultaneous assignment.
13. Perform a benchmark analysis for a shell sort, using different increment sets on the same list.
14. Implement the mergeSort function without using the slice operator.
15. One way to improve the quick sort is to use an insertion sort on lists that have a small length

(call it the “partition limit”). Why does this make sense? Re-implement the quick sort and
use it to sort a random list of integers. Perform an analysis using different list sizes for the
partition limit.

16. Implement the median-of-three method for selecting a pivot value as a modification to
quickSort. Run an experiment to compare the two techniques.



6.树和树算法

6.1.目标

 了解树的数据结构及使用；

 树用来实现映射 map数据结构；
 采用 List来实现树；
 采用类和引用来实现树；

 树实现为递归数据结构；

 采用堆 heap实现优先队列。



6.2.树的例子

6.3.术语表与定义

6.3.1. 术语表

6.3.2. 定义

6.4.实现

6.4.1. “列表的列表”表示树

6.4.2. 节点和引用

6.5.二叉堆 Binary Heap实现的优先队列

6.5.1. 二叉堆操作

6.5.2. 二叉堆实现

6.6.二叉树应用

6.7.树遍历

6.8.二叉搜索树

6.8.1. 搜索树操作

6.8.2. 搜索树实现

6.8.3. 搜索树分析



6.9.小结

6.10. 关键词

6.11. 问题讨论

6.12. 编程练习

7.图和图算法

7.1.目标

7.2.词汇表及定义

7.3.图抽象数据类型

7.4.邻接矩阵

7.5.邻接表

7.6.实现

7.7.Word Ladder词梯问题

7.7.1.建立Word Ladder图

7.7.2.实现广度优先搜索

7.7.3.广度优先搜索分析



7.8.骑士周游问题

7.8.1.建立骑士周游图

7.8.2.实现骑士周游

7.8.3.骑士周游分析

7.8.4.通用深度优先搜索

7.8.5.深度优先分析

7.9.拓扑排序

7.10. 强连通分支

7.11. 最短路径问题

7.11.1. Dijkstra算法

7.11.2. Dijkstra算法分析

7.12. Prim最小生成树算法

7.13. 小结

7.14. 关键词

7.15. 问题讨论

7.16. 编程练习
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