
4. The Region Connection Calculus

The Region Connection Calculus (RCC) by Randell, Cui, and Cohn [138]
and in particular RCC-8 is probably the best known approach to qualitative
spatial reasoning. This is documented by the citations of RCC which appear
in almost any paper on qualitative spatial reasoning and by the numerous
research papers written on RCC itself. In this chapter we give a detailed
introduction to the Region Connection Calculus and especially to RCC-8
which is the central topic of this book. A more detailed overview of the
work on the Region Connection Calculus can be found in [28].

In the following section we summarize the original definitions and axioms
of the Region Connection Calculus in first-order logic as given by Randell
et al. [138]. Hence, the title of this section is the same as of Randell et al.’s
paper. In Section 4.2 we introduce RCC-8 and give an encoding of RCC-8 in
modal logic in Section 4.3 which is a slight modification of Bennett’s original
encoding [12]. In Section 4.4 we introduce Egenhofer’s system of topological
relations and compare it to the Region Connection Calculus.

4.1 A Spatial Logic Based on Regions and Connection

The Region Connection Calculus (RCC) developed by Randell, Cui, and
Cohn [138] is a topological approach to spatial representation and reaso-
ning where spatial regions are non-empty regular subsets of some topological
space U . Spatial regions do not have to be internally connected, i.e., they
might consist of (multiple) disconnected pieces. Since all spatial regions are
regular subsets of the same topological space U , all spatial regions have the
same dimension, namely, the dimension of U (provided that U has a particular
dimension).

RCC is based on a single primitive relation between spatial regions, the
“connected” relation C. The intended topological interpretation of C(a, b),
where a and b are spatial regions, is that a and b are connected if and only if
their topological closures share a common point. Within this interpretation
it is not distinguished between open, semi-open, and closed regions which
is different from previous approaches by Randell and Cohn [135, 134] and
Clarke [23, 22]. The only requirements of the relation C is that it is reflexive
and symmetric which is enforced by the following two axioms:
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∀xC(x, x) (4.1)
∀x, y[C(x, y)→ C(y, x)] (4.2)

Using C(x, y), a large number of different relations can be defined. Among
those are the following relations, their meaning under the intended inter-
pretation of the C relation is given in brackets [138]: P(x, y) (x is a part of
y), PP(x, y) (x is a proper part of y), EQ(x, y) (x is equal to y), O(x, y) (x
overlaps y), PO(x, y) (x partially overlaps y), DR(x, y) (x is discrete from
y), EC(x, y) (x is externally connected with y), TPP(x, y) (x is a tangential
proper part of y), NTPP(x, y) (x is a non-tangential proper part of y). The
relations P,PP,TPP, and NTPP are non-symmetrical, their converses are de-
noted by P−1,PP−1,TPP−1, and NTPP−1, respectively. The formal definition
of these relations is the following [138]:

DC(x, y) ≡def ¬C(x, y) (4.3)
P(x, y) ≡def ∀z[C(z, x)→ C(z, y)] (4.4)

PP(x, y) ≡def P(x, y) ∧ ¬P(y, x) (4.5)
EQ(x, y) ≡def P(x, y) ∧ P(y, x) (4.6)
O(x, y) ≡def ∃z[P(z, x) ∧ P(z, y)] (4.7)

PO(x, y) ≡def O(x, y) ∧ ¬P(x, y) ∧ ¬P(y, x) (4.8)
DR(x, y) ≡def ¬O(x, y) (4.9)
EC(x, y) ≡def C(x, y) ∧ ¬O(x, y) (4.10)

TPP(x, y) ≡def PP(x, y) ∧ ∃z[EC(z, x) ∧ EC(z, y)] (4.11)
NTPP(x, y) ≡def PP(x, y) ∧ ¬∃z[EC(z, x) ∧ EC(z, y)] (4.12)
P−1(x, y) ≡def P(y, x) (4.13)

PP−1(x, y) ≡def PP(y, x) (4.14)
TPP−1(x, y) ≡def TPP(y, x) (4.15)

NTPP−1(x, y) ≡def NTPP(y, x) (4.16)

Using these relations, it is also possible to define Boolean functions such
as sum(x,y) (the union of x and y), compl(x) (the complement of x), prod(x,y)
(the intersection of x and y), and diff(x,y) (the difference of x and y). The
functions compl, prod, and diff are partial since their result might be the
empty region which is undefined. These functions can be used to define other
relations such as internal connectedness of regions:

CON(x) ≡def ∀y∀z[EQ(sum(y, z), x)→ C(y, z)] (4.17)

Additional axioms can be used to specify properties of spatial regions. The
following axiom states that every region has a non-tangential proper part,
i.e., there are no atomic regions:

∀x∃yNTPP(y, x) (4.18)
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Gotts [72] showed that every regular connected T3 space is a model for the
RCC axioms, i.e., every regular subset of such a topological space fulfills the
axioms.

The relations, functions, and axioms presented here are just a small frac-
tion of what can be expressed within the RCC theory. For instance, it is
possible to add other primitive relations and functions such as the convex-
hull function [138, 35]. Gotts [71, 73] studied a large number of different
relations which can be defined upon the C relation. Of particular interest
are those relations that form a set of jointly exhaustive and pairwise disjoint
base relations. If these relations are closed under composition they generate
a relation algebra, thus, reasoning about these relations can be done using
the methods described in Section 2.4. What is needed is mainly a composi-
tion table which can be computed using the first-order definitions of the RCC
relations. Depending on the level of granularity, many different sets of base
relations can be defined within the RCC theory.

Randell et al. [138] suggested a set of eight base relations, later denoted
as RCC-8. This set of relations is interesting for a number of reasons. It is the
smallest set of base relations which allows topological distinctions rather than
just mereological (being expressible by using the part-whole relationship).
Most other relations definable in the RCC theory are refinements of these
relations. As such, RCC-8 is ideally suited as a starting point for qualitative
spatial reasoning which can be extended in many different ways. Furthermore,
the semantics of these relations can be described by using propositional logics
rather than first-order logics [10, 12], a property which allows us to prove
decidability.

4.2 The Region Connection Calculus RCC-8

The Region Connection Calculus RCC-8 is the constraint language formed
by the eight jointly exhaustive and pairwise disjoint base relations DC, EC,
PO, EQ, TPP, NTPP, TPP−1, and NTPP−1 definable in the RCC-theory and
by all possible unions of the base relations. It can be easily verified by the
first-order definitions given in the previous section that exactly one of the
eight base relations holds between any two spatial regions. Unions of possi-
ble base relations are used to represent indefinite knowledge. Since the base
relations are pairwise disjoint, this results in 28 = 256 different RCC-8 rela-
tions altogether (including the empty relation and the universal relation). In
some papers the set of base relations is denoted as RCC-8 while the set of all
possible unions of base relations is denoted as 2RCC8. We will, however, use
RCC-8 to refer to the set of all possible disjunctions of the base relations and
B to refer to the set of base relations. Analogous to the general RCC-theory,
spatial regions in RCC-8 are non-empty regular subsets of some topological
space that do not have to be internally connected, and do not have a particu-
lar dimension. Without loss of generality (due to the intended interpretation
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Table 4.1. Topological interpretation of the eight base relations of RCC-8. All
spatial regions are regular closed, i.e., x = c(i(x)) and y = c(i(y)). i(·) specifies the
topological interior of a spatial region, c(·) the topological closure

RCC-8 Relation Topological Constraints
DC(x, y) x ∩ y = ∅
EC(x, y) i(x) ∩ i(y) = ∅, x ∩ y �= ∅
PO(x, y) i(x) ∩ i(y) �= ∅, x �⊆ y, y �⊆ x
TPP(x, y) x ⊂ y, x �⊆ i(y)
TPP−1(x, y) y ⊂ x, y �⊆ i(x)
NTPP(x, y) x ⊂ i(y)
NTPP−1(x, y) y ⊂ i(x)
EQ(x, y) x = y
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Fig. 4.1. Two-dimensional examples for the eight base relations of RCC-8

of the C relation) we require spatial regions to be regular closed subsets of a
topological space.

The RCC-8 relations can be given a straightforward topological interpre-
tation in terms of point-set topology (see Table 4.1), which is almost the
same as for the topological relations given by Egenhofer [44] (though Egen-
hofer places stronger constraints on the domain of regions, e.g., regions must
be one-piece and are not allowed to have holes, see Section 4.4). Examples
for the RCC-8 base relations are given in Figure 4.1.

Converse, intersection and union of relations can easily be obtained by
performing the corresponding set theoretic operations. Composition of base
relations can be computed using the formal definitions of the relations given
in the previous section [137, 10]. The compositions of the eight base relations
are shown in Table 4.2. Every entry in the composition table specifies the re-
lation obtained by composing the base relation of the corresponding row with
the base relation of the corresponding column. Composition of two disjunctive
RCC-8 relations can be obtained by computing the union of the composition
of the base relations. Note that the composition table corresponds to the ex-
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Table 4.2. Composition table for the eight base relations of RCC-8, where ∗ specifies
the universal relation

◦ DC EC PO TPP NTPP TPP-1 NTPP-1 EQ

DC,EC DC,EC DC,EC DC,EC
DC * PO,TPP PO,TPP PO,TPP PO,TPP DC DC DC

NTPP NTPP NTPP NTPP
DC,EC DC,EC DC,EC EC,PO PO

EC PO,TPP-1 PO,TPP PO,TPP TPP TPP DC,EC DC EC
NTPP-1 TPP-1,EQ NTPP NTPP NTPP
DC,EC DC,EC PO PO DC,EC DC,EC

PO PO,TPP-1 PO,TPP-1 * TPP TPP PO,TPP-1 PO,TPP-1 PO
NTPP-1 NTPP-1 NTPP NTPP NTPP-1 NTPP-1

DC,EC
TPP

DC,EC DC,EC

TPP DC DC,EC PO,TPP
NTPP

NTPP PO,TPP PO,TPP-1 TPP

NTPP TPP-1,EQ NTPP-1

DC,EC DC,EC
NTPP DC DC PO,TPP NTPP NTPP PO,TPP * NTPP

NTPP NTPP
DC,EC EC,PO PO PO,EQ PO

TPP-1

TPP-1 PO,TPP-1 TPP-1 TPP-1 TPP TPP
NTPP-1 NTPP-1 TPP-1

NTPP-1 NTPP-1 NTPP-1 TPP-1 NTPP
DC,EC PO PO PO PO,TPP-1

NTPP-1 PO,TPP-1 TPP-1 TPP-1 TPP-1 TPP,NTPP NTPP-1 NTPP-1 NTPP-1

NTPP-1 NTPP-1 NTPP-1 NTPP-1 NTPP-1,EQ

EQ DC EC PO TPP NTPP TPP-1 NTPP-1 EQ

tensional definition of composition given in Section 2.4.1 only if the universal
region is not permitted [15].

A spatial configuration can be described by specifying a set Θ of con-
straints over RCC-8, written as xRy or R(x, y), where R is an RCC-8 relation
and x, y are spatial variables over the infinite domain of all possible spatial
regions. An important reasoning problem is deciding consistency of Θ, i.e.,
deciding whether there is an assignment of non-empty, regular closed regi-
ons of some topological space to variables of Θ in a way that all constraints
are satisfied. We call this problem RSAT, or RSAT(S) if only relations of a
specific set S are used in Θ. RSAT is a sub-problem of CSPSAT which is de-
fined in Section 2.4.2 and which can be tackled using the same methods, for
instance, enforcing path-consistency as a partial method for deciding consi-
stency. Other useful reasoning problems include the minimal labels problem
RMIN and the entailment problem RENT, the sub-problems of CSPMIN and
CSPENT, respectively.

Another set of jointly exhaustive and pairwise disjoint base relations defin-
able in the RCC-theory on a coarser level of granularity than RCC-8 is RCC-5
[10]. For RCC-5 the boundary of a region is not taken into account, i.e., one
does not distinguish between DC and EC and between TPP and NTPP. These
relations are combined to the RCC-5 base relations DR and PP, respectively
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(see Section 4.1). Thus, RCC-5 contains the five base relations DR, PO, PP,
PP−1, and EQ and all 25 possible disjunctions thereof. The RCC-5 relations
are closed under composition and form a relation algebra. The composition
table for RCC-5 is given in Table 4.3. In this work we will focus on RCC-8,

Table 4.3. Composition table for the five base relations of RCC-5

◦ DR PO PP PP−1 EQ
DR ∗ DR,PO,PP DR,PO,PP DR DR
PO DR,PO,PP−1 ∗ PO,PP DR,PO,PP−1 PO
PP DR DR,PO,PP PP ∗ PP

PP−1 DR,PO,PP−1 PO,PP−1 PO,PP,PP−1,EQ PP−1 PP−1

EQ DR PO PP PP−1 EQ

but most of our results can easily be applied to RCC-5.

4.3 Encoding of RCC-8 in Modal Logic

Another way of solving problems concerning RCC-8 is using the encoding of
the relations in first order logic. Such an encoding does not lead to efficient
decision procedures, however. In order to overcome this problem, Bennett [10,
12] used different encodings of RCC-8 in propositional intuitionistic and modal
logic. In this work we will use a slight modification of Bennett’s encoding of
RCC-8 in propositional modal logic [12]. An introduction to modal logics is
given in Section 2.2.2.

Remark 4.1. Throughout this work we will use the following convention for
referring to spatial regions, spatial variables, and propositional atoms corre-
sponding to spatial regions or spatial variables:

– Spatial variables are written as x, y, z.
– Spatial regions are written as X, Y, Z.
– Propositional atoms corresponding to spatial regions or spatial variables
are written as X,Y,Z.

If the same letter is used in different fonts in the same context, it represents
the same region. For instance, X is a possible instance of x, Y a possible
instance of y, and X is the propositional atom corresponding to x or to X.

Bennett obtained the modal encoding by analyzing the relationship of
regions to the universe U . For the modal encoding we are using, Bennett re-
stricted his analysis to closed regions that are connected if they share a point
and overlap if they share an interior point.1 If, e.g, X and Y are disconnected,
1 There is also a modal encoding based on open regions which is not as simple as
the encoding based on closed regions [12].
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Table 4.4. Bennett’s encoding of the eight base relations in modal logic [12]

Relation Model Constraints Entailment Constraints
DC(x, y) ¬(X ∧ Y) ¬X,¬Y
EC(x, y) ¬(IX ∧ IY) ¬(X ∧ Y),¬X,¬Y
PO(x, y) — ¬(IX ∧ IY),X→ Y,Y → X,¬X,¬Y
TPP(x, y) X→ Y X→ IY,Y → X,¬X,¬Y
TPP−1(x, y) Y → X Y → IX,X→ Y,¬X,¬Y
NTPP(x, y) X→ IY Y → X,¬X,¬Y
NTPP−1(x, y) Y → IX X→ Y,¬X,¬Y
EQ(x, y) X→ Y,Y → X ¬X,¬Y

the complement of the intersection of X and Y is equal to the universe. Fur-
ther, both regions must not be empty, i.e., the complements of both X and
Y are not equal to the universe. In the same way all topological constraints
corresponding to the RCC-8 relations (see Table 4.1) can be written as con-
straints of the form (m = U) and (e 
= U), where m and e are set-theoretic
expressions, denoted as model constraints and entailment constraints, respec-
tively [10]. In the above example, X ∩ Y is the model constraint and X and Y
are the entailment constraints. Any model constraint must hold, whereas no
entailment constraint must hold [10].

For some of the constraints it is necessary to refer to the interior of regions.
For this purpose the topological interior operator i is used. This operator must
satisfy the following constraints for arbitrary sets Φ, Ψ ⊆ U [12]:

i(Φ) ⊆ Φ, (4.19)
i(i(Φ)) = i(Φ), (4.20)
i(U) = U , (4.21)

i(Φ ∩ Ψ) = i(Φ) ∩ i(Ψ). (4.22)

The model and entailment constraints can be encoded in modal logic, where
regions correspond to propositional atoms, the interior operator i corresponds
to a modal operator I (see Table 4.4), and the universe U corresponds to the
set of all worlds W [12]. The constraints for i must also hold for the modal
operator I, which results in the following axiom schemata [12] for arbitrary
modal formulas φ, ψ:

Iφ → φ, (4.23)
IIφ ↔ Iφ, (4.24)
I� ↔ � (for any tautology �), (4.25)

I(φ ∧ ψ) ↔ Iφ ∧ Iψ. (4.26)

Axiom schemata 4.23 and 4.24 correspond to the modal axioms T and 4 and
axiom schemata 4.26 and 4.26 already hold for any modal logic K, so I is a
modal S4-operator (see Section 2.2.2).
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The four axiom schemata specified by Bennett are not sufficient to exclude
non-closed regions as it was intended. In order to account for that, we add
one formula for each atom X, which corresponds to the topological property
of regular closed regions:

A regular closed region is the closure of an open region. ¬X specifies the
complement of X, and, thus, ¬I¬X the closure of X.

X↔ ¬I¬IX (4.27)

Note that the S4 encoding can be used to reason about any kind of open
or closed regions. Both the non-emptiness constraint, i.e., the entailment
constraint ¬X, and the regularity constraint (4.27) are optional and can be
regarded as properties of regions definable in the modal representation. They
are needed to make the representation conform to the intended interpretation
of the original RCC theory.

In order to combine the different model and entailment constraints, Ben-
nett [12] uses another modal operator ✷. ✷φ is interpreted as φ = U and
¬✷φ as φ 
= U . Since m is a model constraint if m = U holds, any model
constraint m can be written as ✷m and any entailment constraint e as ¬✷e.
If ✷X is true in a world w of a model M, written as M, w |�✷X, then X
must be true in any world ofM. So ✷ is an S5-operator with the constraint
that all worlds are mutually accessible. Therefore Bennett calls it a strong
S5-operator [12]. Now all model and all entailment constraints containing the
strong S5-operator can be conjunctively combined to a single modal formula.
So the modal encoding of RCC-8 is made with an S4-operator that corre-
sponds to the topological interior operator and a strong S5-operator that is
used to obtain a single modal formula.

4.4 Egenhofer’s Approach to Topological Spatial
Relations

Independently of the Region Connection Calculus a different approach to
topological spatial relationship was developed by Egenhofer in the area of
geographical information systems (GIS). Egenhofer [44] classified the relati-
onships between two spatial entities according to the nine possible intersec-
tions of their interior, exterior, and boundary, hence, called the 9-intersection-
model. Depending on the nature of the considered spatial entities, many diffe-
rent relationships can be expressed by this model. For instance, it is possible
to use spatial entities of different dimensions or distinguish different degrees
of intersection. In his first approach, however, Egenhofer restricted the do-
main of spatial entities to be two-dimensional spatial regions whose boundary
is a closed Jordan curve, i.e., simply connected planar regions that are not
allowed to have holes. When looking at only whether the nine intersections
for this kind of spatial regions are empty or non-empty and when elimina-
ting all impossible relations, this results in eight different binary topological
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Fig. 4.2. Comparison of different systems of topological relations:
the Region Connection Calculi RCC-8 and RCC-5 and the high and medium reso-
lution of Egenhofer’s 9-intersection model

relationships. The Region Connection Calculus and the 9-intersection model,
which are two completely different approaches to topological relationships,
lead to exactly (apart from the different constraints on regions) the same set
of topological relations. Thus, there seems to be a natural agreement about
what is a reasonable level of granularity of topological relations.

The computational properties of Egenhofer’s topological relations were
studied by Grigni et al. [77] who considered two different notions of satisfia-
bility, the purely syntactical notion of relational consistency and the semantic
notion of realizability, which are both different from what we call consistency.
Relational consistency means that there is a path-consistent refinement of all
relations to base relations, realizability means that there is a model consisting
of simply connected planar regions. Orthogonal to this distinction, Grigni et
al. [77] considered different sets of JEPD relations. One of them is the origi-
nal set of eight base relations suggested by Egenhofer which they called the
high resolution case. Another set consists of five base relations, the medium
resolution case, which are obtained by combining some of the high resolution
relations. Similar to RCC-5, the medium resolution relations do not distin-
guish relationships according to the boundary of regions. The difference of
this set to RCC-5 is that the relations EC and PO are combined to form a new
base relation, whereas for RCC-5 the relations DC and EC are combined (see
Figure 4.2). With this distinction, the medium resolution relations can also
be used to represent the possible relationships between non-topological sets:
overlap(a, b) means that the sets a and b have a non-empty intersection while
none of them is a subset of the other, if disjoint(a, b) holds, the sets a and b
have no elements in common. This set-theoretic interpretation is not possible
for RCC-5, since it distinguishes between interior and boundary elements of
the sets. If two sets share some boundary elements, they are still in the DR
relationship.
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By reducing the NP-hard string-graph problem [105, 106], Grigni et al. [77]
showed that deciding realizability is NP-hard for the high and medium reso-
lution cases even if only constraints over the base relations are used. It is an
open problem whether the realizability problem is in NP and even whether it
is decidable. The reduction of the string graph problem, however, is possible
only because all regions must be simply connected planar regions. Hence, this
result does not carry over to the consistency problem of RCC-8 where spatial
regions can be of any dimension and internal connectedness is not requi-
red. The relational consistency problem, which is obviously tractable if only
base relations are used, was shown to be NP-hard for the high and medium
resolution cases if all disjunctions over the base relations are permitted.
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