
On the storage, Organization
and Index of MongoDB

By Enbo Zhou
Institute of Remote Sensing and Geographic Information System,

 Peking University, Beijing, China

Content

The Introduction to MongoDB

The Storage and Organization of
MongoDB

The Index of MongoDB

The Introduction to MongoDB

The Introduction to MongoDB

• MongoDB is an open-source document database that provides high
performance, high availability, and automatic scaling.

• A record in MongoDB is a document, which is a data structure
composed of field and value pairs. MongoDB documents are similar to
JSON objects. The values of fields may include other documents,
arrays, and arrays of documents.

Document Example

Key Features
• High Performance

 MongoDB provides high performance data persistence. In particular,
• Support for embedded data models reduces I/O activity on database system.
• Indexes support faster queries and can include keys from embedded documents and arrays.

• High Availability
 To provide high availability, MongoDB’s replication facility, called replica sets, provide:

• automatic failover.
• data redundancy.

 A replica set is a group of MongoDB servers that maintain the same data set, providing redundancy and increasing data availability.

• Automatic Scaling
 MongoDB provides horizontal scalability as part of its core functionality.

• Automatic sharding distributes data across a cluster of machines.
• Replica sets can provide eventually-consistent reads for low-latency high throughput deployments.

Some Concepts

• Document
• Just like the record in relation database.

• Collection
• Just like the table in relation database.

• Database
• Is same as the database in relation database.

The Storage and Organization
of MongoDB

The Storage of MongoDB

• MMAPv1 Storage Engine

• WiredTiger Storage Engine

MMAPv1 Storage Engine

• MMAPv1 is MongoDB’s original storage engine based on memory
mapped files. It excels at workloads with high volume inserts, reads,
and in-place updates. MMAPv1 is the default storage engine in
MongoDB 3.0 and all previous versions.

Record Storage Characteristics
• All records are contiguously located on disk, and when a document

becomes larger than the allocated record, MongoDB must allocate a
new record. New allocations require MongoDB to move a document
and update all indexes that refer to the document, which takes more
time than in-place updates and leads to storage fragmentation.

• Changed in version 3.0.0.
• By default, MongoDB uses Power of 2 Sized Allocations so that every

document in MongoDB is stored in a record which contains the
document itself and extra space, or padding. Padding allows the
document to grow as the result of updates while minimizing the
likelihood of reallocations.

Record Allocation Strategies
• MongoDB supports multiple record allocation strategies that

determine how mongod adds padding to a document when creating a
record. Because documents in MongoDB may grow after insertion and
all records are contiguous on disk, the padding can reduce the need to
relocate documents on disk following updates. Relocations are less
efficient than in-place updates and can lead to storage fragmentation.
As a result, all padding strategies trade additional space for increased
efficiency and decreased fragmentation.

• Different allocation strategies support different kinds of workloads:
the power of 2 allocations are more efficient for insert/update/delete
workloads; while exact fit allocations is ideal for collections without
update and delete workloads.

The power of 2 allocations
• With the power of 2 sizes allocation strategy, each record has a size in

bytes that is a power of 2 (e.g. 32, 64, 128, 256, 512 ...2MB). For
documents larger than 2MB, the allocation is rounded up to the nearest
multiple of 2MB.

• The power of 2 sizes allocation strategy has the following key
properties:
Can efficiently reuse freed records to reduce fragmentation. Quantizing

record allocation sizes into a fixed set of sizes increases the probability that an
insert will fit into the free space created by an earlier document deletion or
relocation.

Can reduce moves. The added padding space gives a document room to grow
without requiring a move. In addition to saving the cost of moving, this results
in less updates to indexes. Although the power of 2 sizes strategy can
minimize moves, it does not eliminate them entirely.

No Padding Allocation Strategy

• For collections whose workloads do not change the document sizes,
such as workloads that consist of insert-only operations or update
operations that do not increase document size (such as incrementing a
counter), you can disable the power of 2 allocation using the collMod
command with the noPadding flag or the db.createCollection() method
with the noPadding option.

WiredTiger Storage Engine

• WiredTiger uses document-level concurrency control for write
operations. As a result, multiple clients can modify different
documents of a collection at the same time.

• For most read and write operations,WiredTiger uses optimistic
concurrency control. WiredTiger uses only intent locks at the global,
database and collection levels. When the storage engine detects
conflicts between two operations, one will incur a write conflict
causing MongoDB to transparently retry that operation.

Snapshots and Checkpoints

• WiredTiger uses MultiVersion Concurrency Control (MVCC). At the
start of an operation, WiredTiger provides a point-in-time snapshot of
the data to the transaction. A snapshot presents a consistent view of
the in-memory data.

• When writing to disk, WiredTiger writes all the data in a snapshot to
disk in a consistent way across all data files. The now-durable data act
as a checkpoint in the data files. The checkpoint ensures that the data
files are consistent up to and including the last checkpoint; i.e.
checkpoints can act as recovery points.

Compression
• With WiredTiger, MongoDB supports compression for all collections

and indexes. Compression minimizes storage use at the expense of
additional CPU.

• By default, WiredTiger uses block compression with the snappy
compression library for all collections and prefix compression for all
indexes.

• For collections, block compression with zlib is also available. To
specify an alternate compression algorithm or no compression, use the
storage.wiredTiger.collectionConfig.blockCompressor setting.

• For indexes, to disable prefix compression, use the
storage.wiredTiger.indexConfig.prefixCompression setting.

WiredTiger Storage Engine

•Compression settings are also configurable on a per-collection and per-
index basis during collection and index creation.See create-collection-
storage-engine-options and db.collection.createIndex() storageEngine
option.
•For most workloads, the default compression settings balance storage
efficiency and processing requirements.
•The WiredTiger journal is also compressed by default. For information
on journal compression.

The Index of MongoDB

The Index of MongoDB

• Fundamentally, indexes in MongoDB are similar to indexes in other
database systems. MongoDB defines indexes at the collection level
and supports indexes on any field or sub-field of the documents in a
MongoDB collection.

Index Types

• Default _id
• All MongoDB collections have an index on the _id field that exists by default.

If applications do not specify a value for _id the driver or the mongod will
create an _id field with an ObjectId value.

• The _id index is unique and prevents clients from inserting two documents
with the same value for the _id field.

Index Types
• Single Field

• In addition to the MongoDB-
defined _id index, MongoDB
supports the creation of user-
defined ascending/descending
indexes on a single field of a
document.

• For a single-field index and sort
operations, the sort order (i.e.
ascending or descending) of the
index key does not matter because
MongoDB can traverse the index
in either direction.

Index Types
• Compound Index

• MongoDB also supports user-defined
indexes on multiple fields, i.e. compound
indexes.

• The order of fields listed in a compound
index has significance. For instance, if a
compound index consists of {userid: 1,
score: -1 }, the index sorts first by userid
and then, within each userid value, sorts
by score.

• For compound indexes and sort
operations, the sort order (i.e. ascending
or descending) of the index keys can
determine whether the index can support a
sort operation. See Sort Order (page 491)
for more information on the impact of
index order on results in compound
indexes.

Index Types
• Multikey Index

• MongoDB uses multikey indexes
to index the content stored in
arrays. If you index a field that
holds an array value, MongoDB
creates separate index entries for
every element of the array. These
multikey indexes allow queries to
select documents that contain
arrays by matching on element or
elements of the arrays. MongoDB
automatically determines whether
to create a multikey index if the
indexed field contains an array
value; you do not need to explicitly
specify the multikey type.

Index Types

• Geospatial Index
• To support efficient queries of geospatial coordinate data, MongoDB provides

two special indexes: 2d indexes that uses planar geometry when returning
results and 2sphere indexes that use spherical ge-ometry to return results.

• Geospatial Index Types
• 2dsphere Indexes
• 2d Indexes
• geoHaystack Indexes
• 2d Index Internals

26

Index Types

• Text Indexes
• MongoDB provides a text index type that supports searching for string content

in a collection. These text indexes do not store language-specific stop words
(e.g. “the”, “a”, “or”) and stem the words in a collection to only store root
words.

• Hashed Indexes
• To support hash based sharding (page 686), MongoDB provides a hashed

index (page 504) type, which indexes the hash of the value of a field. These
indexes have a more random distribution of values along their range, but only
support equality matches and cannot support range-based queries.

Index Properties

• In addition to the numerous index types (page 488) MongoDB
supports, indexes can also have various properties. The following
documents detail the index properties that you can select when
building an index.
TTL Indexes The TTL index is used for TTL collections, which expire data

after a period of time.
Unique Indexes A unique index causes MongoDB to reject all documents that

contain a duplicate value for the indexed field.
Sparse Indexes A sparse index does not index documents that do not have the

indexed field.

The End! Thank you!

